Micro- and Macroalgae in Meat Products
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. pH
3.2. Proximate Composition
3.2.1. Moisture
3.2.2. Fat
3.2.3. Protein
3.2.4. Ash
3.3. Water-Holding Capacity and Cooking Loss
3.4. Texture
3.5. Color
Meat Product | Algae Type | Inclusion Level | ΔL* | Δa* | Δb* | Reference |
---|---|---|---|---|---|---|
Frankfurters | White Chlorella | 3% | ↓ | ↓ | ↑ | Bošković Cabrol et al., 2023 [25] |
Honey Chlorella | 3% | ↓ | ↓ | ↑ | ||
Frankfurters | Wakame | 2% | ↓ | ↓ | ↑ | Choi et al., 2017 [18] |
Pork patties | Sea tangle | 5% | ↓ | ↓ | ↑ | Choi et al., 2012 [22] |
Frankfurters | Sea tangle | 1% | ↓ | ↓ | ↑ | Choi et al., 2015 [26] |
Wakame | 1% | ↓ | ↓ | ↑ | ||
Hijiki | 1% | ↓ | ↓ | ↑ | ||
Glasswort | 1% | ↓ | ↑ | ↑ | ||
Pork gel/emulsion system | Sea spaghetti | 2.5% | ↓ | ↓ | ↑ | Cofrades et al., 2008 [21] |
Wakame | 2.5% | ↓ | ↓ | ↑ | ||
Nori | 2.5% | ↓ | ↓ | ↑ | ||
Poultry steaks | Sea spaghetti | 3% | ↓ | ↓ | ↑ | Cofrades et al., 2011 [45] |
Beef patties | Sea spaghetti | 10% | ↑ | ↓ | ↑ | Cox S. and Abu-Ghannam N., 2013 [27] |
Breakfast sausages | Sea tangle | 4% | ↓ | ↓ | ↑ | Han et al., 2010 [23] |
Pork sausages | Sea spaghetti | 2.5% | ↓ | ↓ | ↓ | Mohammed et al., 2022 [49] |
Irish wakame | 2.5% | ↓ | ↓ | ↓ | ||
Dulse | 2.5% | ↓ | ↓ | ↓ | ||
Nori | 2.5% | ↓ | ↓ | ↓ | ||
Chicken sausage | K. alvarezii | 6% | ↓ | ↑ | ↓ | Munsu et al., 2021 [44] |
S. polycystum | 6% | ↓ | ↑ | ↓ | ||
C. lentilifira | 6% | ↓ | ↓ | ↓ | ||
MDCM chicken sausages | K. alvarezii | 6% | ↓ | ↑ | NSD | Pindi et al., 2017 [20] |
Frankfurters | Sea spaghetti | 1% | ↓ | ↓ | ↑ | Vilar et al., 2020 [48] |
Wakame | 1% | ↓ | ↓ | ↓ | ||
Nori | 1% | ↓ | ↓ | ↓ | ||
Dulse | 1% | ↓ | ↓ | ↓ | ||
Beef meatballs | E. cottonii | 7.5% | ↓ | ↓ | ↓ | Widati et al., 2021 [19] |
Meat Product | Algae Type | Inclusion Level | ΔL* | Δa* | Δb* | Reference |
---|---|---|---|---|---|---|
Chinese sausage | Spirulina PS | 0.5% | ↓ | ↑ | Luo et al., 2017 [29] | |
Chinese sausage | Spirulina ex. | 5% | ↓ | NSD | ↓ | Luo et al., 2017 [30] |
Fresh sausage | Spirulina protein | 1% | ↓ | ↓ | ↓ | Marti-Quijal et al., 2019 [38] |
Chlorella protein | 1% | ↓ | ↓ | ↓ | ||
Turkey burger | Spirulina protein | 1% | ↓ | ↓ | ↓ | Marti-Quijal et al., 2019 [37] |
Chlorella protein | 1% | ↓ | ↑ | NSD | ||
Cooked turkey breast | Spirulina protein | 1% | ↓ | ↓ | ↑ | Marti-Quijal et al., 2018 [35] |
Chlorella protein | 1% | ↓ | ↓ | ↑ | ||
Ground pork meat | H. pluvialis ex. | 0.05% | ↓ | ↑ | ↑ | Pogorzelska et al., 2018 [54] |
Chicken roti | Spirulina protein | 1% | ↓ | ↓ | ↓ | Parniakov et al., 2018 [36] |
Chlorella protein | 1% | ↓ | ↓ | ↓ | ||
Chorizo sausages | Spirulina protein | 3% | ↓ | ↓ | ↓ | Thirumdas et al., 2018 [39] |
Chlorella protein | 3% | ↓ | ↓ | ↓ | ||
Beef patties | Spirulina protein | 1% | ↓ | ↓ | ↓ | Zugcic et al., 2018 [40] |
