High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources
Abstract
1. Introduction
2. Principle of HHP and Its Role in Food Processing
3. Effects of HHP on Allergenicity, Bioactivities, as well as Structural, Functional, and Other Properties of Proteins
3.1. Plant-Based Protein Sources
3.1.1. Cereals
3.1.2. Legumes and Nuts
3.1.3. Seeds
3.1.4. Vegetables
3.2. Animal-Based Protein Sources
3.2.1. Dairy Products and Eggs
Protein Sources | Samples | Extraction Methods | Pressure (MPa) | Time (min) | Effects on Samples | References | ||
---|---|---|---|---|---|---|---|---|
Structural Property | Bioactivities and Allergenicity | Functional and Other Properties | ||||||
Dairy products and eggs | Whey protein isolates | - | 550 | 1 | - | (+) antioxidant activity | (+) protein digestibility | [79] |
- | 100–400 | 5–30 | (+) SH | - | (+) DH | [82] | ||
- | 600 | 10–15 | (−) β-Lg (+) FI | - | (+) turbidity (+) protein yield (+) purification degree | [69] | ||
- | 100–600 | 15–30 | (+) α-helix, β-sheet (+) SH | - | (+) DH (+) foaming capacity (+) foaming stability (−) interfacial tension | [75] | ||
- | 600 | 10 | (+) α-helix (−) β-sheet (+) FI | - | (+) G′ (+) surface hydrophobicity (−) interfacial tension (+) micro-viscosity | [74,76] | ||
- | 500 | 5–15 | (+) α-helix (+) FI | (−) allergenicity | (+) surface hydrophobicity (+) protein digestibility | [71] | ||
- | 100–600 | 30 | (−) α-helix, β-sheet (+) random coil (+) FI (+) SH | (+) antioxidant activity | (+) DH (+) protein digestibility | [80] | ||
- | 100–600 | 10–20 | (+) α-helix, β-turn (−) β-sheet (+) FI (+) SH | (−) allergenicity (+) antioxidant activity | (−) EAI (+) surface hydrophobicity | [72] | ||
Casein extracts | Acid (pH 4.6) | 200–600 | 5–15 | - | (+) ACE-inhibitory activity (+) antioxidant | (+) protein digestibility | [81] | |
α-La and β-Lg milk powders | - | 200–600 | 1.7–5 | (−) β-Lg | - | (+) protein recovery (+) purification degree of α-La | [68] | |
Whole milk | - | 600 | 5 | (−) β-Lg | - | - | [70] | |
Skim milk | - | 250–900 | 5 | (−) particle size | (−) secretory IgA | (−) protein solubility | [73] | |
Eggs | - | 600–900 | 5–15 | - | - | (+) hardness | [77] | |
Egg white | - | 350–550 | 5–15 | - | (+) antioxidant activity | (+) DH | [78] | |
Meat and poultry products | Bovine serum albumin | - | 100–600 | 15 | (+) SH | - | (+) foaming capacity (+) EAI and ESI | [83,84] |
Rabbit myosin extracts | KCl (0.6 M) | 100–200 | 2 | (−) α-helix (+) β-sheet, β-turn (−) droplet size | - | (+) interfacial tension (+) EAI and ESI (+) G′ | [85] | |
Beef jerky | - | 100–300 | 20 | (+) TBARS | - | (−) tenderness (−) moisture content (+) L* and (−) a* | [86] | |
Beef gel | - | 100–200 | 10 | - | - | (−) L*, a*, and b* (+) G′ (+) hardness and adhesiveness | [87] | |
Beef patties | - | 300 | 5 | - | - | (+) cooking loss (−) expressible moisture (+) L* and (−) a*, b* (−) G′ (+) hardness, springiness, and chewiness (+) water release | [88] | |
Beef rounds | - | 300–600 | 5 | (+) C=O | - | (+) L*, b* and (−) a* | [89] | |
Chicken meat | - | 50–200 | 1–3 | - | - | (+) L* (−) expressible moisture (+) hardness, cohesiveness, and chewiness | [90] | |
Chorizos | - | 600 | 8 | (+) C=O (+) TBARS | - | - | [91] | |
Frankfurters | - | 300–600 | 4 | - | - | (+) firmness (+) drip loss | [92] | |
Lamb cuts | - | 200–600 | 1 | (+) TBARS | - | (+) free AA | [93] | |
Wieners | - | 600 | 3 | (+) TBARS | - | (−) expressible moisture (−) hardness, springiness, and chewiness | [94] | |
Seafood | Bighead carp protein extracts | KCl (0.6 M) | 300 | 20 | (−) α-helix, random coil (+) β-sheet (−) FI (−) SH | (+) antioxidant activity | (+) DH (+) surface hydrophobicity (+) zeta potential | [95] |
Cod protein extracts | Tris-maleate (0.02 M, pH 7) | 200 | 20 | - | (+) ACE inhibitory activity (+) anti-inflammatory activity (+) antioxidant activity | (+) AA content | [96] | |
Eel (surimi) Protein extracts | PBS (0.1 M, pH 7.5) | 100–600 | 5 | (+) β-turn, random coil (+) SH | (+) ACE inhibitory activity | (+) surface hydrophobicity (+) hardness, adhesiveness, and chewiness (+) WHC | [97] | |
Oyster protein extracts | PBS (0.05 M, pH 7) | 300–600 | 5 | (−) α-helix (+) β-turn, β-sheet, random coil (−) FI (+) SH | (−) IgG binding capacity | (+) surface hydrophobicity | [98] | |
Scallop protein extracts | PBS (0.05 M, pH 7) | 100–500 | 10 | (−) α-helix (+) β-sheet (+) SH (+) droplet size | - | (+) surface hydrophobicity (+) zeta potential (+) ESI and EAI (+) creaming index (+) protein adsorption (−) protein solubility | [99] | |
Squid protein extracts | Protein lysis buffer | 200–600 | 20 | (−) α-helix (+) β-sheet, random coil | (−) allergenicity | (+) surface hydrophobicity (+) protein digestibility | [100] | |
Alaska pollock (surimi) | - | 300 | 10 | (−) ∆H | - | (+) WBC (+) breaking force | [101] | |
Large yellow croaker | - | 300–600 | 10 | (−) α-helix (+) β-sheet, random coil (−) FI (−) SH | (−) allergenicity | (+) surface hydrophobicity | [102] | |
Red abalone | - | 200–500 | - | (+) β-sheet | - | (+) protein digestibility | [103] | |
Razor clam | - | 200–400 | 1–10 | (+) TBARS | (−) Ca2+-ATPase activity | (+) WHC (−) drip loss (+) pH (−) protein content | [104] | |
Silver pomfret | - | 100–200 | - | (−) SH (+) C=O | (−) Ca2+-ATPase activity | (+) surface hydrophobicity (+) thawing loss (−) WHC (+) hardness, springiness, chewiness, and gumminess (+) L* and b* (+) pH | [105] | |
