Innovative Systems for the Delivery of Naturally Occurring Antimicrobial Volatiles in Active Food-Packaging Technologies for Fresh and Minimally Processed Produce: Stimuli-Responsive Materials
Abstract
:1. Introduction
2. Antimicrobial Volatile Compounds in Food Packaging
2.1. Terpenes
2.2. Aldehydes
2.3. Methods for the Incorporation of Antimicrobial Volatile Compounds in Polymer Materials
2.3.1. Direct Incorporation into the Polymeric Matrix
2.3.2. Encapsulation
2.4. Release Mechanisms of Volatile Compounds from Non-Stimuli-Triggered Systems
3. Reversible Covalent Bonds for Active Food Packaging
3.1. Types and Mechanisms of Formation–Hydrolysis of Reversible Bonds
3.2. Volatile Release Mechanism of Triggered Systems
3.3. Design of Stimuli-Responsive Structures Using Reversible Covalent Bonds
3.4. Stimuli-Responsive Release of Volatile Compounds in Active Food Packaging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef]
- Wyrwa, J.; Barska, A. Innovations in the Food Packaging Market: Active Packaging. Eur. Food Res. Technol. 2017, 243, 1681–1692. [Google Scholar] [CrossRef]
- Weiss, J.; Loeffler, M.; Terjung, N. The Antimicrobial Paradox: Why Preservatives Lose Activity in Foods. Curr. Opin. Food Sci. 2015, 4, 69–75. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Azlin-Hasim, S.; Cruz-Romero, M.; Cummins, E.; Kerry, J.P.; Morris, M.A. Antimicrobial Effect of Benzoic and Sorbic Acid Salts and Nano-Solubilisates against Staphylococcus aureus, Pseudomonas fluorescens and Chicken Microbiota Biofilms. Food Control 2020, 107, 106786. [Google Scholar] [CrossRef]
- Agrillo, B.; Balestrieri, M.; Gogliettino, M.; Palmieri, G.; Moretta, R.; Proroga, Y.T.R.; Rea, I.; Cornacchia, A.; Capuano, F.; Smaldone, G.; et al. Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for “Active” Packaging. Int. J. Mol. Sci. 2019, 20, 601. [Google Scholar] [CrossRef]
- Muriel-Galet, V.; Talbert, J.N.; Hernandez-Munoz, P.; Gavara, R.; Goddard, J.M. Covalent Immobilization of Lysozyme on Ethylene Vinyl Alcohol Films for Nonmigrating Antimicrobial Packaging Applications. J. Agric. Food Chem. 2013, 61, 6720–6727. [Google Scholar] [CrossRef]
- Settier-Ramírez, L.; López-Carballo, G.; Hernández-Muñoz, P.; Fontana-Tachon, A.; Strub, C.; Schorr-Galindo, S. Apple-Based Coatings Incorporated with Wild Apple Isolated Yeast to Reduce Penicillium expansum Postharvest Decay of Apples. Postharvest Biol. Technol. 2022, 185, 111805. [Google Scholar] [CrossRef]
- Choi, I.; Yoo, D.S.; Chang, Y.; Kim, S.Y.; Han, J. Polycaprolactone Film Functionalized with Bacteriophage T4 Promotes Antibacterial Activity of Food Packaging toward Escherichia coli. Food Chem. 2021, 346, 128883. [Google Scholar] [CrossRef] [PubMed]
- Higueras, L.; López-Carballo, G.; Hernández-Muñoz, P.; Gavara, R.; Rollini, M. Development of a Novel Antimicrobial Film Based on Chitosan with LAE (Ethyl-Nα-Dodecanoyl-l-Arginate) and Its Application to Fresh Chicken. Int. J. Food Microbiol. 2013, 165, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Sun, J.; Lu, Y.; Wu, T.; Pang, J.; Hu, Y. In Situ Self-Assembly Chitosan/ε-Polylysine Bionanocomposite Film with Enhanced Antimicrobial Properties for Food Packaging. Int. J. Biol. Macromol. 2019, 132, 385–392. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, W.; Luo, J.; Deng, D. Multifunctional Nano-Cellulose Composite Films with Grape Seed Extracts and Immobilized Silver Nanoparticles. Carbohydr. Polym. 2019, 205, 447–455. [Google Scholar] [CrossRef]
- He, Y.; Chen, S.; Xu, D.; Ren, D.; Wu, X. Fabrication of Antimicrobial Colorimetric Pad for Meat Packaging Based on Polyvinyl Alcohol Aerogel with the Incorporation of Anthocyanins and Silver Nanoparticles. Packag. Technol. Sci. 2023, 36, 745–755. [Google Scholar] [CrossRef]
- Hammerbacher, A.; Coutinho, T.A.; Gershenzon, J. Roles of Plant Volatiles in Defence against Microbial Pathogens and Microbial Exploitation of Volatiles. Plant Cell Environ. 2019, 42, 2827–2843. [Google Scholar] [CrossRef]
- Değirmenci, H.; Erkurt, H. Relationship between Volatile Components, Antimicrobial and Antioxidant Properties of the Essential Oil, Hydrosol and Extracts of Citrus aurantium L. Flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef]
- Wicochea-Rodríguez, J.D.; Chalier, P.; Ruiz, T.; Gastaldi, E. Active Food Packaging Based on Biopolymers and Aroma Compounds: How to Design and Control the Release. Front Chem. 2019, 7, 398. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Pereira, E.D. Short- and Long-Term Loss of Carvacrol from Polymer/Clay Nanocomposite Film—A Chemometric Approach. Polym. Int. 2016, 65, 483–490. [Google Scholar] [CrossRef]
- Suppakul, P.; Sonneveld, K.; Bigger, S.W.; Miltz, J. Loss of AM Additives from Antimicrobial Films during Storage. J. Food Eng. 2011, 105, 270–276. [Google Scholar] [CrossRef]