Chlorella protein | 1% | ↓ | ↓ | ↓ | ||
Pork liver pâté | A. nodosum ex. | 0.05% | NSD | NSD | NSD | Agregan et al., 2018 [41] |
F. vesiculosus ex. | NSD | NSD | NSD | |||
B. bifurcata ex. | NSD | NSD | NSD | |||
Pork patties | F. vesiculosus ex. | 0.1% | ↓ | ↓ | ↓ | Agregan et al., 2019 [42] |
Beef sausages | Ch. linum PS | 0.25% | ↓ | ↑ | ↓ | Hamzaoui et al., 2020 [34] |
Pork patties | Ulva lactuca and Ulva rigida ex. | 0.1% | ↓ | ↓ | ↓ | Lorenzo et al., 2014 [33] |
Pork patties | L. digitata ex. | 0.5% | ↓ | ↓ | ↑ | Moroney et al., 2013 [32] |
MDCM turkey sausages | C. barbata ex. | 0.04% | ↓ | ↑ | ↑ | Sellimi et al., 2017 [55] |
MDCM turkey sausages | C. barbata ex. | 0.04% | ↓ | ↑ | ↑ | Sellimi et al., 2018 [53] |
Turkey sausages | AlgySalt® | 2% | NSD | NSD | NSD | Triki et al., 2017 [31] |
3.6. Sensory Evaluation
3.7. Microbiology
3.8. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valsta, L.M.; Tapanainen, H.; Männistö, S. Meat fats in nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef]
- Jimenez-Colmenero, F.; Carballo, J.; Cofrades, S. Healthier meat and meat products: Their role as functional foods. Meat Sci. 2001, 59, 5–13. [Google Scholar] [CrossRef]
- de Medeiros, V.P.B.; Pimentel, T.C.; Sant’Ana, A.S.; Magnani, M. Microalgae in the meat processing chain: Feed for animal production or source of techno-functional ingredients. Curr. Opin. Food Sci. 2021, 37, 125–134. [Google Scholar] [CrossRef]
- Chen, P.; Min, M.; Chen, Y.; Wang, L.; Li, Y. Review of biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2009, 2, 1–30. [Google Scholar] [CrossRef]
- Banach, J.L.; Hoek-van den Hil, E.F.; van der Fels-Klerx, H.J. Food safety hazards in the European seaweed chain. Compr. Rev. Food Sci. Food Saf. 2020, 19, 332–364. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- Scieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Bruno de Sousa, C.; Gangadhar, K.N.; Macridachis, J.; Pavão, M.; Morais, T.R.; Campino, L.; Varela, J.; Lago, J.H.G. Cystoseira algae (Fucaceae): Update on their chemical entities and biological activities. Tetrahedron Asymmetry 2017, 28, 1486–1505. [Google Scholar] [CrossRef]
- Kraan, S. Algal Polysaccharides, Novel Applications and Outlook. In Carbohydrates; Chuan-Fa, C., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 22. [Google Scholar]
- Yuan, Y.; Zhang, J.; Fan, J.; Clark, J.; Shen, P.; Li, Y.; Zhang, C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on alpha-amylase, alpha-glucosidase, pancreatic lipase and tyrosinase. Food Res. Int. 2018, 113, 288–297. [Google Scholar] [CrossRef]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Zhou, L.; Li, K.; Duan, X.; Hill, D.; Barrow, C.; Dunshea, F.; Martin, G.; Suleria, H. Bioactive compounds in microalgae and their potential health benefits. Food Biosci. 2022, 49, 101932. [Google Scholar] [CrossRef]