Threadfin bream | - | 200–600 | 10–50 | (−) SH | (−) Ca2+-ATPase activity | (−) protein solubility (+) surface hydrophobicity (+) turbidity | [106] | |
Tilapia (surimi) | - | 100–400 | 15 | - | - | (+) L* (+) WHC (+) gel strength (+) hardness, springiness, and chewiness | [107] | |
Oysters | - | 100–500 | 5 | - | - | (+) hardness, springiness, chewiness, and cohesiveness | [108] | |
Shrimps | - | 550 | 5 | (−) TBARS | - | (+) moisture content (+) G’ (+) L* (−) a* and b* (−) firmness | [109] |
3.2.2. Meat and Poultry Products
3.2.3. Seafood
3.3. Alternative Protein Sources
3.3.1. Algae
3.3.2. Insects
Protein Sources | Samples | Extraction Methods | Pressure (MPa) | Time (min) | Effects on Samples | References | ||
---|---|---|---|---|---|---|---|---|
Structural Property | Bioactivities and Allergenicity | Functional and Other Properties | ||||||
Algae | A. platensis protein extracts | PBS (0.1 M, pH 6.8) | 100–600 | 0–20 | - | - | (+) protein solubility (+) C-phycocyanin | [112,113] |
PBS (0.01 M, pH 7) | 600 | 5 | - | (−) antioxidant activity | (+) phycobiliproteins | [119] | ||
A. platensis C. vulgaris | - | 300–600 | 15 | - | - | (+) G′ | [114] | |
P. palmata S. chordalis protein extracts | Cellulase (Tris-HCl, pH 5) | 400 | 20 | - | (+) antioxidant activity (+) TPC | (+) protein concentration | [115] | |
P. cruentum protein extracts | Tris-HCl (0.5 M, pH 7) | 50–500 | 5 | (−) FI | - | (−) B-phycoerythrin | [120,121] | |
Insects | Cricket protein extracts | Alkali (pH 10) | 500 | 15 | - | - | (+) viscosity | [122] |
Mealworm protein extracts | Protease (0.25%) | 380 | 1 | - | (−) allergenicity | (+) DH | [116] | |
Ascorbic acid (2%) | 70–600 | 5 | (+) particle size (−) FI | - | (+) optical density (+) surface hydrophobicity | [123] | ||
Cricket and mealworm protein extracts | Alkali (pH 8.5) + Alcalase (3%) | 380 | 1 | - | - | (−) DH (−) protein solubility (+) OBC | [117] | |
- | 500 | 15 | (+) amide II | - | (+) OBC (+) TPC | [118] |
4. Conclusions and Future Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alrosan, M.; Tan, T.-C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H. Molecular forces governing protein-protein interaction: Structure-function relationship of complexes protein in the food industry. Crit. Rev. Food Sci. Nutr. 2022, 62, 4036–4052. [Google Scholar] [CrossRef]
- Kristo, E.; Corredig, M. Functional properties of food proteins. In Applied Food Protein Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 47–73. [Google Scholar] [CrossRef]
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.-B.; Shim, J.-H.; Abd El-Aty, A. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.-H.; He, R.; Xu, R.; Zhang, L.; Gao, X. Improving soy sauce aroma using high hydrostatic pressure and the preliminary mechanism. Foods 2022, 11, 2190. [Google Scholar] [CrossRef]
- Gao, X.; Zhao, X.; Hu, F.; Fu, J.; Zhang, Z.; Liu, Z.; Wang, B.; He, R.; Ma, H.; Ho, C.T. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res. Int. 2023, 173, 113407. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-thermal technologies for food processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Govaris, A.; Pexara, A. Inactivation of foodborne viruses by high-pressure processing (HPP). Foods 2021, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Li, R.; Dong, P.; Rao, L.; Wang, Y.; Liao, X. Influence of pressurization rate and mode on cell damage of Escherichia coli and Staphyloccocus aureus by high hydrostatic pressure. Front. Microbiol. 2023, 14, 1108194. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.V.M. Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Appl. Sci. 2023, 13, 1193. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, M.; Mujumdar, A.S.; Liu, Y. Application advantages of new non-thermal technology in juice browning control: A comprehensive review. Food Rev. Int. 2023, 39, 4102–4123. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The shape and structure of proteins. In Molecular Biology of the Cell, 4th ed.; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Kong, F.; Kang, S.; Zhang, J.; Jiang, L.; Liu, Y.; Yang, M.; Cao, X.; Zheng, Y.; Shao, J.; Yue, X. The non-covalent interactions between whey protein and various food functional ingredients. Food Chem. 2022, 394, 133455. [Google Scholar] [CrossRef] [PubMed]
- Yu, P. Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: A new approach. Br. J. Nutr. 2005, 94, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Ayala, J.E.; Soler, A.; Mendez-Montealvo, G.; Velazquez, G. Supramolecular structure and technofunctional properties of starch modified by high hydrostatic pressure (HHP): A review. Carbohydr. Polym. 2022, 291, 119609. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Jia, Y.; Lu, X.; Li, H. Release and conformational changes in allergenic proteins from wheat gluten induced by high hydrostatic pressure. Food Chem. 2022, 368, 130805. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, Á.L.; Rico, D.; Ronda, F.; Martín-Diana, A.B.; Caballero, P.A. Development of a gluten-free whole grain flour by combining soaking and high hydrostatic pressure treatments for enhancing functional, nutritional and bioactive properties. J. Cereal Sci. 2022, 105, 103458. [Google Scholar] [CrossRef]