- Gavara, R. Practical Guide to Antimicrobial Active Packaging; Smithers Pira: Shawbury, UK, 2015; ISBN 1910242101. [Google Scholar]
- Sanahuja, A.B.; García, A.V. New Trends in the Use of Volatile Compounds in Food Packaging. Polymers 2021, 13, 1053. [Google Scholar] [CrossRef] [PubMed]
- Tchakalova, V.; Lutz, E.; Lamboley, S.; Moulin, E.; Benczédi, D.; Giuseppone, N.; Herrmann, A. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 2): Fragrance-Releasing Cleavable Surfactants in Functional Perfumery Applications. Chem.—A Eur. J. 2021, 27, 13468–13476. [Google Scholar] [CrossRef]
- Larson, N.; Ghandehari, H. Polymeric Conjugates for Drug Delivery. Chem. Mater. 2012, 24, 840–853. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Kong, X.; Xiong, Y.; Zhang, X.; Chen, H.; Jiang, W.; Niu, Y.; Xu, W.; Ren, C. An Overview of Dynamic Covalent Bonds in Polymer Material and Their Applications. Eur. Polym. J. 2020, 141, 110094. [Google Scholar] [CrossRef]
- Ulrich, S. Growing Prospects of Dynamic Covalent Chemistry in Delivery Applications. Acc. Chem. Res. 2019, 52, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Brockgreitens, J.; Abbas, A. Responsive Food Packaging: Recent Progress and Technological Prospects. Compr. Rev. Food Sci. Food Saf. 2016, 15, 3–15. [Google Scholar] [CrossRef]
- Carpena, M.; Nuñez-Estevez, B.; Soria-Lopez, A.; Garcia-Oliveira, P.; Prieto, M.A. Essential Oils and Their Application on Active Packaging Systems: A Review. Resources 2021, 10, 7. [Google Scholar] [CrossRef]
- Ran, R.; Zheng, T.; Tang, P.; Xiong, Y.; Yang, C.; Gu, M.; Li, G. Antioxidant and Antimicrobial Collagen Films Incorporating Pickering Emulsions of Cinnamon Essential Oil for Pork Preservation. Food Chem. 2023, 420, 136108. [Google Scholar] [CrossRef] [PubMed]
- Mulla, M.; Ahmed, J.; Al-Attar, H.; Castro-Aguirre, E.; Arfat, Y.A.; Auras, R. Antimicrobial Efficacy of Clove Essential Oil Infused into Chemically Modified LLDPE Film for Chicken Meat Packaging. Food Control 2017, 73, 663–671. [Google Scholar] [CrossRef]
- Peixoto, E.C.; Fonseca, L.M.; Zavareze, E.d.R.; Gandra, E.A. Antimicrobial Active Packaging for Meat Using Thyme Essential Oil (Thymus vulgaris) Encapsulated on Zein Ultrafine Fibers Membranes. Biocatal. Agric. Biotechnol. 2023, 51, 102778. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Sutthasupa, S. Effect of Chitosan and Alginate Beads Incorporated with Lavender, Clove Essential Oils, and Vanillin against Botrytis cinerea and Their Application in Fresh Table Grapes Packaging System. Packag. Technol. Sci. 2019, 32, 595–605. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Pongsapakworawat, T.; Bangmo, P.; Sutthasupa, S. Effect of Chitosan Beads Incorporated with Lavender or Red Thyme Essential Oils in Inhibiting Botrytis cinerea and Their Application in Strawberry Packaging System. LWT 2016, 74, 14–20. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential Oils in Vapor Phase as Alternative Antimicrobials: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal Activity and Mechanism of Citral, Limonene and Eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, K.; Yang, H.; Yuan, Y.; Yue, T. Antifungal Mechanism of Cinnamaldehyde and Citral Combination against: Penicillium Expansum Based on FT-IR Fingerprint, Plasma Membrane, Oxidative Stress and Volatile Profile. RSC Adv. 2018, 8, 5806–5815. [Google Scholar] [CrossRef]
- Lin, L.; Mei, C.; Shi, C.; Li, C.; Abdel-Samie, M.A.; Cui, H. Preparation and Characterization of Gelatin Active Packaging Film Loaded with Eugenol Nanoparticles and Its Application in Chicken Preservation. Food Biosci. 2023, 53, 102778. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Q.; Chen, J.; Li, L. Effects of Coaxial Electrospun Eugenol Loaded Core-Sheath PVP/Shellac Fibrous Films on Postharvest Quality and Shelf Life of Strawberries. Postharvest Biol. Technol. 2020, 159, 111028. [Google Scholar] [CrossRef]
- Aytac, Z.; Ipek, S.; Durgun, E.; Tekinay, T.; Uyar, T. Antibacterial Electrospun Zein Nanofibrous Web Encapsulating Thymol/Cyclodextrin-Inclusion Complex for Food Packaging. Food Chem. 2017, 233, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Khorrami, N.; Radi, M.; Amiri, S.; Abedi, E.; McClements, D.J. Fabrication, Characterization, and Performance of Antimicrobial Alginate-Based Films Containing Thymol-Loaded Lipid Nanoparticles: Comparison of Nanoemulsions and Nanostructured Lipid Carriers. Int. J. Biol. Macromol. 2022, 207, 801–812. [Google Scholar] [CrossRef]