- Samani, S.A.; Jafari, M.; Sahafi, S.M.; Roohinejad, S. Applications of Algae and Algae Extracts in Human Food and Feed. In Recent Advances in Micro- and Macroalgal Processing; Rajauria, G., Yuan, Y., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 467–481. [Google Scholar]
- Lordan, S.; Ross, R.P.; Stanton, C. Marine Bioactives as Functional Food Ingredients: Potential to Reduce the Incidence of Chronic Diseases. Mar. Drugs 2011, 9, 1056–1100. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Rajauria, G.; Foley, B.; Abu-Ghannam, N. Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed. Food Res. Int. 2017, 99, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-S.; Jeong, T.-J.; Kim, H.-W.; Hwang, K.-E.; Sung, J.-M.; Seo, D.-H.; Kim, Y.-B.; Kim, C.-J. Combined Effects of Sea Mustard and Transglutaminase on the Quality Characteristics of Reduced-Salt Frankfurters. J. Food Process. Preserv. 2017, 41, e12945. [Google Scholar] [CrossRef]
- Widati, A.S.; Rosyidi, D.; Radiati, L.E.; Nursyam, H. The effect of seaweed (Eucheuma cottonii) flour addition on physicochemical and sensory characteristics of an Indonesian-style beef meatball. Int. J. Food Stud. 2021, 10, SI111–SI120. [Google Scholar] [CrossRef]
- Pindi, W.; Mah, H.W.; Munsu, E.; Ab Wahab, N. Effects of addition of Kappaphycus alvarezii on physicochemical properties and lipid oxidation of mechanically deboned chicken meat (MDCM) sausages. Br. Food J. 2017, 119, 2229–2239. [Google Scholar] [CrossRef]
- Cofrades, S.; Lopez-Lopez, I.; Solas, M.T.; Bravo, L.; Jimenez-Colmenero, F. Influence of different types and proportions of added edible seaweeds on characteristics of low-salt gel/emulsion meat systems. Meat Sci. 2008, 79, 767–776. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Kim, H.W.; Lee, M.A.; Chung, H.J.; Kim, C.J. Effects of Laminaria japonica on the physico-chemical and sensory characteristics of reduced-fat pork patties. Meat Sci. 2012, 91, 1–7. [Google Scholar] [CrossRef]
- Han, D.-J.; Kim, H.-Y.; Lee, M.-A.; Kim, S.-Y.; Kim, C.-J. Effects of Sea Tangle (Lamina japonica) Powder on Quality Characteristics of Breakfast Sausages. Food Sci. Anim. Resour. 2010, 30, 55–61. [Google Scholar]
- Voloschenko, L.V.; Baidina, I.A.; Shevchenko, N.P.; Trubchaninova, N.C. Functional meat and vegetable pate with spirulina. Earth Environ. Sci. 2021, 845, 012123. [Google Scholar] [CrossRef]
- Bošković Cabrol, M.; Glišić, M.; Baltić, M.; Jovanović, D.; Silađi, Č.; Simunović, S.; Tomašević, I.; Raymundo, A. White and honey Chlorella vulgaris: Sustainable ingredients with the potential to improve nutritional value of pork frankfurters without compromising quality. Meat Sci. 2023, 198, 109123. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Kum, J.S.; Jeon, K.H.; Park, J.D.; Choi, H.W.; Hwang, K.E.; Jeong, T.J.; Kim, Y.B.; Kim, C.J. Effects of Edible Seaweed on Physicochemical and Sensory Characteristics of Reduced-salt Frankfurters. Korean J. Food Sci. Anim. Resour. 2015, 35, 748–756. [Google Scholar] [CrossRef]