- Jia, X.; Li, L.; Teng, J.; Li, M.; Long, H.; Xia, N. Glycation of rice protein and d-xylose pretreated through hydrothermal cooking-assisted high hydrostatic pressure: Focus on the structural and functional properties. LWT 2022, 160, 113194. [Google Scholar] [CrossRef]
- Chen, S.-H.; Li, P.-H.; Chan, Y.-J.; Cheng, Y.-T.; Lin, H.-Y.; Lee, S.-C.; Lu, W.C.; Ma, Y.X.; Li, M.Y.; Song, T.Y. Potential Anti-Sarcopenia Effect and Physicochemical and Functional Properties of Rice Protein Hydrolysate Prepared through High-Pressure Processing. Agriculture 2023, 13, 209. [Google Scholar] [CrossRef]
- Lee, C.; Lee, W.; Han, Y.; Oh, S. Effect of proteolysis with alkaline protease following high hydrostatic pressure treatment on IgE binding of buckwheat protein. J. Food Sci. 2017, 82, 834–839. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L.; Arfat, Y.A. Effects of high hydrostatic pressure on functional, thermal, rheological and structural properties of β-D-glucan concentrate dough. LWT 2016, 70, 63–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Zhang, Z.; Chen, Z.; Jing, X.; Wang, X. Effect of high hydrostatic pressure treatment on the structure and physicochemical properties of millet gliadin. LWT 2022, 154, 112755. [Google Scholar] [CrossRef]
- Liu, N.; Lin, P.; Zhang, K.; Yao, X.; Li, D.; Yang, L.; Zhao, M. Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. Innov. Food Sci. Emerg. Technol. 2022, 77, 102975. [Google Scholar] [CrossRef]
- Wang, S.; Wang, T.; Sun, Y.; Cui, Y.; Yu, G.; Jiang, L. Effects of high hydrostatic pressure pretreatment on the functional and structural properties of rice bran protein hydrolysates. Foods 2021, 11, 29. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, R.; Palmer, J.; Hemar, Y.; Yang, Z. Impact of high hydrostatic pressure on the gelation behavior and microstructure of quinoa protein isolate dispersions. ACS Food Sci. Technol. 2021, 1, 2144–2151. [Google Scholar] [CrossRef]
- Luo, L.; Yang, Z.; Wang, H.; Ashokkumar, M.; Hemar, Y. Impacts of sonication and high hydrostatic pressure on the structural and physicochemical properties of quinoa protein isolate dispersions at acidic, neutral and alkaline pHs. Ultrason. Sonochemistry 2022, 91, 106232. [Google Scholar] [CrossRef]
- Lee, N.-Y.; Koo, J.-G. Effects of high hydrostatic pressure on quality changes of blends with low-protein wheat and oat flour and derivative foods. Food Chem. 2019, 271, 685–690. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Luo, S.; Li, P.; Mu, D.; Zhao, Y.; Zhong, X.; Jiang, S.; Zheng, Z. Effects of high hydrostatic pressure on the properties of heat-induced wheat gluten gels. Food Bioprocess Technol. 2019, 12, 220–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Sheng, W.; Wang, S.; Fu, T.-J. Effects of heat and high-pressure treatments on the solubility and immunoreactivity of almond proteins. Food Chem. 2016, 199, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Peyrano, F.; Speroni, F.; Avanza, M.V. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2016, 33, 38–46. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Calorimetric study of cowpea protein isolates. Effect of calcium and high hydrostatic pressure. Food Biophys. 2017, 12, 374–382. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Rheological characterization of the thermal gelation of cowpea protein isolates: Effect of pretreatments with high hydrostatic pressure or calcium addition. LWT 2019, 115, 108472. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Gelation of cowpea proteins induced by high hydrostatic pressure. Food Hydrocoll. 2021, 111, 106191. [Google Scholar] [CrossRef]
- Peyrano, F.; De Lamballerie, M.; Avanza, M.V.; Speroni, F. High hydrostatic pressure-or heat-induced gelation of cowpea proteins at low protein content: Effect of calcium concentration. Food Hydrocoll. 2022, 124, 107220. [Google Scholar] [CrossRef]
- Ahmed, J.; Al-Ruwaih, N.; Mulla, M.; Rahman, M.H. Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT 2018, 91, 191–197. [Google Scholar] [CrossRef]
- Chao, D.; Jung, S.; Aluko, R.E. Physicochemical and functional properties of high pressure-treated isolated pea protein. Innov. Food Sci. Emerg. Technol. 2018, 45, 179–185. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment. LWT 2021, 152, 112349. [Google Scholar] [CrossRef]
- He, X.-H.; Liu, H.-Z.; Liu, L.; Zhao, G.-L.; Wang, Q.; Chen, Q.-L. Effects of high pressure on the physicochemical and functional properties of peanut protein isolates. Food Hydrocoll. 2014, 36, 123–129. [Google Scholar] [CrossRef]
- Pan, D.; Tang, B.; Liu, H.; Li, Z.; Ma, R.; Peng, Y.; Wu, X.; Che, L.; He, N.; Ling, X.; et al. Effect of high hydrostatic pressure (HHP) processing on immunoreactivity and spatial structure of peanut major allergen Ara h 1. Food Bioprocess Technol. 2020, 13, 132–144. [Google Scholar] [CrossRef]
- Qin, Z.; Guo, X.; Lin, Y.; Chen, J.; Liao, X.; Hu, X.; Wu, J. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate. J. Sci. Food Agric. 2013, 93, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Sun, Y.; Huangfu, B.; He, X.; Huang, K. Ultra-high-pressure passivation of soybean agglutinin and safety evaluations. Food Chem. X 2023, 18, 100726. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.Y.; Jang, G.Y.; Oh, N.S.; Baek, S.Y.; Lee, S.H.; Kim, K.M.; Kim, T.M.; Lee, J.; Jeong, H.S. Characteristics and in vitro anti-inflammatory activities of protein extracts from pre-germinated black soybean [Glycine max (L.)] treated with high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2017, 43, 84–91. [Google Scholar] [CrossRef]