- Sun, C.; Cao, J.; Wang, Y.; Chen, J.; Huang, L.; Zhang, H.; Wu, J.; Sun, C. Ultrasound-Mediated Molecular Self-Assemble of Thymol with 2-Hydroxypropyl-β-Cyclodextrin for Fruit Preservation. Food Chem. 2021, 363, 130327. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Sanfuentes, E.A. The Synergistic Antimicrobial Effect of Carvacrol and Thymol in Clay/Polymer Nanocomposite Films over Strawberry Gray Mold. LWT 2015, 64, 390–396. [Google Scholar] [CrossRef]
- He, R.; Zhong, Q.; Chen, W.; Zhang, M.; Pei, J.; Chen, H.; Chen, W. Transcriptomic and Proteomic Investigation of Metabolic Disruption in Listeria monocytogenes Triggered by Linalool and Its Application in Chicken Breast Preservation. LWT 2023, 176, 114492. [Google Scholar] [CrossRef]
- Umagiliyage, A.L.; Becerra-Mora, N.; Kohli, P.; Fisher, D.J.; Choudhary, R. Antimicrobial Efficacy of Liposomes Containing D-Limonene and Its Effect on the Storage Life of Blueberries. Postharvest Biol. Technol. 2017, 128, 130–137. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Y.; Long, H.; Liu, Z.; Huang, Y.; Zhang, M.; Wang, T.; Liu, Y.; Bi, Y.; Prusky, D.B. Preparation and Use of Trans-2-Hexenal Microcapsules to Preserve ‘Zaosu’ Pears. Sci. Hortic. 2021, 283, 110091. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, J.G.; Yang, K.Y.; Lim, S.; Lee, E.J. Postharvest Fumigation of (E)-2-Hexenal on Kiwifruit (Actinidia chinensis Cv. ‘Haegeum’) Enhances Resistance to Botrytis cinerea. Postharvest Biol. Technol. 2022, 187, 111854. [Google Scholar] [CrossRef]
- Neri, F.; Mari, M.; Menniti, A.M.; Brigati, S.; Bertolini, P. Control of Penicillium expansum in Pears and Apples by Trans-2-Hexenal Vapours. Postharvest Biol. Technol. 2006, 41, 101–108. [Google Scholar] [CrossRef]
- Heras-Mozos, R.; Gavara, R.; Hernández-Muñoz, P. Development of Antifungal Biopolymers Based on Dynamic Imines as Responsive Release Systems for the Postharvest Preservation of Blackberry Fruit. Food Chem. 2021, 357, 129838. [Google Scholar] [CrossRef] [PubMed]
- Heras-Mozos, R.; Gavara, R.; Hernández-Muñoz, P. Responsive Packaging Based on Imine-Chitosan Films for Extending the Shelf-Life of Refrigerated Fresh-Cut Pineapple. Food Hydrocoll. 2022, 133, 107968. [Google Scholar] [CrossRef]
- Louis, E.; Villalobos-Carvajal, R.; Reyes-Parra, J.; Jara-Quijada, E.; Ruiz, C.; Andrades, P.; Gacitúa, J.; Beldarraín-Iznaga, T. Preservation of Mushrooms (Agaricus bisporus) by an Alginate-Based-Coating Containing a Cinnamaldehyde Essential Oil Nanoemulsion. Food Packag. Shelf Life 2021, 28, 100662. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Ghaderi, J.; Gómez-Guillén, M.C. Tailoring Physico-Mechanical and Antimicrobial/Antioxidant Properties of Biopolymeric Films by Cinnamaldehyde-Loaded Chitosan Nanoparticles and Their Application in Packaging of Fresh Rainbow Trout Fillets. Food Hydrocoll. 2022, 124, 107249. [Google Scholar] [CrossRef]
- Muriel-Galet, V.; Cerisuelo, J.P.; López-Carballo, G.; Aucejo, S.; Gavara, R.; Hernández-Muñoz, P. Evaluation of EVOH-Coated PP Films with Oregano Essential Oil and Citral to Improve the Shelf-Life of Packaged Salad. Food Control 2013, 30, 137–143. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Ma, Y.; Mcdonald, T.P.; Wang, Y. Development of Active Packaging Film Containing Bioactive Components Encapsulated in β-Cyclodextrin and Its Application. Food Hydrocoll. 2019, 90, 360–366. [Google Scholar] [CrossRef]
- Heras-Mozos, R.; López-Carballo, G.; Hernández, R.; Gavara, R.; Hernández Muñoz, P. PH Modulates Antibacterial Activity of Hydroxybenzaldehyde Derivatives Immobilized in Chitosan Films via Reversible Schiff Bases and Its Application to Preserve Freshly-Squeezed Juice. Food Chem. 2023, 403, 134292. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.C.; Moreira, G.C.; Artés, F.; Aguayo, E. Vanillin and Cinnamic Acid in Aqueous Solutions or in Active Modified Packaging Preserve the Quality of Fresh-Cut Cantaloupe Melon. Sci. Hortic. 2015, 192, 271–278. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef]
- Huang, X.; Ge, X.; Zhou, L.; Wang, Y. Eugenol Embedded Zein and Poly(Lactic Acid) Film as Active Food Packaging: Formation, Characterization, and Antimicrobial Effects. Food Chem. 2022, 384, 132482. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, V.; Sharmin, A.M.; Vijaya Anand, M.A.; Sivakumar, A.S.; Surendhiran, D.; Sharesh, G.; Kim, S. Fabrication and Bacterial Inhibitory Activity of Essential Oil Linalool Loaded Biocapsules against Escherichia coli. J. Drug Deliv. Sci. Technol. 2022, 74, 103495. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Gardini, F.; Lanciotti, R. Effects of Sub-Lethal Concentrations of Thyme and Oregano Essential Oils, Carvacrol, Thymol, Citral and Trans-2-Hexenal on Membrane Fatty Acid Composition and Volatile Molecule Profile of Listeria monocytogenes, Escherichia coli and Salmonella enteritidis. Food Chem. 2015, 182, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Heras-Mozos, R.; Gavara, R.; Hernández-Muñoz, P. Chitosan Films as PH-Responsive Sustained Release Systems of Naturally Occurring Antifungal Volatile Compounds. Carbohydr. Polym. 2022, 283, 119137. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. J. Agric. Food Chem. 2017, 65, 10406–10423. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Abad, A.; Sánchez, G.; Fuster, V.; Lagaron, J.M.; Ocio, M.J. Antibacterial Performance of Solvent Cast Polycaprolactone (PCL) Films Containing Essential Oils. Food Control 2013, 34, 214–220. [Google Scholar] [CrossRef]