- Cox, S.; Abu-Ghannam, N. Enhancement of the phytochemical and fibre content of beef patties with Himanthalia elongata seaweed. Int. J. Food Sci. Technol. 2013, 48, 2239–2249. [Google Scholar] [CrossRef]
- López-López, I.; Cofrades, S.; Yakan, A.; Solas, M.T.; Jiménez-Colmenero, F. Frozen storage characteristics of low-salt and low-fat beef patties as affected by Wakame addition and replacing pork backfat with olive oil-in-water emulsion. Food Res. Int. 2010, 43, 1244–1254. [Google Scholar] [CrossRef]
- Luo, A.; Feng, J.; Hu, B.; Lv, J.; Chen, C.O.; Xie, S. Polysaccharides in Spirulina platensis Improve Antioxidant Capacity of Chinese-Style Sausage. J. Food Sci. 2017, 82, 2591–2597. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Feng, J.; Hu, B.; Lv, J.; Liu, Q.; Nan, F.; Oliver Chen, C.Y.; Xie, S. Arthrospira (Spirulina) platensis extract improves oxidative stability and product quality of Chinese-style pork sausage. J. Appl. Phycol. 2017, 30, 1667–1677. [Google Scholar] [CrossRef]
- Triki, M.; Khemakhem, I.; Trigui, I.; Ben Salah, R.; Jaballi, S.; Ruiz-Capillas, C.; Ayadi, M.A.; Attia, H.; Besbes, S. Free-sodium salts mixture and AlgySalt(R) use as NaCl substitutes in fresh and cooked meat products intended for the hypertensive population. Meat Sci. 2017, 133, 194–203. [Google Scholar] [CrossRef]
- Moroney, N.C.; O’Grady, M.N.; O’Doherty, J.V.; Kerry, J.P. Effect of a brown seaweed (Laminaria digitata) extract containing laminarin and fucoidan on the quality and shelf-life of fresh and cooked minced pork patties. Meat Sci. 2013, 94, 304–311. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sineiro, J.; Amado, I.R.; Franco, D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014, 96, 526–534. [Google Scholar] [CrossRef]
- Hamzaoui, A.; Ghariani, M.; Sellem, I.; Hamdi, M.; Feki, A.; Jaballi, I.; Nasri, M.; Amara, I.B. Extraction, characterization and biological properties of polysaccharide derived from green seaweed “Chaetomorpha linum” and its potential application in Tunisian beef sausages. Int. J. Biol. Macromol. 2020, 148, 1156–1168. [Google Scholar] [CrossRef]
- Marti-Quijal, F.J.; Zamuz, S.; Galvez, F.; Roohinejad, S.; Tiwari, B.K.; Gómez, B.; Barba, F.J.; Lorenzo, J.M. Replacement of soy protein with other legumes or algae in turkey breast formulation: Changes in physicochemical and technological properties. J. Food Process. Preserv. 2018, 42, e13845. [Google Scholar] [CrossRef]
- Parniakov, O.; Toepfl, S.; Barba, F.J.; Granato, D.; Zamuz, S.; Galvez, F.; Lorenzo, J.M. Impact of the soy protein replacement by legumes and algae based proteins on the quality of chicken rotti. J. Food Sci. Technol. 2018, 55, 2552–2559. [Google Scholar] [CrossRef]