- Guan, H.; Diao, X.; Jiang, F.; Han, J.; Kong, B. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chem. 2018, 245, 89–96. [Google Scholar] [CrossRef]
- Xi, J.; He, M. High hydrostatic pressure (HHP) effects on antigenicity and structural properties of soybean β-conglycinin. J. Food Sci. Technol. 2018, 55, 630–637. [Google Scholar] [CrossRef]
- Li, H.; Jia, Y.; Peng, W.; Zhu, K.; Zhou, H.; Guo, X. High hydrostatic pressure reducing allergenicity of soy protein isolate for infant formula evaluated by ELISA and proteomics via Chinese soy-allergic children’s sera. Food Chem. 2018, 269, 311–317. [Google Scholar] [CrossRef]
- Tan, M.; Xu, J.; Gao, H.; Yu, Z.; Liang, J.; Mu, D.; Li, X.; Zhong, X.; Luo, S.; Zhao, Y.; et al. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates. J. Food Eng. 2021, 306, 110622. [Google Scholar] [CrossRef]
- Yan, G.; Cui, Y.; Lia, D.; Ding, Y.; Han, J.; Wang, S.; Yang, Q.; Zheng, H. The characteristics of soybean protein isolate obtained by synergistic modification of high hydrostatic pressure and phospholipids as a promising replacement of milk in ice cream. LWT 2022, 160, 113223. [Google Scholar] [CrossRef]
- Dehnad, D.; Emadzadeh, B.; Ghorani, B.; Rajabzadeh, G. High hydrostatic pressure (HHP) as a green technology opens up a new possibility for the fabrication of electrospun nanofibers: Part I-improvement of soy protein isolate properties by HHP. Food Hydrocoll. 2023, 140, 108659. [Google Scholar] [CrossRef]
- Chen, J.; Mu, T.; Zhang, M.; Goffin, D. Effect of high hydrostatic pressure on the structure, physicochemical and functional properties of protein isolates from cumin (Cuminum cyminum) seeds. Int. J. Food Sci. Technol. 2019, 54, 752–761. [Google Scholar] [CrossRef]
- Perreault, V.; Hénaux, L.; Bazinet, L.; Doyen, A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 2017, 221, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Franck, M.; Perreault, V.; Suwal, S.; Marciniak, A.; Bazinet, L.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity. Food Res. Int. 2019, 115, 467–473. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Ye, J.; Chen, H.; Tao, R.; Cao, F. Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innov. Food Sci. Emerg. Technol. 2016, 34, 187–195. [Google Scholar] [CrossRef]
- Wang, Z.; Ju, X.; He, R.; Yuan, J.; Aluko, R.E. Effect of high pressure treatment on rapeseed protein microparticle properties and gastrointestinal release behavior of the encapsulated peptides. Food Res. Int. 2015, 77, 549–555. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.H.; Zhang, M.; Chen, J.W. Effects of high hydrostatic pressure on the physicochemical and emulsifying properties of sweet potato protein. Int. J. Food Sci. Technol. 2013, 48, 1260–1268. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Zhang, M.; Arogundade, L.A. The effects of pH and high hydrostatic pressure on the physicochemical properties of a sweet potato protein emulsion. Food Hydrocoll. 2014, 35, 209–216. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Ali, F.; Arogundade, L.A.; Khan, Z.U.; Zhang, M.; Ahmad, S.; Sun, H.-N. Effects of high hydrostatic pressure on emulsifying properties of sweet potato protein in model protein–hydrocolloids system. Food Chem. 2015, 169, 448–454. [Google Scholar] [CrossRef]
- Khan, N.M.; Mu, T.-H.; Sun, H.-N.; Zhang, M.; Chen, J.-W. Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein. High Press. Res. 2015, 35, 189–202. [Google Scholar] [CrossRef]
- Sun, M.; Mu, T.; Sun, H.; Zhang, M. Digestibility and structural properties of thermal and high hydrostatic pressure treated sweet potato (Ipomoea batatas L.) protein. Plant Foods Hum. Nutr. 2014, 69, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Elahi, R.; Mu, T.-H. High hydrostatic pressure (HHP)-induced structural modification of patatin and its antioxidant activities. Molecules 2017, 22, 438. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food Bioprocess Technol. 2018, 11, 1719–1732. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Effect of salts combined with high hydrostatic pressure on structure and gelation properties of sweet potato protein. LWT 2018, 93, 36–44. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Effects of high hydrostatic pressure and microbial transglutaminase treatment on structure and gelation properties of sweet potato protein. LWT 2019, 115, 108436. [Google Scholar] [CrossRef]
- Zhao, Z.-K.; Mu, T.-H.; Zhang, M.; Richel, A. Effects of sulfur-containing amino acids and high hydrostatic pressure on structure and gelation properties of sweet potato protein. Food Bioprocess Technol. 2019, 12, 1863–1873. [Google Scholar] [CrossRef]
- Nazir, M.A.; Mu, T.H.; Zhang, M. Preparation and identification of angiotensin I-converting enzyme inhibitory peptides from sweet potato protein by enzymatic hydrolysis under high hydrostatic pressure. Int. J. Food Sci. Technol. 2020, 55, 482–489. [Google Scholar] [CrossRef]