- Lee, M.; Rüegg, N.; Yildirim, S. Evaluation of the Antimicrobial Activity of Sodium Alginate Films Integrated with Cinnamon Essential Oil and Citric Acid on Sliced Cooked Ham. Packag. Technol. Sci. 2023, 36, 647–656. [Google Scholar] [CrossRef]
- Aragón-Gutiérrez, A.; Heras-Mozos, R.; Montesinos, A.; Gallur, M.; López, D.; Gavara, R.; Hernández-Muñoz, P. Pilot-Scale Processing and Functional Properties of Antifungal EVOH-Based Films Containing Methyl Anthranilate Intended for Food Packaging Applications. Polymers 2022, 14, 3405. [Google Scholar] [CrossRef]
- Gonon, H.; Srisa, A.; Promhuad, K.; Chonhenchob, V.; Bumbudsanpharoke, N.; Jarupan, L.; Harnkarnsujarit, N. PLA Thermoformed Trays Incorporated with Cinnamaldehyde and Carvacrol as Active Biodegradable Bakery Packaging. Food Packag. Shelf Life 2023, 38, 101123. [Google Scholar] [CrossRef]
- Singaram, A.J.V.; Guruchandran, S.; Ganesan, N.D. Review on Functionalized Pectin Films for Active Food Packaging. Packag. Technol. Sci. 2024, 37, 1–26. [Google Scholar] [CrossRef]
- Zhang, X.; Ismail, B.B.; Cheng, H.; Jin, T.Z.; Qian, M.; Arabi, S.A.; Liu, D.; Guo, M. Emerging Chitosan-Essential Oil Films and Coatings for Food Preservation—A Review of Advances and Applications. Carbohydr. Polym. 2021, 273, 118616. [Google Scholar] [CrossRef]
- Oyom, W.; Zhang, Z.; Bi, Y.; Tahergorabi, R. Application of Starch-Based Coatings Incorporated with Antimicrobial Agents for Preservation of Fruits and Vegetables: A Review. Prog. Org. Coat. 2022, 166, 106800. [Google Scholar] [CrossRef]
- Parreidt, T.S.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The Use of Polysaccharide-Based Edible Coatings Enriched with Essential Oils to Improve Shelf-Life of Strawberries. Postharvest Biol. Technol. 2015, 110, 51–60. [Google Scholar] [CrossRef]
- Safari, Z.S.; Ding, P.; Nakasha, J.J.; Yusoff, S.F. Combining Chitosan and Vanillin to Retain Postharvest Quality of Tomato Fruit during Ambient Temperature Storage. Coatings 2020, 10, 1222. [Google Scholar] [CrossRef]
- Villegas, C.; Torres, A.; Rios, M.; Rojas, A.; Romero, J.; de Dicastillo, C.L.; Valenzuela, X.; Galotto, M.J.; Guarda, A. Supercritical Impregnation of Cinnamaldehyde into Polylactic Acid as a Route to Develop Antibacterial Food Packaging Materials. Food Res. Int. 2017, 99, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Becerril, R.; Nerín, C.; Silva, F. Encapsulation Systems for Antimicrobial Food Packaging Components: An Update. Molecules 2020, 25, 1134. [Google Scholar] [CrossRef] [PubMed]
- Zaitoon, A.; Luo, X.; Lim, L.T. Triggered and Controlled Release of Active Gaseous/Volatile Compounds for Active Packaging Applications of Agri-Food Products: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 541–579. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, M.; Koirala, S.; Anal, A.K. Edible Multilayer Coating Using Electrostatic Layer-by-Layer Deposition of Chitosan and Pectin Enhances Shelf Life of Fresh Strawberries. Int. J. Food Sci. Technol. 2023, 58, 871–879. [Google Scholar] [CrossRef]
- Hu, J.; Jiao, W.; Chen, Q.; Liu, B.; Fu, M. Preparation of a Multilayer Antibacterial Film and Its Application for Controlling Postharvest Disease in Temperate Fruit (Including Apple, Pear, and Peach) under Ambient Storage. Food Sci. Nutr. 2023, 11, 5188–5198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, S.; Su, R.; Xiong, D.; Feng, W.; Chen, J. Controlled Release Mechanism and Antibacterial Effect of Layer-By-Layer Self-Assembly Thyme Oil Microcapsule. J. Food Sci. 2019, 84, 1427–1438. [Google Scholar] [CrossRef]
- Altan, A.; Aytac, Z.; Uyar, T. Carvacrol Loaded Electrospun Fibrous Films from Zein and Poly(Lactic Acid) for Active Food Packaging. Food Hydrocoll. 2018, 81, 48–59. [Google Scholar] [CrossRef]
- Caamaño, K.; Heras-Mozos, R.; Calbo, J.; Díaz, J.C.; Waerenborgh, J.C.; Vieira, B.J.C.; Hernández-Muñoz, P.; Gavara, R.; Giménez-Marqués, M. Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity. ACS Appl. Mater. Interfaces 2022, 14, 10758–10768. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, Y.; Zhou, B.; Mei, L.; Wang, Q.; Zhang, B. Porous Metal-Organic Framework (MOF) Carrier for Incorporation of Volatile Antimicrobial Essential Oil. Food Control 2019, 98, 174–178. [Google Scholar] [CrossRef]