- Marti-Quijal, F.J.; Zamuz, S.; Tomasevic, I.; Rocchetti, G.; Lucini, L.; Marszalek, K.; Barba, F.J.; Lorenzo, J.M. A chemometric approach to evaluate the impact of pulses, Chlorella and Spirulina on proximate composition, amino acid, and physicochemical properties of turkey burgers. J. Sci. Food Agric. 2019, 99, 3672–3680. [Google Scholar] [CrossRef]
- Marti-Quijal, F.J.; Zamuz, S.; Tomašević, I.; Gómez, B.; Rocchetti, G.; Lucini, L.; Remize, F.; Barba, F.J.; Lorenzo, J.M. Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. LWT 2019, 110, 316–323. [Google Scholar] [CrossRef]
- Thirumdas, R.; Brnčić, M.; Brnčić, S.R.; Barba, F.J.; Gálvez, F.; Zamuz, S.; Lacomba, R.; Lorenzo, J.M. Evaluating the impact of vegetal and microalgae protein sources on proximate composition, amino acid profile, and physicochemical properties of fermented Spanish “chorizo” sausages. J. Food Process. Preserv. 2018, 42, e13817. [Google Scholar] [CrossRef]
- Zugcic, T.; Abdelkebir, R.; Barba, F.J.; Rezek-Jambrak, A.; Galvez, F.; Zamuz, S.; Granato, D.; Lorenzo, J.M. Effects of pulses and microalgal proteins on quality traits of beef patties. J. Food Sci. Technol. 2018, 55, 4544–4553. [Google Scholar] [CrossRef]
- Agregan, R.; Franco, D.; Carballo, J.; Tomasevic, I.; Barba, F.J.; Gomez, B.; Muchenje, V.; Lorenzo, J.M. Shelf life study of healthy pork liver pate with added seaweed extracts from Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Food Res. Int. 2018, 112, 400–411. [Google Scholar] [CrossRef]
- Agregan, R.; Barba, F.J.; Gavahian, M.; Franco, D.; Khaneghah, A.M.; Carballo, J.; Ferreira, I.C.; da Silva Barretto, A.C.; Lorenzo, J.M. Fucus vesiculosus extracts as natural antioxidants for improvement of physicochemical properties and shelf life of pork patties formulated with oleogels. J. Sci. Food Agric. 2019, 99, 4561–4570. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Parsimonious model development for real-time monitoring of moisture in red meat using hyperspectral imaging. Food Chem. 2016, 196, 1084–1091. [Google Scholar] [CrossRef]
- Munsu, E.; Mohd Zaini, H.; Matanjun, P.; Ab Wahab, N.; Sulaiman, N.S.; Pindi, W. Physicochemical, Sensory Properties and Lipid Oxidation of Chicken Sausages Supplemented with Three Types of Seaweed. Appl. Sci. 2021, 11, 11347. [Google Scholar] [CrossRef]
- Cofrades, S.; Lopez-Lopez, I.; Ruiz-Capillas, C.; Triki, M.; Jimenez-Colmenero, F. Quality characteristics of low-salt restructured poultry with microbial transglutaminase and seaweed. Meat Sci. 2011, 87, 373–380. [Google Scholar] [CrossRef]
- Lopez-Lopez, I.; Cofrades, S.; Ruiz-Capillas, C.; Jimenez-Colmenero, F. Design and nutritional properties of potential functional frankfurters based on lipid formulation, added seaweed and low salt content. Meat Sci. 2009, 83, 255–262. [Google Scholar] [CrossRef]
