Metataxonomic Identification of Microorganisms during the Coffee Fermentation Process in Colombian Farms (Cesar Department)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Characterization of the Farms
2.2. Sampling, Characterization of the Harvest, and the Fermentation Process
2.3. Physicochemical Analysis
2.4. Metataxonomic Analysis
2.5. Cultivation Counting and the Isolation of Microorganisms from Mucilage and Water
2.6. Identification of Microbial Groups from Coffee Mucilage
2.7. Physical and Sensory Analysis of Coffee and Coffee Cup Quality
3. Results
3.1. Characterization of the Harvest and Fermentation Processes
3.2. Physicochemical Analysis
3.2.1. Temperature in the Fermentation Tanks
3.2.2. pH, Brix, and Total Acidity
3.2.3. Sucrose and Reducing Sugars
3.3. Microbiologic Analysis
3.3.1. Microorganisms Count
3.3.2. Bacterial Metataxonomy Analysis
3.3.3. Bacteria Isolates
3.3.4. Yeast and Fungi Metataxonomy Analysis
3.3.5. Yeasts and Filamentous Fungi Isolates
3.4. Quality Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabio, R.P.; Spers, E.E. Does Coffee Origin Matter? An Analysis of Consumer Behavior Based on Regional and National Origin. In Coffee Consumption and Industry Strategies in Brazil; Elsevier: Amsterdam, The Netherlands, 2020; pp. 297–320. ISBN 978-0-12-814721-4. [Google Scholar]
- Superintendencia de Industria y Comercio Resolución 4819. 2005. Available online: https://www.sic.gov.co/sites/default/files/files/Denominacion%20de%20Origen/Agro%20-%20Alimenticios/Caf%C3%A9%20de%20Colombia/cafe_de_colombia.pdf (accessed on 8 September 2021).
- Corpocesar Generalidades del Departamento de Cesar. Available online: https://www.corpocesar.gov.co/generalidades.html (accessed on 8 September 2021).
- Pertuz-Peralta, V.; Perez-Orozco, A.B. Modelo de Cultura Organizacional Innovadora En Caficultores Del Departamento Del Cesar, Colombia. Rev. Investig. Desarro. Innov. 2016, 6, 117–130. [Google Scholar] [CrossRef]
- Superintendencia de Industria y Comercio Resolución 2484. 2017. Available online: https://www.sic.gov.co/sites/default/files/files/Denominacion%20de%20Origen/Resoluci%C3%B3n%202484%20Caf%C3%A9%20de%20la%20Sierra%20Nevada.pdf (accessed on 10 September 2021).
- Louzada Pereira, L.; Rizzo Moreira, T. (Eds.) Quality Determinants in Coffee Production; Food Engineering Series; Springer International Publishing: Cham, Switzerland, 2021; ISBN 978-3-030-54436-2. [Google Scholar]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front. Microbiol. 2019, 10, 2621. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2017, 83, e02398-16. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Evangelista, S.R.; da Cruz Pedrozo Miguel, M.G.; van Mullem, J.; Silva, C.F.; Schwan, R.F. Microbiological and Chemical-Sensory Characteristics of Three Coffee Varieties Processed by Wet Fermentation. Ann. Microbiol. 2018, 68, 705–716. [Google Scholar] [CrossRef]
- Holguín-Sterling, L.; Pedraza-Claros, B.; Pérez-Salinas, R.; Ortiz, A.; Navarro-Escalante, L.; Góngora, C.E. Physical–Chemical and Metataxonomic Characterization of the Microbial Communities Present during the Fermentation of Three Varieties of Coffee from Colombia and Their Sensory Qualities. Agriculture 2023, 13, 1980. [Google Scholar] [CrossRef]
- Martinez, S.J.; Simão, J.B.P.; Pylro, V.S.; Schwan, R.F. The Altitude of Coffee Cultivation Causes Shifts in the Microbial Community Assembly and Biochemical Compounds in Natural Induced Anaerobic Fermentations. Front. Microbiol. 2021, 12, 671395. [Google Scholar] [CrossRef]
- Puerta Quintero, G.I.; Marín Mejía, J.; Osorio Betancur, G.A. Microbiología de La Fermentación Del Mucílago de Café Según Su Madurez y Selección. Rev. Cenicafé 2012, 63, 58–78. [Google Scholar]
- Peñuela-Martínez, A.E.; Moreno-Riascos, S.; Medina-Rivera, R. Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture 2023, 13, 1132. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Coffee Fermentation: Expedition from Traditional to Controlled Process and Perspectives for Industrialization. Appl. Food Res. 2023, 3, 100253. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of Coffee Flavor: A Compositional and Sensory Perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Cruz-O’Byrne, R.; Piraneque-Gambasica, N.; Aguirre-Forero, S. Microbial Diversity Associated with Spontaneous Coffee Bean Fermentation Process and Specialty Coffee Production in Northern Colombia. Int. J. Food Microbiol. 2021, 354, 109282. [Google Scholar] [CrossRef]