- Kashiri, M.; Cerisuelo, J.P.; Domínguez, I.; López-Carballo, G.; Muriel-Gallet, V.; Gavara, R.; Hernández-Muñoz, P. Zein Films and Coatings as Carriers and Release Systems of Zataria Multiflora Boiss. Essential Oil for Antimicrobial Food Packaging. Food Hydrocoll. 2017, 70, 260–268. [Google Scholar] [CrossRef]
- Cerisuelo, J.P.; Muriel-Galet, V.; Bermúdez, J.M.; Aucejo, S.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Mathematical Model to Describe the Release of an Antimicrobial Agent from an Active Package Constituted by Carvacrol in a Hydrophilic EVOH Coating on a PP Film. J. Food Eng. 2012, 110, 26–37. [Google Scholar] [CrossRef]
- Moses, J.E.; Moorhouse, A.D. The Growing Applications of Click Chemistry. Chem. Soc. Rev. 2007, 36, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.P.; Rong, M.Z.; Zhang, M.Q. Polymer Engineering Based on Reversible Covalent Chemistry: A Promising Innovative Pathway towards New Materials and New Functionalities. Prog. Polym. Sci. 2018, 80, 39–93. [Google Scholar] [CrossRef]
- Fukuda, K.; Shimoda, M.; Sukegawa, M.; Nobori, T.; Lehn, J.M. Doubly Degradable Dynamers: Dynamic Covalent Polymers Based on Reversible Imine Connections and Biodegradable Polyester Units. Green Chem. 2012, 14, 2907–2911. [Google Scholar] [CrossRef]
- García, F.; Smulders, M.M.J. Dynamic Covalent Polymers. J. Polym. Sci. A Polym. Chem. 2016, 54, 3551–3577. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Liu, S.; Zhang, Y.; Chi, Z.; Xu, J. A PH-Responsive Polymer Based on Dynamic Imine Bonds as a Drug Delivery Material with Pseudo Target Release Behavior. Polym. Chem. 2018, 9, 878–884. [Google Scholar] [CrossRef]
- Sun, P.; Huang, T.; Wang, X.; Wang, G.; Liu, Z.; Chen, G.; Fan, Q. Dynamic-Covalent Hydrogel with NIR-Triggered Drug Delivery for Localized Chemo-Photothermal Combination Therapy. Biomacromolecules 2020, 21, 556–565. [Google Scholar] [CrossRef]
- Chakma, P.; Konkolewicz, D. Dynamic Covalent Bonds in Polymeric Materials. Angew. Chem.—Int. Ed. 2019, 58, 9682–9695. [Google Scholar] [CrossRef]
- Li, D.Q.; Wang, S.Y.; Meng, Y.J.; Guo, Z.W.; Cheng, M.M.; Li, J. Fabrication of Self-Healing Pectin/Chitosan Hybrid Hydrogel via Diels-Alder Reactions for Drug Delivery with High Swelling Property, PH-Responsiveness, and Cytocompatibility. Carbohydr. Polym. 2021, 268, 118244. [Google Scholar] [CrossRef]
- Gregoritza, M.; Brandl, F.P. The Diels-Alder Reaction: A Powerful Tool for the Design of Drug Delivery Systems and Biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438–453. [Google Scholar] [CrossRef] [PubMed]
- Turkenburg, D.H.; Durant, Y.; Fischer, H.R. Bio-Based Self-Healing Coatings Based on Thermo-Reversible Diels-Alder Reaction. Prog. Org. Coat. 2017, 111, 38–46. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Tang, D.; An, X.; Guo, Y.; Zhao, Y. Multi-Responsive Graft Copolymer Micelles Comprising Acetal and Disulfide Linkages for Stimuli-Triggered Drug Delivery. J. Mater. Chem. B 2015, 3, 3959–3971. [Google Scholar] [CrossRef]
- Gannimani, R.; Walvekar, P.; Naidu, V.R.; Aminabhavi, T.M.; Govender, T. Acetal Containing Polymers as PH-Responsive Nano-Drug Delivery Systems. J. Control. Release 2020, 328, 736–761. [Google Scholar] [CrossRef]
- Sun, B.; Luo, C.; Yu, H.; Zhang, X.; Chen, Q.; Yang, W.; Wang, M.; Kan, Q.; Zhang, H.; Wang, Y.; et al. Disulfide Bond-Driven Oxidation- and Reduction-Responsive Prodrug Nanoassemblies for Cancer Therapy. Nano Lett. 2018, 18, 3643–3650. [Google Scholar] [CrossRef]
- Sonawane, S.J.; Kalhapure, R.S.; Govender, T. Hydrazone Linkages in PH Responsive Drug Delivery Systems. Eur. J. Pharm. Sci. 2017, 99, 45–65. [Google Scholar] [CrossRef]
- Su, Z.; Liang, Y.; Yao, Y.; Wang, T.; Zhang, N. Polymeric Complex Micelles Based on the Double-Hydrazone Linkage and Dual Drug-Loading Strategy for PH-Sensitive Docetaxel Delivery. J. Mater. Chem. B 2016, 4, 1122–1133. [Google Scholar] [CrossRef]
- Luo, X.; Wu, Y.; Guo, M.; Yang, X.; Xie, L.; Lai, J.; Li, Z.; Zhou, H. Multi-Functional Polyurethane Composites with Self-Healing and Shape Memory Properties Enhanced by Graphene Oxide. J. Appl. Polym. Sci. 2021, 138, 50827. [Google Scholar] [CrossRef]
- Mukherjee, S.; Brooks, W.L.A.; Dai, Y.; Sumerlin, B.S. Doubly-Dynamic-Covalent Polymers Composed of Oxime and Oxanorbornene Links. Polym. Chem. 2016, 7, 1971–1978. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Lin, G.; Duan, W.; Wu, X.; Lan, H.; Li, B. Synthesis of (E)/(Z)-Verbenone Oxime Ethers and Photoresponsive Behavior to Herbicidal Activity. J. Agric. Food Chem. 2022, 70, 13862–13872. [Google Scholar] [CrossRef]