- Marcal, C.; Pinto, C.A.; Silva, A.M.S.; Monteiro, C.; Saraiva, J.A.; Cardoso, S.M. Macroalgae-Fortified Sausages: Nutritional and Quality Aspects Influenced by Non-Thermal High-Pressure Processing. Foods 2021, 10, 209. [Google Scholar] [CrossRef]
- Vilar, E.G.; Ouyang, H.; O’Sullivan, M.G.; Kerry, J.P.; Hamill, R.M.; O’Grady, M.N.; Mohammed, H.O.; Kilcawley, K.N. Effect of salt reduction and inclusion of 1% edible seaweeds on the chemical, sensory and volatile component profile of reformulated frankfurters. Meat Sci. 2020, 161, 108001. [Google Scholar] [CrossRef]
- Mohammed, H.O.; O’Grady, M.N.; O’Sullivan, M.G.; Hamill, R.M.; Kilcawley, K.N.; Kerry, J.P. Acceptable Inclusion Levels for Selected Brown and Red Irish Seaweed Species in Pork Sausages. Foods 2022, 11, 1522. [Google Scholar] [CrossRef]
- Lopez-Lopez, I.; Bastida, S.; Ruiz-Capillas, C.; Bravo, L.; Larrea, M.T.; Sanchez-Muniz, F.; Cofrades, S.; Jimenez-Colmenero, F. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 2009, 83, 492–498. [Google Scholar] [CrossRef]
- Barbieri, G.; Barbieri, G.; Bergamaschi, M.; Francheschini, M.; Berizi, E. Reduction of NaCl in cooked ham by modification of the cooking process and addition of seaweed extract (Palmaria palmata). LWT 2016, 73, 700–706. [Google Scholar] [CrossRef]
- Aryee, A.N.A.; Agyei, D.; Akanbi, T.O. Recovery and utilization of seaweed pigments in food processing. Curr. Opin. Food Sci. 2018, 19, 113–119. [Google Scholar] [CrossRef]
- Sellimi, S.; Benslima, A.; Ksouda, G.; Montero, V.B.; Hajji, M.; Nasri, M. Safer and healthier reduced nitrites Turkey meat sausages using lyophilized Cystoseira barbata seaweed extract. J. Complement. Integr. Med. 2018, 15, 20170061. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska, E.; Godziszewska, J.; Brodowska, M.; Wierzbicka, A. Antioxidant potential of Haematococcus pluvialis extract rich in astaxanthin on colour and oxidative stability of raw ground pork meat during refrigerated storage. Meat Sci. 2018, 135, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Sellimi, S.; Ksouda, G.; Benslima, A.; Nasri, R.; Rinaudo, M.; Nasri, M.; Hajji, M. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata. Food Chem. Toxicol. 2017, 107, 620–629. [Google Scholar] [CrossRef]
- Lee, H.; Choe, J.; Yong, H.I.; Lee, H.J.; Kim, H.-J.; Jo, C. Combination of sea tangle powder and high-pressure treatment as an alternative to phosphate in emulsion-type sausage. J. Food Process. Preserv. 2018, 42, e13712. [Google Scholar] [CrossRef]
Meat Product | Algae Type | Inclusion Level | Difference in pH | Reference |
---|---|---|---|---|
Frankfurters | White Chlorella | 3% | ↑ | Bošković Cabrol et al., 2023 [25] |
Honey Chlorella | 3% | ↑ | ||
Pork liver pâté | Spirulina | 2.5% | NSD | Voloschenko et al., 2021 [24] |