- De Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; de Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First Description of Bacterial and Fungal Communities in Colombian Coffee Beans Fermentation Analysed Using Illumina-Based Amplicon Sequencing. Sci. Rep. 2019, 9, 8794. [Google Scholar] [CrossRef] [PubMed]
- Peñuela-Martínez, A.E.; Velasquez-Emiliani, A.V.; Angel, C.A. Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation 2023, 9, 343. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L. Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica. Appl. Environ. Microbiol. 2019, 85, e02635-18. [Google Scholar] [CrossRef] [PubMed]
- De Melo Pereira, G.V.; da Silva Vale, A.; de Carvalho Neto, D.P.; Muynarsk, E.S.; Soccol, V.T.; Soccol, C.R. Lactic Acid Bacteria: What Coffee Industry Should Know? Curr. Opin. Food Sci. 2020, 31, 1–8. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The Crucial Role of Yeasts in the Wet Fermentation of Coffee Beans and Quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, S.R.; da Cruz Pedroso Miguel, M.G.; Silva, C.F.; Pinheiro, A.C.M.; Schwan, R.F. Microbiological Diversity Associated with the Spontaneous Wet Method of Coffee Fermentation. Int. J. Food Microbiol. 2015, 210, 102–112. [Google Scholar] [CrossRef]
- Martins, P.M.M.; Ribeiro, L.S.; da Cruz Pedroso Miguel, M.G.; Evangelista, S.R.; Schwan, R.F. Production of Coffee (Coffea arabica) Inoculated with Yeasts: Impact on Quality. J. Sci. Food Agric. 2019, 99, 5638–5645. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, N.; Fernandez-Alduenda, M.; Moreno, F.L.; Ruiz, Y. Coffee Extraction: A Review of Parameters and Their Influence on the Physicochemical Characteristics and Flavour of Coffee Brews. Trends Food Sci. Technol. 2020, 96, 45–60. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Coffee Fermentation and Flavor—An Intricate and Delicate Relationship. Food Chem. 2015, 185, 182–191. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Guerrero, Á.; Sanz-Uribe, J.R. Cromacafé® Herramienta Para Identificar Los Estados de Madurez de Las Variedades de Café de Fruto Rojo. Av. Técnicos Cenicafé 2022, 535, 1–8. [Google Scholar] [CrossRef]
- Guerrero, Á.; Sanz-Uribe, J.R.; Peñuela-Martínez, A.E.; Ramírez, C.A. Mediverdes®: Un Método Para Medir La Calidad de La Recolección Del Café En El Campo. Av. Técnicos Cenicafé 2022, 536, 1–8. [Google Scholar] [CrossRef]
- Peñuela, A.E.; Pabón, J.; Sanz-Uribe, J.R. Método Fermaestro: Para Determinar La Finalización de La Fermentación Del Mucílago de Café. Av. Técnicos Cenicafé 2013, 431, 1–8. [Google Scholar] [CrossRef]
- Oliveros-Tascón, C.E.; Ramírez, C.A.; Tibaduiza-Vianchá, C.A.; Sanz-Uribe, J.R. Construcción de Secadores Solares Tipo Túnel Con Nuevos Materiales. Av. Técnicos Cenicafé 2017, 482, 1–8. [Google Scholar]
- Tyl, C.; Sadler, G.D. pH and Titratable Acidity. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 389–406. ISBN 978-3-319-45774-1. [Google Scholar]
- Mizrahi-Man, O.; Davenport, E.R.; Gilad, Y. Taxonomic Classification of Bacterial 16S rRNA Genes Using Short Sequencing Reads: Evaluation of Effective Study Designs. PLoS ONE 2013, 8, e53608. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR—Protocols and Applications—A Laboratory Manual; Academic Press: Cambridge, MA, USA, 1990; pp. 315–322. [Google Scholar]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Mcmurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Instituto Colombiano de Normas Técnicas y Certificación NTC 4092. 2016. Available online: https://tienda.icontec.org/gp-microbiologia-de-alimentos-y-productos-para-alimentacion-animal-requisitos-generales-y-directrices-para-analisis-microbiologicos-ntc4092-2016.html (accessed on 20 July 2021).