- Park, W.; Park, S.J.; Shin, H.; Na, K. Acidic Tumor PH-Responsive Nanophotomedicine for Targeted Photodynamic Cancer Therapy. J. Nanomater. 2016, 2016, 3739723. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Chen, X.; Jin, S.; Chen, W.; Meng, Y.; Liu, Y.; Guo, Y.; Jiang, W.; Xu, X.; et al. Chemical Grafting of Antibiotics into Multilayer Films through Schiff Base Reaction for Self-Defensive Response to Bacterial Infections. Chem. Eng. J. 2020, 382, 122973. [Google Scholar] [CrossRef]
- Fadida, T.; Selilat-Weiss, A.; Poverenov, E. N-Hexylimine-Chitosan, a Biodegradable and Covalently Stabilized Source of Volatile, Antimicrobial Hexanal. Next Generation Controlled-Release System. Food Hydrocoll. 2015, 48, 213–219. [Google Scholar] [CrossRef]
- Andreica, B.I.; Anisiei, A.; Rosca, I.; Marin, L. Quaternized Chitosan-Based Nanofibers with Strong Antibacterial and Antioxidant Activity Designed as Ecological Active Food Packaging. Food Packag. Shelf Life 2023, 39, 101157. [Google Scholar] [CrossRef]
- Higueras, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging. Food Bioproc. Tech. 2015, 8, 526–538. [Google Scholar] [CrossRef]
- Connon, S. The Diels-Alder Reaction Selected Practical Methods. Synthesis 2002, 2002, 833. [Google Scholar] [CrossRef]
- Froidevaux, V.; Borne, M.; Laborbe, E.; Auvergne, R.; Gandini, A.; Boutevin, B. Study of the Diels-Alder and Retro-Diels-Alder Reaction between Furan Derivatives and Maleimide for the Creation of New Materials. RSC Adv. 2015, 5, 37742–37754. [Google Scholar] [CrossRef]
- Cordes, E.H.; Bull, H.G. Mechanism and Catalysis for Hydrolysis of Acetals, Ketals, and Ortho Esters. Chem Rev. 1974, 74, 581–603. [Google Scholar] [CrossRef]
- Cao, H.; Chen, C.; Xie, D.; Chen, X.; Wang, P.; Wang, Y.; Song, H.; Wang, W. A Hyperbranched Amphiphilic Acetal Polymer for PH-Sensitive Drug Delivery. Polym Chem 2018, 9, 169–177. [Google Scholar] [CrossRef]
- Fairbanks, B.D.; Singh, S.P.; Bowman, C.N.; Anseth, K.S. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction. Macromolecules 2011, 44, 2444–2450. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, R.; Tam, K.C. Stimuli-Responsive Hydrogel Consisting of Hydrazide-Functionalized Poly(Oligo(Ethylene Glycol)Methacrylate) and Dialdehyde Cellulose Nanocrystals. Mater Adv. 2020, 1, 1631–1643. [Google Scholar] [CrossRef]
- Kölmel, D.K.; Kool, E.T. Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis. Chem Rev. 2017, 117, 10358–10376. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, N.; Bode, S.; Bose, R.K.; Vitz, J.; Seifert, A.; Hoeppener, S.; Garcia, S.J.; Spange, S.; Van Der Zwaag, S.; Hager, M.D.; et al. Acylhydrazones as Reversible Covalent Crosslinkers for Self-Healing Polymers. Adv. Funct. Mater. 2015, 25, 3295–3301. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Hsu, S.H. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019, 24, 3005. [Google Scholar] [CrossRef]
- Liu, W.X.; Zhang, C.; Zhang, H.; Zhao, N.; Yu, Z.X.; Xu, J. Oxime-Based and Catalyst-Free Dynamic Covalent Polyurethanes. J. Am. Chem. Soc. 2017, 139, 8678–8684. [Google Scholar] [CrossRef]
- Ciaccia, M.; Di Stefano, S. Mechanisms of Imine Exchange Reactions in Organic Solvents. Org. Biomol. Chem. 2015, 13, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Yuan, J. Schiff’s Base as a Stimuli-Responsive Linker in Polymer Chemistry. Polym. Chem. 2012, 3, 3045–3055. [Google Scholar] [CrossRef]
- Godoy-Alcántar, C.; Yatsimirsky, A.K.; Lehn, J.M. Structure-Stability Correlations for Imine Formation in Aqueous Solution. J Phys. Org. Chem. 2005, 18, 979–985. [Google Scholar] [CrossRef]
- Liguori, A.; Hakkarainen, M. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks. Macromol. Rapid Commun. 2022, 43, 2100816. [Google Scholar] [CrossRef]
- Malik, U.S.; Niazi, M.B.K.; Jahan, Z.; Zafar, M.I.; Vo, D.V.N.; Sher, F. Nano-Structured Dynamic Schiff Base Cues as Robust Self-Healing Polymers for Biomedical and Tissue Engineering Applications: A Review. Environ. Chem. Lett. 2022, 20, 495–517. [Google Scholar] [CrossRef]
- Marin, L.; Popa, M.; Anisiei, A.; Irimiciuc, S.A.; Agop, M.; Petrescu, T.C.; Vasincu, D.; Himiniuc, L. A Theoretical Model for Release Dynamics of an Antifungal Agent Covalently Bonded to the Chitosan. Molecules 2021, 26, 2089. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A. Controlled Release of Volatiles under Mild Reaction Conditions: From Nature to Everyday Products. Angew. Chem.—Int. Ed. 2007, 46, 5836–5863. [Google Scholar] [CrossRef]
- Jash, A.; Paliyath, G.; Lim, L.T. Activated Release of Bioactive Aldehydes from Their Precursors Embedded in Electrospun Poly(Lactic Acid) Nonwovens. RSC Adv 2018, 8, 19930–19938. [Google Scholar] [CrossRef]
- Shi, C.; Jash, A.; Lim, L.T. Activated Release of Hexanal and Salicylaldehyde from Imidazolidine Precursors Encapsulated in Electrospun Ethylcellulose-Poly(Ethylene Oxide) Fibers. SN Appl. Sci. 2021, 3, 385. [Google Scholar] [CrossRef]