Frankfurters | Wakame | 2% | ↑ | Choi et al., 2017 [18] |
Pork patties | Sea tangle | 5% | ↓ | Choi et al., 2012 [22] |
Frankfurters | Sea tangle | 1% | ↑ | Choi et al., 2015 [26] |
Wakame | 1% | ↑ | ||
Hijiki | 1% | ↑ | ||
Glasswort | 1% | ↑ | ||
Pork gel/emulsion system | Sea spaghetti | 2.5% | NSD | Cofrades et al., 2008 [21] |
Wakame | 2.5% | ↑ | ||
Nori | 2.5% | ↓ | ||
Beef patties | Sea spaghetti | 10% | NSD | Cox S. and Abu-Ghannam N., 2013 [27] |
Breakfast sausages | Sea tangle | 4% | ↓ | Han et al., 2010 [23] |
Beef patties | Wakame | 3% | ↑ | López-López et al., 2010 [28] |
MDCM chicken sausages | K. alvarezii | 6% | ↑ | Pindi et al., 2017 [20] |
Beef meatballs | E. cottonii | 7.5% | ↑ | Widati et al., 2021 [19] |
Meat Product | Algae Type | Inclusion Level | Difference in pH | Reference |
---|---|---|---|---|
Chinese sausage | Spirulina PS | 0.5% | NSD | Luo et al., 2017 [29] |
Chinese sausage | Spirulina ex. | 5% | NSD | Luo et al., 2017 [30] |
Fresh sausage | Spirulina protein | 1% | ↓ | Marti-Quijal et al., 2019 [38] |
Chlorella protein | 1% | ↑ | ||
Turkey burger | Spirulina protein | 1% | ↓ | Marti-Quijal et al., 2019 [37] |
Chlorella protein | 1% | ↓ | ||
Cooked turkey breast | Spirulina protein | 1% | ↑ | Marti-Quijal et al., 2018 [35] |
Chlorella protein | 1% | ↑ | ||
Chicken roti | Spirulina protein | 1% | ↑ | Parniakov et al., 2018 [36] |
Chlorella protein | 1% | ↑ | ||
Chorizo sausages | Spirulina protein | 3% | ↑ | Thirumdas et al., 2018 [39] |
Chlorella protein | 3% | ↑ | ||
Beef patties | Spirulina protein | 1% | NSD | Zugcic et al., 2018 [40] |
Chlorella protein | 1% | ↑ | ||
Pork liver pâté | A. nodosum ex. | 0.05% | NSD | Agregan et al., 2018 [41] |
F. vesiculosus ex. | NSD | |||
B. bifurcata ex. | NSD | |||
Pork patties | F. vesiculosus ex. | 0.1% | ↑ | Agregan et al., 2019 [42] |
Beef sausages | Ch. linum PS | 0.25% | ↑ | Hamzaoui et al., 2020 [34] |
Pork patties | Ulva lactuca and Ulva rigida ex. | 0.1% | ↓ | Lorenzo et al., 2014 [33] |
Pork patties | L. digitata ex. | 0.5% | NSD | Moroney et al., 2013 [32] |
Turkey sausages | AlgySalt® | 2% | NSD | Triki et al., 2017 [31] |
Meat Product | Algae Type | Inclusion Level | Moisture | Ash | Protein | Fat | Reference |
---|---|---|---|---|---|---|---|
Frankfurters | White Chlorella | 3% | ↓ | ↑ | ↑ | ↓ | Bošković Cabrol et al., 2023 [25] |
Honey Chlorella | 3% | NSD | ↑ | ↑ | ↓ | ||
Pork liver pâté | Spirulina | 2.5% | ↑ | Voloschenko et al., 2021 [24] | |||
Frankfurters | Wakame | 2% | NSD | ↑ | NSD | NSD | Choi et al., 2017 [18] |
Pork patties | Sea tangle | 1% | ↓ | ↑ | NSD | ↓ | Choi et al., 2012 [22] |
Frankfurters | Sea tangle | 1% | ↑ | ↑ | NSD | ↓ | Choi et al., 2015 [26] |
Wakame | 1% | ↑ | ↑ | NSD | ↓ | ||
Hijiki | 1% | ↑ | ↑ | NSD | ↓ | ||
Glasswort | 1% | ↑ | ↑ | NSD | ↓ | ||