- Instituto Colombiano de Normas Técnicas y Certificación NTC 5181. 2003. Available online: https://tienda.icontec.org/gp-buenas-practicas-de-manufactura-para-la-industria-del-cafe-ntc5181-2003.html (accessed on 20 July 2023).
- Gerard, L. Caracterización de Bacterias del ácido Acético Destinadas a la Producción de Vinagres de Frutas 2015. Available online: https://riunet.upv.es/bitstream/handle/10251/59401/GERARD%20-%20Caracterizaci%C3%B3n%20de%20bacterias%20del%20%C3%A1cido%20ac%C3%A9tico%20destinadas%20ª%20la%20producci%C3%B3n%20de%20vinagres%20de....pdf?sequence=1 (accessed on 13 March 2022).
- Seearunruangchai, A.; Tanasupawat, S.; Keeratipibul, S.; Thawai, C.; Itoh, T.; Yamada, Y. Identification of acetic acid bacteria isolated from fruits collected in Thailand. J. Gen. Appl. Microbiol. 2004, 50, 47–53. [Google Scholar] [CrossRef]
- Larone, D.H. Medically Important Fungi: A Guide to Identification, 6th ed.; Elsevier: Washington, DC, USA, 2018. [Google Scholar]
- Barnett, H. Illustrated Genera of Imperfect Fungi; The American Phytopathological Society: St. Paul, MN, USA, 1998. [Google Scholar]
- Ministerio de la Protección Social Ministerio de Ambiente, Vivienda y Desarrollo Territorial Resolución 2115. 2007. Available online: https://minvivienda.gov.co/sites/default/files/normativa/2115%20-%202007.pdf (accessed on 25 September 2021).
- Instituto Colombiano de Normas Técnicas y Certificación NTC 4939. 2001. Available online: https://tienda.icontec.org/gp-calidad-del-agua-enumeracion-de-coliformes-y-escherichia-coli-tecnica-con-tubos-de-fermentacion-y-tecnica-de-sustrato-enzimatico-ntc4939-2001.html (accessed on 15 June 2021).
- Instituto Colombiano de Normas Técnicas y Certificación NTC 2324. 2021. Available online: https://tienda.icontec.org/gp-cafe-verde-examen-olfativo-y-visual-y-determinacion-de-materia-extrana-y-defectos-ntc2324-2021.html (accessed on 26 July 2021).
- Protocols & Best Practices. Specialty Coffee Association Cupping Protocols; Protocols & Best Practices: Irvine, CA, USA, 2015. [Google Scholar]
- Sanchez Moreno, I. Dihidroxiacetona Quinasa de Citrobacter Freundii CECT 4626. Una Aproximación Integral a Un Nuevo Biocatalizador Para La Formación de Enlaces C-C 2009. Available online: https://digital.csic.es/bitstream/10261/17036/1/Tesis%20Israel%20Sh%C3%A1nchez%20Moreno.pdf (accessed on 23 July 2022).