- Jash, A.; Lim, L.T. Triggered Release of Hexanal from an Imidazolidine Precursor Encapsulated in Poly(Lactic Acid) and Ethylcellulose Carriers. J. Mater. Sci. 2018, 53, 2221–2235. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging Applications of Stimuli-Responsive Polymer Materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Flórez, M.; Guerra-Rodríguez, E.; Cazón, P.; Vázquez, M. Chitosan for Food Packaging: Recent Advances in Active and Intelligent Films. Food Hydrocoll. 2022, 124, 107328. [Google Scholar] [CrossRef]
- Van Den Broek, L.A.M.; Knoop, R.J.I.; Kappen, F.H.J.; Boeriu, C.G. Chitosan Films and Blends for Packaging Material. Carbohydr Polym 2015, 116, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Marin, L.; Simionescu, B.; Barboiu, M. Imino-Chitosan Biodynamers. Chem. Commun. 2012, 48, 8778–8780. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Wang, F.; Wang, L. Facile Preparation of PH-Responsive Antimicrobial Complex and Cellulose Nanofiber/PVA Aerogels as Controlled-Release Packaging for Fresh Pork. Food Sci. Biotechnol. 2023, 1–13. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, C.; Li, Y.; Wang, K.; Wang, X.; Wei, Y.; Tao, L. Synthesis of an Injectable, Self-Healable and Dual Responsive Hydrogel for Drug Delivery and 3D Cell Cultivation. Polym. Chem. 2017, 8, 537–544. [Google Scholar] [CrossRef]
- Xie, W.; Gao, Q.; Guo, Z.; Wang, D.; Gao, F.; Wang, X.; Wei, Y.; Zhao, L. Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer. ACS Appl. Mater. Interfaces 2017, 9, 33660–33673. [Google Scholar] [CrossRef]
- Batista, R.A.; Espitia, P.J.P.; de Quintans, J.S.S.; Freitas, M.M.; Cerqueira, M.Â.; Teixeira, J.A.; Cardoso, J.C. Hydrogel as an Alternative Structure for Food Packaging Systems. Carbohydr. Polym. 2019, 205, 106–116. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Oliver-Simancas, R.; Castangia, I.; Rodríguez-García, A.M.; Alañón, M.E. Comprehensive Review of Natural Based Hydrogels as an Upcoming Trend for Food Packing. Food Hydrocoll. 2023, 135, 108124. [Google Scholar] [CrossRef]
- Lutz, E.; Moulin, E.; Tchakalova, V.; Benczédi, D.; Herrmann, A.; Giuseppone, N. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 1): Controlled Hydrolysis of Micellar Amphiphilic Imines in Water. Chem.—A Eur. J. 2021, 27, 13457–13467. [Google Scholar] [CrossRef] [PubMed]
- Zaitoon, A.; Anguraj, V.; Suranjoy Singh, S.; Ahenkorah, C.; Sameer Al-Abdul-Wahid, M.; Warriner, K.; Lim, L.T. Salicylaldehyde-Functionalized Polyethyleneimine Precursor: Synthesis, Characterization, and Encapsulation in Electrospun Nonwoven for Moisture-Triggered Release Applications. Chem. Eng. J. 2023, 476, 146462. [Google Scholar] [CrossRef]
- Ahenkorah, C.K.; Zaitoon, A.; Apalangya, V.A.; Afrane, G.; Lim, L.T. Moisture-Activated Release of Hexanal from Imidazolidine Precursor Encapsulated in Ethylcellulose/Poly(Ethylene Oxide) Nonwoven for Shelf-Life Extension of Papaya. Food Packag. Shelf Life 2020, 25, 100532. [Google Scholar] [CrossRef]
- Liu, F.; Kuai, L.; Lin, C.; Chen, M.; Chen, X.; Zhong, F.; Wang, T. Respiration-Triggered Release of Cinnamaldehyde from a Biomolecular Schiff Base Composite for Preservation of Perishable Food. Adv. Sci. 2023, 2306056, 1–12. [Google Scholar] [CrossRef] [PubMed]
Volatile Compounds | Chemical Class | Method of Incorporation | Food Matrix Application | Bioactive Effect | Reference |
---|---|---|---|---|---|
Eugenol | Monoterpene | Encapsulation; nanoparticles | Chicken | Reduction of 2 log CFU Staphylococcus aureus/g after 5 d. | [34] |
Electrospinning | Strawberries | Reduction in the natural microbial load of the fruit. | [35] | ||
Thymol | Monoterpene | Electrospinning; encapsulation; β-cyclodextrins | Meat | Reduction in total bacterial count from 97 × 107 to 11 × 106 after 5 d. | [36] |
Encapsulation; nanoemulsions | Ground beef | Inhibition of total mesophilic bacteria, coliforms, total molds and yeasts, Staphylococcus spp., and lactic acid bacteria around 2 log CFU/g after 6 d. | [37] | ||
Encapsulation; 2-hydroxypropyl-β-cyclodextrins | Tomatoes | Inhibition of Botrytis cinerea growth of 66%. | [38] | ||
Thymol and Carvacrol | Monoterpene | Extrusion | Strawberries | Botrytis cinerea inhibition. | [39] |
Linalool | Monoterpene | Used directly | Fresh chicken breast | Listeria monocytogenes inhibition. | [40] |
d-Limonene | Monoterpene | Encapsulation; liposomes | Blueberries | Total yeast and mold inhibition. | [41] |
Trans-2-hexenal | Aldehyde | Encapsulation; cyclodextrins | Pears | 32% reduction in the incidence of Alternaria alternate black rot. | [42] |
Used directly | Kiwifruit | Actinidia chinensis inhibition. | [43] | ||