- Katzav, H.; Chirug, L.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. Comparison of thermal and high-pressure gelation of potato protein isolates. Foods 2020, 9, 1041. [Google Scholar] [CrossRef]
- Falade, E.O.; Mu, T.-H.; Zhang, M. Improvement of ultrasound microwave-assisted enzymatic production and high hydrostatic pressure on emulsifying, rheological and interfacial characteristics of sweet potato protein hydrolysates. Food Hydrocoll. 2021, 117, 106684. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Britten, M.; Pouliot, Y.; Doyen, A. The use of high hydrostatic pressure to modulate milk protein interactions for the production of an alpha-lactalbumin enriched-fraction. Green Chem. 2018, 20, 515–524. [Google Scholar] [CrossRef]
- Marciniak, A.; Suwal, S.; Touhami, S.; Chamberland, J.; Pouliot, Y.; Doyen, A. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure. J. Dairy Sci. 2020, 103, 7939–7950. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Carøe, C.; Qin, Z.; Munk, D.M.; Crafack, M.; Petersen, M.A.; Ahrné, L. Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. LWT 2020, 127, 109370. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Wang, Y.; Gao, J.; Yuan, Q.; Mao, X. Effects of high hydrostatic pressure treatment on the antigenicity, structural and digestive properties of whey protein. LWT 2023, 178, 114628. [Google Scholar] [CrossRef]
- Yu, X.-X.; Wang, X.-H.; Zhang, S.-A.; Zhang, Y.-H.; Zhang, H.-L.; Yin, Y.-Q. Study on potential antigenicity and functional properties of whey protein treated by high hydrostatic pressure based on structural analysis. Food Res. Int. 2023, 173, 113218. [Google Scholar] [CrossRef] [PubMed]
- Bravo, F.I.; Felipe, X.; López-Fandiño, R.; Molina, E. Skim milk protein distribution as a result of very high hydrostatic pressure. Food Res. Int. 2015, 72, 74–79. [Google Scholar] [CrossRef]
- Kieserling, H.; Giefer, P.; Uttinger, M.J.; Lautenbach, V.; Nguyen, T.; Sevenich, R.; Lübbert, C.; Rauh, C.; Peukert, W.; Fritsching, U.; et al. Structure and adsorption behavior of high hydrostatic pressure-treated β-lactoglobulin. J. Colloid Interface Sci. 2021, 596, 173–183. [Google Scholar] [CrossRef]
- Carullo, D.; Barbosa-Cánovas, G.; Ferrari, G. Changes of structural and techno-functional properties of high hydrostatic pressure (HHP) treated whey protein isolate over refrigerated storage. LWT 2021, 137, 110436. [Google Scholar] [CrossRef]
- Kieserling, H.; Alsmeier, I.M.; Steffen-Heins, A.; Keppler, J.K.; Sevenich, R.; Rauh, C.; Wagemans, A.M.; Drusch, S. Interfacial film formation and film stability of high hydrostatic pressure-treated β-lactoglobulin. Food Hydrocoll. 2021, 119, 106746. [Google Scholar] [CrossRef]
- Singh, A.; Ramaswamy, H. Effect of high pressure processing on color and textural properties of eggs. J. Food Res. 2013, 2, 11–24. [Google Scholar] [CrossRef]
- Singh, A.; Ramaswamy, H.S. Effect of high-pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. Int. J. Food Sci. Technol. 2014, 49, 269–279. [Google Scholar] [CrossRef]
- Iskandar, M.M.; Lands, L.C.; Sabally, K.; Azadi, B.; Meehan, B.; Mawji, N.; Skinner, C.D.; Kubow, S. High hydrostatic pressure pretreatment of whey protein isolates improves their digestibility and antioxidant capacity. Foods 2015, 4, 184–207. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xu, J.; Guo, R.; Teng, G.; Chen, Y.; Xu, X. In vitro gastrointestinal model for the elderly: Effect of high hydrostatic pressure on protein structures and antioxidant activities of whey protein isolate. Food Biosci. 2023, 52, 102452. [Google Scholar] [CrossRef]
- Hu, G.; Zheng, Y.; Liu, Z.; Xiao, Y.; Deng, Y.; Zhao, Y. Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chem. 2017, 221, 1860–1866. [Google Scholar] [CrossRef]
- Ambrosi, V.; Polenta, G.; Gonzalez, C.; Ferrari, G.; Maresca, P. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. Innov. Food Sci. Emerg. Technol. 2016, 38, 294–301. [Google Scholar] [CrossRef]
- De Maria, S.; Ferrari, G.; Maresca, P. Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innov. Food Sci. Emerg. Technol. 2016, 33, 67–75. [Google Scholar] [CrossRef]
- De Maria, S.; Ferrari, G.; Maresca, P. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin. J. Sci. Food Agric. 2017, 97, 3151–3158. [Google Scholar] [CrossRef]
- Bai, Y.; Zeng, X.; Zhang, C.; Zhang, T.; Wang, C.; Han, M.; Zhou, G.; Xu, X. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. LWT 2021, 146, 111397. [Google Scholar] [CrossRef]
- Han, G.; Chen, Q.; Xia, X.; Liu, Q.; Kong, B.; Wang, H. High hydrostatic pressure combined with moisture regulators improves the tenderness and quality of beef jerky. Meat Sci. 2021, 181, 108617. [Google Scholar] [CrossRef] [PubMed]
- Maksimenko, A.; Kikuchi, R.; Tsutsuura, S.; Nishiumi, T. Effect of high hydrostatic pressure and reducing sodium chloride and phosphate on physicochemical properties of beef gels. High Press. Res. 2019, 39, 385–397. [Google Scholar] [CrossRef]
- Bernasconi, A.; Szerman, N.; Vaudagna, S.R.; Speroni, F. High hydrostatic pressure and soybean protein addition to beef patties: Effects on the formation of mixed aggregates and technological parameters. Innov. Food Sci. Emerg. Technol. 2020, 66, 102503. [Google Scholar] [CrossRef]
- Jung, S.; Nam, K.C.; Ahn, D.U.; Kim, H.J.; Jo, C. Effect of phosvitin on lipid and protein oxidation in ground beef treated with high hydrostatic pressure. Meat Sci. 2013, 95, 8–13. [Google Scholar] [CrossRef]