- Horinouchi, S.; Ueda, K.; Nakayama, J.; Ikeda, T. Cell-to-Cell Communications among Microorganisms. In Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010; pp. 283–337. ISBN 978-0-08-045382-8. [Google Scholar]
- Pereira, T.S.; Batista, N.N.; Santos Pimenta, L.P.; Martinez, S.J.; Ribeiro, L.S.; Oliveira Naves, J.A.; Schwan, R.F. Self-Induced Anaerobiosis Coffee Fermentation: Impact on Microbial Communities, Chemical Composition and Sensory Quality of Coffee. Food Microbiol. 2022, 103, 103962. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M.B. Lactic Acid Production—Producing Microorganisms and Substrates Sources-State of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef] [PubMed]
- Vilela, D.M.; de, M. Pereira, G.V.; Silva, C.F.; Batista, L.R.; Schwan, R.F. Molecular Ecology and Polyphasic Characterization of the Microbiota Associated with Semi-Dry Processed Coffee (Coffea arabica L.). Food Microbiol. 2010, 27, 1128–1135. [Google Scholar] [CrossRef]
- Hameed, A.; Hussain, S.A.; Ijaz, M.U.; Ullah, S.; Pasha, I.; Suleria, H.A.R. Farm to Consumer: Factors Affecting the Organoleptic Characteristics of Coffee. II: Postharvest Processing Factors. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1184–1237. [Google Scholar] [CrossRef]
- Saichana, N.; Matsushita, K.; Adachi, O.; Frébort, I.; Frebortova, J. Acetic Acid Bacteria: A Group of Bacteria with Versatile Biotechnological Applications. Biotechnol. Adv. 2015, 33, 1260–1271. [Google Scholar] [CrossRef]
- Avallone, S.; Guyot, B.; Brillouet, J.-M.; Olguin, E.; Guiraud, J.-P. Microbiological and Biochemical Study of Coffee Fermentation. Curr. Microbiol. 2001, 42, 252–256. [Google Scholar] [CrossRef] [PubMed]
- De Melo Pereira, G.; Soccol, V.T.; Brar, S.K.; Neto, E.; Soccol, C.R. Microbial Ecology and Starter Culture Technology in Coffee Processing. Crit. Rev. Food Sci. Nutr. 2017, 57, 2775–2788. [Google Scholar] [CrossRef]
- Silva, C.F.; Vilela, D.M.; de Souza Cordeiro, C.; Duarte, W.F.; Dias, D.R.; Schwan, R.F. Evaluation of a Potential Starter Culture for Enhance Quality of Coffee Fermentation. World J. Microbiol. Biotechnol. 2013, 29, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, S.R.; da Cruz Pedrozo Miguel, M.G.; de Souza Cordeiro, C.; Silva, C.F.; Marques Pinheiro, A.C.; Schwan, R.F. Inoculation of Starter Cultures in a Semi-Dry Coffee (Coffea arabica) Fermentation Process. Food Microbiol. 2014, 44, 87–95. [Google Scholar] [CrossRef]
- Jackels, S.C.; Jackels, C.F. Characterization of the Coffee Mucilage Fermentation Process Using Chemical Indicators: A Field Study in Nicaragua. J. Food Sci. 2005, 70, C321–C325. [Google Scholar] [CrossRef]
- Feng, X.; Dong, H.; Yang, P.; Yang, R.; Lu, J.; Lv, J.; Sheng, J. Culture-Dependent and -Independent Methods to Investigate the Predominant Microorganisms Associated with Wet Processed Coffee. Curr. Microbiol. 2016, 73, 190–195. [Google Scholar] [CrossRef]
- Martins, P.M.M.; Batista, N.N.; da Cruz Pedroso Miguel, M.G.; Simão, J.B.P.; Soares, J.R.; Schwan, R.F. Coffee Growing Altitude Influences the Microbiota, Chemical Compounds and the Quality of Fermented Coffees. Food Res. Int. 2020, 129, 108872. [Google Scholar] [CrossRef]