Used directly | Apples | Inhibition of Penicillium expansum between 50 and 98% after 24 h. | [44] | ||
Immobilization; reversible covalent bonds | Blackberries | Inhibition of Penicillium expansum and Botrytis cinerea after 9 d. | [45] | ||
Immobilization; reversible covalent bonds | Cut pineapple | Reduction in molds and yeasts by 1.5 log CFU/g after 9 d. | [46] | ||
Cinnamaldehyde | Aldehyde | Encapsulation; nanoemulsions | Mushrooms | Pseudomonas reduction of around 2 log CFU/g after 16 d. | [47] |
Encapsulation; nanoparticles | Rainbow trout fillets | Reductions in total viable count by 1.5 log CFU/g and in Gram-negative psychotropic bacteria by 1 and 0.5 log CFU/g after 12 d. | [48] | ||
Citral | Aldehyde | Coating | Salad | Reduction in Enterobacteriaceae, yeasts, and molds by around 2 log. | [49] |
Citral and cinnamaldehyde | Aldehyde | Encapsulation; cyclodextrins | Beef | Reduction in total viable counts. | [50] |
Salicylaldehyde | Aldehyde | Immobilization; reversible covalent bonds | Cut pineapple | Reduction in molds and yeasts around 2 log CFU/g after 9 d. | [46] |
Orange and carrot juice | 2.9 log inhibition of Escherichia coli after 6 d. | [51] | |||
Vanillin | Aldehyde | Used directly | Cut melon | 1.5 log CFU/g reduction in mesophilic bacteria after 10 d. | [52] |
Bond | Reaction | Stimuli Needed for Forward/Reverse Reaction | Application | References |
---|---|---|---|---|
Diels–Alder | Low temperature/high temperature | Self-healing materials, biomedicine | [87,88,89] | |
Disulfide | Oxidative or basic conditions/reductive conditions, increase in temperature | Biomedicine | [90,91] | |
Acetal | Acidic catalyst/acidic pH | Biomedicine | [90,92] | |
Acylhydrazone | Room temperature, neutral pH/acidic pH, increase in temperature | Biomedicine | [93,94] | |
Oxime | Neutral pH/acidic pH, UV radiation | Self-healing materials, agriculture | [95,96,97] | |
Imine | Neutral pH/acidic pH | Biomedicine, pharmaceutics, agriculture, cosmetics, food packaging | [20,46,84,98,99,100,101,102] |
Volatile | Polymeric Material | Covalent Bond | Responsiveness Stimuli | Food Matrix | Reference |
---|---|---|---|---|---|
Trans-2-hexenal Salicylaldehyde | Chitosan | Imine | Acidic solution provided by food exudate | Pineapple | [46] |
Trans-2-hexenal | Chitosan | Imine | Acid solution added externally | Blackberries | [45] |
Vanillin | Chitosan | Imine | Not specified | Raspberries | [101] |
Hexanal | Imidazolidine precursor incorporated in fiber of ethylcellulose/poly(ethylene oxide) | Imine | Moisture generated by fruit triggered the acid citric solubilization to promote imine bond | Papaya | [134] |
Cinnamaldehyde | Chitosan complex embedded in cellulose nanofibers (CNFs) and polyvinyl alcohol aerogels | Imine | Juice exuded from fresh pork | Fresh pork | [127] |
Cinnamaldehyde | Chitosan | Imine | Fruit respiration to form CO2 + H2O → HCO3 + H+ | Broccoli and strawberries | [135] |
Salicylaldehyde | Chitosan | Imine | Acid present in liquid food | Fruit/vegetable juice | [51] |
Cinnamaldehyde | Chitosan | Imine | Temperature and liquid food | Milk | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteve-Redondo, P.; Heras-Mozos, R.; Simó-Ramírez, E.; López-Carballo, G.; López-de-Dicastillo, C.; Gavara, R.; Hernández-Muñoz, P. Innovative Systems for the Delivery of Naturally Occurring Antimicrobial Volatiles in Active Food-Packaging Technologies for Fresh and Minimally Processed Produce: Stimuli-Responsive Materials. Foods 2024, 13, 856. https://doi.org/10.3390/foods13060856
Esteve-Redondo P, Heras-Mozos R, Simó-Ramírez E, López-Carballo G, López-de-Dicastillo C, Gavara R, Hernández-Muñoz P. Innovative Systems for the Delivery of Naturally Occurring Antimicrobial Volatiles in Active Food-Packaging Technologies for Fresh and Minimally Processed Produce: Stimuli-Responsive Materials. Foods. 2024; 13(6):856. https://doi.org/10.3390/foods13060856
Chicago/Turabian StyleEsteve-Redondo, Patricia, Raquel Heras-Mozos, Ernest Simó-Ramírez, Gracia López-Carballo, Carol López-de-Dicastillo, Rafael Gavara, and Pilar Hernández-Muñoz. 2024. "Innovative Systems for the Delivery of Naturally Occurring Antimicrobial Volatiles in Active Food-Packaging Technologies for Fresh and Minimally Processed Produce: Stimuli-Responsive Materials" Foods 13, no. 6: 856. https://doi.org/10.3390/foods13060856
APA StyleEsteve-Redondo, P., Heras-Mozos, R., Simó-Ramírez, E., López-Carballo, G., López-de-Dicastillo, C., Gavara, R., & Hernández-Muñoz, P. (2024). Innovative Systems for the Delivery of Naturally Occurring Antimicrobial Volatiles in Active Food-Packaging Technologies for Fresh and Minimally Processed Produce: Stimuli-Responsive Materials. Foods, 13(6), 856. https://doi.org/10.3390/foods13060856