- Ros-Polski, V.; Koutchma, T.; Xue, J.; Defelice, C.; Balamurugan, S. Effects of high hydrostatic pressure processing parameters and NaCl concentration on the physical properties, texture and quality of white chicken meat. Innov. Food Sci. Emerg. Technol. 2015, 30, 31–42. [Google Scholar] [CrossRef]
- Cava, R.; García-Parra, J.; Ladero, L. Effect of high hydrostatic pressure processing and storage temperature on food safety, microbial counts, colour and oxidative changes of a traditional dry-cured sausage. LWT 2020, 128, 109462. [Google Scholar] [CrossRef]
- Tintchev, F.; Bindrich, U.; Toepfl, S.; Strijowski, U.; Heinz, V.; Knorr, D. High hydrostatic pressure/temperature modeling of frankfurter batters. Meat Sci. 2013, 94, 376–387. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Oey, I.; Wu, Y.C.; Ma, Q.; Farouk, M.; Chadha, D. Effect of high hydrostatic pressure processing on the chemical characteristics of different lamb cuts. Foods 2020, 9, 1444. [Google Scholar] [CrossRef] [PubMed]
- Pietrasik, Z.; Gaudette, N.; Johnston, S. The impact of high hydrostatic pressure on the functionality and consumer acceptability of reduced sodium naturally cured wieners. Meat Sci. 2017, 129, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, L.; Xie, B.; Ma, A.; Hu, K.; Zheng, C.; Xiong, G.; Shi, L.; Ding, A.; Li, X.; et al. Effects of high-pressure treatments (ultra-high hydrostatic pressure and high-pressure homogenization) on bighead carp (Aristichthys nobilis) myofibrillar protein native state and its hydrolysate. Food Bioprocess Technol. 2022, 15, 2252–2266. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Bi, Y.; Cheng, K.-W.; Chen, F. Nutritional and functional activities of protein from steamed, baked, and high hydrostatic pressure treated cod (Gadus morhua). Food Control 2019, 96, 9–15. [Google Scholar] [CrossRef]
- Ma, R.; Liu, H.; Li, Y.; Atem, B.J.A.; Ling, X.; He, N.; Che, L.; Wu, X.; Wang, Y.; Lu, Y. Effects of high hydrostatic pressure treatment: Characterization of eel (Anguilla japonica) surimi, structure, and angiotensin-converting enzyme inhibitory activity of myofibrillar protein. Food Bioprocess Technol. 2021, 14, 1631–1639. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Liu, L.; Zeng, M. Effects of high hydrostatic pressure on conformation and IgG binding capacity of tropomyosin in Pacific oyster (Crassostrea gigas). Food Chem. 2023, 404, 134595. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Liu, X.; Sang, Y.; Tian, G.; Wang, Z.; Hou, Y. Characterization and emulsifying properties of mantle proteins from scallops (Patinopecten yessoensis) treated by high hydrostatic pressure treatment. LWT 2022, 167, 113865. [Google Scholar] [CrossRef]
- Jin, Y.; Deng, Y.; Qian, B.; Zhang, Y.; Liu, Z.; Zhao, Y. Allergenic response to squid (Todarodes pacificus) tropomyosin Tod p1 structure modifications induced by high hydrostatic pressure. Food Chem. Toxicol. 2015, 76, 86–93. [Google Scholar] [CrossRef]
- Cando, D.; Moreno, H.M.; Borderías, A.J.; Skåra, T. Combined effect of high hydrostatic pressure and lysine or cystine addition in low-grade surimi gelation with low salt content. Food Bioprocess Technol. 2016, 9, 1391–1398. [Google Scholar] [CrossRef]
- Zhang, H.; Liao, H.; Lu, Y.; Hu, Y.; Yang, H.; Cao, S.; Qi, X. Effects of high hydrostatic pressure on the structural characteristics of parvalbumin of cultured large yellow croaker (Larimichthys crocea). J. Food Process. Preserv. 2020, 44, e14911. [Google Scholar] [CrossRef]
- Cepero-Betancourt, Y.; Opazo-Navarrete, M.; Janssen, A.E.; Tabilo-Munizaga, G.; Pérez-Won, M. Effects of high hydrostatic pressure (HHP) on protein structure and digestibility of red abalone (Haliotis rufescens) muscle. Innov. Food Sci. Emerg. Technol. 2020, 60, 102282. [Google Scholar] [CrossRef]
- Xuan, X.T.; Cui, Y.; Lin, X.D.; Yu, J.F.; Liao, X.J.; Ling, J.G.; Shang, H. Impact of high hydrostatic pressure on the shelling efficacy, physicochemical properties, and microstructure of fresh razor clam (Sinonovacula constricta). J. Food Sci. 2018, 83, 284–293. [Google Scholar] [CrossRef]
- Cui, Y.; Xuan, X.; Ling, J.; Liao, X.; Zhang, H.; Shang, H.; Lin, X. Effects of high hydrostatic pressure-assisted thawing on the physicohemical characteristics of silver pomfret (Pampus argenteus). Food Sci. Nutr. 2019, 7, 1573–1583. [Google Scholar] [CrossRef]
- Zhou, A.; Lin, L.; Liang, Y.; Benjakul, S.; Shi, X.; Liu, X. Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure. Food Chem. 2014, 156, 402–407. [Google Scholar] [CrossRef]
- Lu, W.; Qin, Y.; Ruan, Z. Effects of high hydrostatic pressure on color, texture, microstructure, and proteins of the tilapia (Orechromis niloticus) surimi gels. J. Texture Stud. 2021, 52, 177–186. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, R.; Zhang, T.; Xu, Y.; Jiang, S.; Zhao, Y. High Hydrostatic Pressure Treatment of Oysters (Crassostrea gigas)—Impact on Physicochemical Properties, Texture Parameters, and Volatile Flavor Compounds. Molecules 2021, 26, 5731. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, L.; Ding, G.; Hu, X.; Liao, X.; Zhang, Y. High hydrostatic pressure and thermal treatments for ready-to-eat wine-marinated shrimp: An evaluation of microbiological and physicochemical qualities. Innov. Food Sci. Emerg. Technol. 2013, 20, 16–23. [Google Scholar] [CrossRef]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal proteins: Production strategies and nutritional and functional properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Qiu, S.; Wang, Z.; Zhao, C.; Tang, B.; Gao, Z.; Fan, J. Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Res. Int. 2023, 167, 112737. [Google Scholar] [CrossRef]