- Pothakos, V.; De Vuyst, L.; Zhang, S.J.; De Bruyn, F.; Verce, M.; Torres, J.; Callanan, M.; Moccand, C.; Weckx, S. Temporal Shotgun Metagenomics of an Ecuadorian Coffee Fermentation Process Highlights the Predominance of Lactic Acid Bacteria. Curr. Res. Biotechnol. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- De Melo Pereira, G.V.; Soccol, V.T.; Pandey, A.; Medeiros, A.B.P.; Andrade Lara, J.M.R.; Gollo, A.L.; Soccol, C.R. Isolation, Selection and Evaluation of Yeasts for Use in Fermentation of Coffee Beans by the Wet Process. Int. J. Food Microbiol. 2014, 188, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, S.R.; Silva, C.F.; da Cruz Pedroso Miguel, M.G.; Cordeiro, C.d.S.; Pinheiro, A.C.M.; Duarte, W.F.; Schwan, R.F. Improvement of Coffee Beverage Quality by Using Selected Yeasts Strains during the Fermentation in Dry Process. Food Res. Int. 2014, 61, 183–195. [Google Scholar] [CrossRef]
- Kurtzman, C. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 2003, 4, 233–245. [Google Scholar] [CrossRef]
- Rodrigues, T.B.; Silva, A.E.T. (Eds.) Molecular Diversity of Environmental Prokaryotes; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-3323-0. [Google Scholar]
- De Carvalho Neto, D.; de Melo Pereira, G.; Tanobe, V.; Thomaz Soccol, V.; da Silva, B.J.; Rodrigues, C.; Soccol, C. Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. Fermentation 2017, 3, 11. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Ecological Diversity, Evolution and Metabolism of Microbial Communities in the Wet Fermentation of Australian Coffee Beans. Int. J. Food Microbiol. 2020, 321, 108544. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.F.; Schwan, R.F.; Sousa Dias, Ë.; Wheals, A.E. Microbial Diversity during Maturation and Natural Processing of Coffee Cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 2000, 60, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Bessaire, T.; Perrin, I.; Tarres, A.; Bebius, A.; Reding, F.; Theurillat, V. Mycotoxins in Green Coffee: Occurrence and Risk Assessment. Food Control 2019, 96, 59–67. [Google Scholar] [CrossRef]
Fermentation Time (h)/Farms (Fs) | Sample Time | Mesophiles | Lactic Acid Bacteria | Coliforms | Yeasts | Filamentous Fungi | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Log10 CFUs/mL) | ||||||||||||||||
X | SD | X | SD | X | SD | X | SD | X | SD | |||||||
10–16 h (F14 − F12 − F13 − F15 − F16 − F17) | T1 | 5.48 | ± | 0.11 | 6.57 | ± | 0.65 | 4.62 | ± | 0.45 | 5.75 | ± | 0.12 | 2.40 | ± | 1.86 |
T2 | 5.44 | ± | 0.19 | 6.52 | ± | 0.65 | 3.56 | ± | 1.76 | 5.68 | ± | 0.14 | 2.78 | ± | 1.42 | |
T3 | 5.35 | ± | 0.40 | 6.44 | ± | 0.60 | 3.80 | ± | 1.87 | 5.73 | ± | 0.34 | 2.30 | ± | 1.79 | |
18–20 h (F3 − F4 − F5 − F8 − F9 − F10 − F18 − F19 − F20) | T1 | 5.50 | ± | 0.302 | 6.61 | ± | 0.55 | 4.22 | ± | 0.85 | 5.68 | ± | 0.26 | 3.42 | ± | 0.34 |
T2 | 5.49 | ± | 0.436 | 6.65 | ± | 0.58 | 4.13 | ± | 0.79 | 5.55 | ± | 0.36 | 3.58 | ± | 0.21 | |
T3 | 5.62 | ± | 0.413 | 6.27 | ± | 1.28 | 3.33 | ± | 2.04 | 5.65 | ± | 0.33 | 3.04 | ± | 1.20 | |
36–42 h (F1 − F2 − F6 − F7 − F11) | T1 | 5.57 | ± | 0.202 | 5.80 | ± | 2.35 | 3.99 | ± | 0.85 | 5.75 | ± | 0.21 | 2.93 | ± | 1.70 |
T2 | 5.67 | ± | 0.482 | 5.18 | ± | 2.42 | 3.53 | ± | 0.64 | 5.85 | ± | 0.26 | 2.94 | ± | 1.70 | |
T3 | 5.76 | ± | 0.539 | 4.98 | ± | 2.45 | 3.66 | ± | 0.93 | 5.82 | ± | 0.40 | 2.83 | ± | 1.69 |
Microorganism | Time | Farms | Frequency by Farms | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | # | % | ||
Fructilactobacillus fructivorans | T1 | 1 | 5.0 | ||||||||||||||||||||
T2 | x | ||||||||||||||||||||||
T3 | |||||||||||||||||||||||
Lactiplantibacillus plantarum | T1 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | 17 | 85.0 | |||||
T2 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
T3 | x | x | x | x | x | x | x | x | x | x | |||||||||||||
Lactiplantibacillus pentosus | T1 | x | x | x | 6 | 30.0 | |||||||||||||||||
T2 | x | x | |||||||||||||||||||||
T3 | x | x | x | ||||||||||||||||||||