- Giannoglou, M.; Andreou, V.; Thanou, I.; Markou, G.; Katsaros, G. High pressure assisted extraction of proteins from wet biomass of Arthrospira platensis (Spirulina)–A kinetic approach. Innov. Food Sci. Emerg. Technol. 2022, 81, 103138. [Google Scholar] [CrossRef]
- Giannoglou, M.; Andreou, V.; Thanou, I.; Markou, G.; Katsaros, G. Kinetic study of the combined effect of high pressure and pH-value on Arthrospira platensis (Spirulina) proteins extraction. Innov. Food Sci. Emerg. Technol. 2023, 85, 103331. [Google Scholar] [CrossRef]
- Ahmed, J.; Kumar, V. Effect of high-pressure treatment on oscillatory rheology, particle size distribution and microstructure of microalgae Chlorella vulgaris and Arthrospira platensis. Algal Res. 2022, 62, 102617. [Google Scholar] [CrossRef]
- Suwal, S.; Perreault, V.; Marciniak, A.; Tamigneaux, É.; Deslandes, É.; Bazinet, L.; Jacques, H.; Beaulieu, L.; Doyen, A. Effects of high hydrostatic pressure and polysaccharidases on the extraction of antioxidant compounds from red macroalgae, Palmaria palmata and Solieria chordalis. J. Food Eng. 2019, 252, 53–59. [Google Scholar] [CrossRef]
- Boukil, A.; Perreault, V.; Chamberland, J.; Mezdour, S.; Pouliot, Y.; Doyen, A. High hydrostatic pressure-assisted enzymatic hydrolysis affect mealworm allergenic proteins. Molecules 2020, 25, 2685. [Google Scholar] [CrossRef] [PubMed]
- Dion-Poulin, A.; Laroche, M.; Doyen, A.; Turgeon, S.L. Functionality of cricket and mealworm hydrolysates generated after pretreatment of meals with high hydrostatic pressures. Molecules 2020, 25, 5366. [Google Scholar] [CrossRef] [PubMed]
- Bolat, B.; Ugur, A.E.; Oztop, M.H.; Alpas, H. Effects of high hydrostatic pressure assisted degreasing on the technological properties of insect powders obtained from Acheta domesticus & Tenebrio molitor. J. Food Eng. 2021, 292, 110359. [Google Scholar] [CrossRef]
- Faieta, M.; Neri, L.; Di Michele, A.; Di Mattia, C.D.; Pittia, P. High hydrostatic pressure treatment of Arthrospira (Spirulina) platensis extracts and the baroprotective effect of sugars on phycobiliproteins. Innov. Food Sci. Emerg. Technol. 2021, 70, 102693. [Google Scholar] [CrossRef]
- Tran, T.; Denimal, E.; Lafarge, C.; Journaux, L.; Lee, J.A.; Winckler, P.; Perrier-Cornet, J.-M.; Pradelles, R.; Loupiac, C.; Cayot, N. Effect of high hydrostatic pressure on extraction of B-phycoerythrin from Porphyridium cruentum: Use of confocal microscopy and image processing. Algal Res. 2019, 38, 101394. [Google Scholar] [CrossRef]
- Tran, T.; Lafarge, C.; Pradelles, R.; Perrier-Cornet, J.-M.; Cayot, N.; Loupiac, C. Effect of high hydrostatic pressure on the structure of the soluble protein fraction in Porphyridium cruentum extracts. Innov. Food Sci. Emerg. Technol. 2019, 58, 102226. [Google Scholar] [CrossRef]
- Urbina, P.; Marin, C.; Sanz, T.; Rodrigo, D.; Martinez, A. Effect of HHP, enzymes and gelatin on physicochemical factors of gels made by using protein isolated from common cricket (Acheta domesticus). Foods 2021, 10, 858. [Google Scholar] [CrossRef] [PubMed]
- Boukil, A.; Marciniak, A.; Mezdour, S.; Pouliot, Y.; Doyen, A. Effect of high hydrostatic pressure intensity on structural modifications in mealworm (Tenebrio molitor) proteins. Foods 2022, 11, 956. [Google Scholar] [CrossRef] [PubMed]
Protein Sources | Samples | Extraction Methods | Pressure (MPa) | Time (min) | Effects on Samples | References | ||
---|---|---|---|---|---|---|---|---|
Structural Property | Bioactivities and Allergenicity | Functional and Other Properties | ||||||
Cereals | Buckwheat grains | - | 600 | 30 | (+) particle size | (−) antioxidant activity (+) TPC | (−) EAI and ESI (−) foaming capacity and stability (−) G′ (+) WAC and WHC | [18] |
Buckwheat proteins extracts | NaCl (0.086 M) | 100–600 | 1–30 | - | (−) IgE binding activity | - | [21] | |
Barley β-glucan concentrates | - | 300–600 | 10 | (−) particle size | - | (+) G′ (+) WHC and WSI | [22] | |
Millet gliadin extracts | NaCl (0.3%) | 100–500 | 10 | (−) FI (−) α-helix, random coil (+) β-turn, β-sheets (−) SH | - | (−) protein solubility (−) surface hydrophobicity (−) zeta potential | [23] | |
Rice protein extracts | Alkali (pH 10) | 100–500 | 20 | (+) FI (−) droplet size | - | (−) creaming index (+) EAI and ESI (+) protein solubility (+) surface hydrophobicity (+) zeta potential | [24] | |
PBS (pH 11) | 100–300 | 20 | (−) α-helix and β-sheet (+) random coil (+) SH (+) FI | (+) antioxidant activity | (+) EAI and ESI (+) surface hydrophobicity | [19] | ||
NaOH (0.2 M) | 400 | 15 | (+) SH | (+) antioxidant activity | (+) protein content (+) WHC (+) WSI | [20] | ||
Rice bran protein extracts | Alkali (pH 9) | 100–300 | 30 | (−) particle size (+) FI (+) SH | - | (+) EAI and ESI (+) foaming capacity (+) protein solubility (−) zeta potential | [25] | |
Quinoa protein extracts | NaCl (0.5 M, | 100–600 | 15 | - | - | (+) viscosity (+) G′ | [26] | |
pH 8) | 250–600 | 15 | (−) α-helix, β-sheet (+) β-turn, random coil (−) SH (−) particle size | - | (+) protein solubility (−) surface hydrophobicity | [27] | ||
Wheat and oat flour | - | 150–300 | 30 | - | - | (−) hardness, gumminess, and chewiness (+) L* (+) WHC | [28] | |
Wheat gluten proteins | - | 100–400 | 10 | (+) SH (+) β-Sheet, random coil (−) α-helix, β-turn | - | (+) G′ (+) gel strength (+) WHC | [29] | |
200–500 | 20 | (+) α-helix, β-sheet (−) random coil (−) SH | (−) allergenicity | (+) surface hydrophobicity | [17] | |||
Legumes and nuts | Almond proteins extracts | PBS (pH 7.4) | 400–580 | 3 | - | (+) immunoreactivity | (−) protein solubility | [30] |
Cowpea protein extracts | Alkali (pH 10) | 200–600 | 5 | (−) DD (−) ∆H (−) FI | - | (+) G′ (+) hardness (−) L* (−) protein solubility (−) viscosity (+) WHC | [31,32,33,34,35] | |
Kidney bean protein extracts | Alkali (pH 8) | 200–600 | 15 | (−) ∆H | - | (+) EAI and ESI (+) foaming capacity and stability (+) L* (+) G′ (+) WHC | [36] | |
Pea protein extracts | Alkali (pH 10) | 200–600 | 5 | (−) droplet size (−) FI | - | (+) ESI (−) foaming capacity | [37] | |
Pulse protein isolates | - | 600 | 4 | (−) DD (−) ∆H | - | (+) ESI (+) foam expansion and stability (+) G’ (−) protein solubility (+) surface hydrophobicity (+) WHC | [38] | |
Peanut protein extracts | Alkali (pH 9) | 50–200 | 5 | (−) ∆H (+) SH | - | (+) hardness (+) OBC (+) surface hydrophobicity (+) WHC | [39] | |
Tris-HCl (50 mM, pH 8.0) | 200–600 | 2.5–20 | - | (−) allergenicity | - | [40] | ||
Walnut protein extracts | Alkali (pH 8.5) | 300–600 | 20 | (+) FI (+) SH | - | (+) EAI and (−) ESI (+) foaming capacity and stability (−) protein solubility (+) protein digestibility (+) surface hydrophobicity | [41] | |
Soybeans | - | 350–550 | 15 | (+) α-helix (−) β-sheet (−) FI | (−) agglutinin activity (−) cytotoxicity | - | [42] | |
Soybean protein extracts | Alkali (pH 8) | 50–150 | 12–24 h | - | (+) anti-inflammatory activity | (+) protein yield (+) protein content (+) AA content | [43] | |
Alkali (pH 8) | 80–300 | 1–5 h | - | (+) antioxidant activity (+) ACE inhibitory activity | (+) DH (−) surface hydrophobicity | [44] | ||
Soybean protein isolates | - | 200–500 | 5–20 | (−) α-helix, β-sheet (+) random coil (−) FI (+) SH | (−) allergenicity | - | [45] | |
- | 200–500 | 15 | - | (−) allergenicity | - | [46] | ||
- | 200–400 | 10 | (+) α-helix, random coil (−) β-sheet (−) particle and size (+) SH | - | (+) EAI and ESI (+) protein solubility (+) surface hydrophobicity (−) zeta potential | [47] | ||
- | 250 | 30 | (+) α-helix (−) β-sheet, β-turn (−) SH (+) particle size | - | (+) EAI and (−) ESI (+) foaming capacity and stability (−) hardness (+) protein solubility (+) surface hydrophobicity (+) zeta potential | [48] | ||
- | 200–600 | 15 | (+) α-helix (−) β-sheet (−) SH | - | (+) protein solubility (+) surface hydrophobicity (−) viscosity | [49] | ||
Seeds | Cumin protein extracts | Alkali (pH 9) | 200–600 | 15 | (−) FI | - | (−) EAI and ESI (+) surface hydrophobicity (+) protein solubility (+) G’ | [50] |
Flaxseed protein extracts | Alkali (pH 10) | 600 | 5–20 | (−) FI (+) particle size | - | (+) antioxidant activity | [51] | |
Cellulase (1.6 U/mg) | 100–300 | 5–10 | (+) FI | - | (+) antioxidant activity | [52] | ||
Ginkgo seed protein isolates | - | 100–700 | 20 | (−) α-helix, β-sheet (+) random coils (+) FI (+) SH | (−) allergenicity | (+) EAI | [53] | |
Rapeseed protein extracts | Alkali (pH 11) | 400 | 5–20 | - | - | (+) surface hydrophobicity | [54] | |
Vegetables | Sweet potato protein extracts | NaHSO3 (0.1% w/v) | 200–600 | 15 | (−) α-helix, β-turn (+) β-sheet (−) droplet size (−) ∆H | - | (+) surface hydrophobicity (+) EAI and ESI (+) G’ (−) protein solubility (−) creaming stability | [55,56,57,58] |
NaHSO3 (10mg/mL) | 100–600 | 20 | (+) β-sheet (−) β-turn (−) ∆H | - | - | [59] | ||
NaHSO3 (50 mM) | 250–550 | 15 | (−) α-helix (+) β-sheet, random coils (+) SH (−) ∆H | (+) antioxidant activity | (+) surface hydrophobicity | [60] | ||
NaHSO3 (0.1% w/v) | 250–550 | 30 | (+) α-helix (−) β-sheet (−) ∆H (+) SH | - | (+) surface hydrophobicity (+) zeta potential (+) G′ and WHC (+) hardness, springiness, chewiness, and gumminess | [61,62,63,64] | ||
Protease (6% w/w) | 100–300 | 60 | - | (+) ACE inhibitory activity | (+) DH (+) protein recovery | [65] | ||
- | 300–500 | 30 | - | - | (+) hardness (−) WHC | [66] | ||
- | 300–500 | 20 | - | (+) antioxidant activity | (+) EAI and ESI (+) surface hydrophobicity (+) viscosity | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braspaiboon, S.; Laokuldilok, T. High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources. Foods 2024, 13, 922. https://doi.org/10.3390/foods13060922
Braspaiboon S, Laokuldilok T. High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources. Foods. 2024; 13(6):922. https://doi.org/10.3390/foods13060922
Chicago/Turabian StyleBraspaiboon, Sukan, and Thunnop Laokuldilok. 2024. "High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources" Foods 13, no. 6: 922. https://doi.org/10.3390/foods13060922
APA StyleBraspaiboon, S., & Laokuldilok, T. (2024). High Hydrostatic Pressure: Influences on Allergenicity, Bioactivities, and Structural and Functional Properties of Proteins from Diverse Food Sources. Foods, 13(6), 922. https://doi.org/10.3390/foods13060922