Lactobacillus delbrueckii | T1 | x | 2 | 10.0 | |||||||||||||||||||
T2 | x | ||||||||||||||||||||||
T3 | |||||||||||||||||||||||
Lactococcus raffinolactis | T1 | x | 1 | 5.0 | |||||||||||||||||||
T2 | |||||||||||||||||||||||
T3 | |||||||||||||||||||||||
Leuconostoc mesenteroides | T1 | x | x | x | x | x | x | 9 | 45.0 | ||||||||||||||
T2 | x | x | x | x | |||||||||||||||||||
T3 | x | x | x | x | x | x | |||||||||||||||||
Leuconostoc citreum | T1 | x | x | 3 | 15.0 | ||||||||||||||||||
T2 | x | x | |||||||||||||||||||||
T3 | |||||||||||||||||||||||
Levilactobacillus brevis | T1 | x | x | 8 | 40.0 | ||||||||||||||||||
T2 | x | x | x | ||||||||||||||||||||
T3 | x | x | x | x |
Microorganism | Time | Farms | Frequency by Farms | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 | F17 | F18 | F19 | F20 | # | % | ||
Acetobacter spp. | T1 | x | x | x | 5 | 25.0 | |||||||||||||||||
T2 | x | ||||||||||||||||||||||
T3 | x | x | x | x | |||||||||||||||||||
Acidomonas spp. | T1 | 1 | 5.0 | ||||||||||||||||||||
T2 | x | ||||||||||||||||||||||
T3 | |||||||||||||||||||||||
Gluconobacter spp. | T1 | x | x | 5 | 25.0 | ||||||||||||||||||
T2 | x | x | x | ||||||||||||||||||||
T3 | |||||||||||||||||||||||
Sacharibacter spp. | T1 | x | 2 | 10.0 | |||||||||||||||||||
T2 | |||||||||||||||||||||||
T3 | x |
Fermentation Time (h)/Farms (Fs) | Sample Time | ||||||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||||
X | SD | X | SD | X | SD | ||||
10–16 h (F12 − F13 − F14 − F15 − F16 − F17) | 82.7 | ± | 0.86 | 82.7 | ± | 0.43 | 82.5 | ± | 0.86 |
18–20 h (F3 − F4 − F5 − F8 − F9 − F10 − F18 − F19 − F20) | 82.3 | ± | 1.43 | 82.8 | ± | 6.96 | 82.5 | ± | 0.71 |
36–42 h (F1 − F2 − F6 − F7 − F11) | 82.5 | ± | 1.60 | 82.7 | ± | 8.90 | 83.7 | ± | 0.54 |
Fermentation Time (h)/Farms (Fs) | Sample Time | Fragance/Aroma | Flavor | Acidity | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X | SD | X | SD | X | SD | |||||
10–16 h (F12 − F13 − F14 − F15 − F16 − F17) | T1 | 7.55 | ± | 0.15 | 7.61 | ± | 0.14 | 7.55 | ± | 0.10 |
T2 | 7.65 | ± | 0.09 | 7.54 | ± | 0.13 | 7.54 | ± | 0.07 | |
T3 | 7.50 | ± | 0.11 | 7.57 | ± | 0.13 | 7.52 | ± | 0.14 | |
18–20 h (F3 − F4 − F5 − F8 − F9 − F10 − F18 − F19 − F20) | T1 | 7.54 | ± | 0.22 | 7.53 | ± | 0.24 | 7.52 | ± | 0.25 |
T2 | 7.53 | ± | 0.09 | 7.56 | ± | 0.17 | 7.56 | ± | 0.13 | |
T3 | 7.55 | ± | 0.09 | 7.54 | ± | 0.12 | 7.50 | ± | 0.11 | |
36–42 h (F1 − F2 − F6 − F7 − F11) | T1 | 7.65 | ± | 0.27 | 7.58 | ± | 0.17 | 7.55 | ± | 0.19 |
T2 | 7.69 | ± | 0.16 | 7.54 | ± | 0.19 | 7.60 | ± | 0.19 | |
T3 | 7.69 | ± | 0.13 | 7.85 | ± | 0.12 | 7.73 | ± | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Góngora, C.E.; Holguín-Sterling, L.; Pedraza-Claros, B.; Pérez-Salinas, R.; Ortiz, A.; Navarro-Escalante, L. Metataxonomic Identification of Microorganisms during the Coffee Fermentation Process in Colombian Farms (Cesar Department). Foods 2024, 13, 839. https://doi.org/10.3390/foods13060839
Góngora CE, Holguín-Sterling L, Pedraza-Claros B, Pérez-Salinas R, Ortiz A, Navarro-Escalante L. Metataxonomic Identification of Microorganisms during the Coffee Fermentation Process in Colombian Farms (Cesar Department). Foods. 2024; 13(6):839. https://doi.org/10.3390/foods13060839
Chicago/Turabian StyleGóngora, Carmenza E., Laura Holguín-Sterling, Bertilda Pedraza-Claros, Rosangela Pérez-Salinas, Aristofeles Ortiz, and Lucio Navarro-Escalante. 2024. "Metataxonomic Identification of Microorganisms during the Coffee Fermentation Process in Colombian Farms (Cesar Department)" Foods 13, no. 6: 839. https://doi.org/10.3390/foods13060839