Pork gel/emulsion system | Sea spaghetti | 2.5% | NSD | ↓ | NSD | NSD | Cofrades et al., 2008 [21] |
Wakame | 2.5% | ↑ | ↓ | NSD | NSD | ||
Nori | 2.5% | ↓ | ↓ | ↑ | NSD | ||
Poultry steaks | Sea spaghetti | 3% | NSD | ↓ | NSD | NSD | Cofrades et al., 2011 [45] |
Breakfast sausages | Sea tangle | 2% | NSD | ↑ | NSD | NSD | Han et al., 2010 [23] |
Meat emulsion system | Nori | 5.6% | ↓ | ↓ | ↑ | NSD | López-López et al., 2009 [50] |
Wakame | 5.6% | ↓ | NSD | NSD | NSD | ||
Sea spaghetti | 5.6% | ↓ | NSD | NSD | NSD | ||
Frankfurters | Sea spaghetti | 5.5% | ↓ | ↑ | NSD | NSD | López-López et al., 2009 [46] |
Beef patties | Wakame | 3% | ↓ | ↑ | NSD | ↓ | López-López et al., 2010 [28] |
Chorizo | Ulva spp. | 2.6% | NSD | NSD | NSD | NSD | Marcal et al., 2021 [47] |
Gracilaria spp. | |||||||
F. vesiculosus | |||||||
Pork sausages | Sea spaghetti | 2.5% | NSD | ↑ | NSD | NSD | Mohammed et al., 2022 [49] |
Irish wakame | 2.5% | NSD | ↑ | NSD | NSD | ||
Dulse | 2.5% | NSD | ↑ | NSD | NSD | ||
Nori | 2.5% | NSD | NSD | NSD | NSD | ||
Chicken sausage | K. alvarezii | 6% | ↓ | ↑ | NSD | NSD | Munsu et al., 2021 [44] |
S. polycystum | 6% | ↓ | ↑ | NSD | NSD | ||
C. lentilifira | 6% | ↓ | NSD | NSD | NSD | ||
Frankfurters | Sea spaghetti | 1% | NSD | ↓ | NSD | ↓ | Vilar et al., 2020 [48] |
Wakame | 1% | NSD | NSD | NSD | ↓ | ||
Nori | 1% | NSD | ↓ | NSD | ↓ | ||
Dulse | 1% | NSD | ↓ | NSD | ↓ | ||
Beef meatballs | E. cottonii | 5% | ↓ | ↑ | ↓ | ↓ | Widati et al., 2021 [19] |
Meat Product | Algae Type | Inclusion Level | Moisture | Ash | Protein | Fat | Reference |
---|---|---|---|---|---|---|---|
Fresh pork sausage | Spirulina protein ex. | 1% | NSD | NSD | NSD | NSD | Marti-Quijal et al., 2019 [38] |
Chlorella protein ex. | 1% | NSD | NSD | NSD | NSD | ||
Turkey burger | Spirulina protein ex. | 1% | NSD | NSD | ↓ | NSD | Marti-Quijal et al., 2019 [37] |
Chlorella protein ex. | 1% | NSD | NSD | ↓ | NSD | ||
Cooked turkey breast | Spirulina protein ex. | 1% | ↑ | ↓ | NSD | NSD | Marti-Quijal et al., 2018 [35] |
Chlorella protein ex. | 1% | ↑ | ↓ | NSD | NSD | ||
Chicken roti | Spirulina protein ex. | 1% | NSD | NSD | NSD | ↑ | Parniakov et al., 2018 [36] |
Chlorella protein ex. | 1% | NSD | NSD | NSD | NSD | ||
Chorizo sausages | Spirulina protein ex. | 3% | NSD | NSD | NSD | NSD | Thirumdas et al., 2018 [39] |
Chlorella protein ex. | 3% | NSD | NSD | NSD | NSD | ||
Beef patties | Spirulina protein ex. | 1% | NSD | ↓ | NSD | NSD | Zugcic et al., 2018 [40] |
Chlorella protein ex. | 1% | NSD | ↓ | NSD | NSD | ||
Pork liver pâté | A. nodosum ex. | 0.05% | NSD | ↑ | NSD | Agregan et al., 2018 [41] | |
F. vesiculosus ex. | 0.05% | NSD | NSD | NSD | |||
B. bifurcata ex. | 0.05% | NSD | ↑ | NSD | |||
Pork patties | F. vesiculosus ex. | 0.1% | NSD | NSD | NSD | NSD | Agregan et al., 2019 [42] |
Beef sausages | Ch. linum PS | 0.12% | ↑ | Hamzaoui et al., 2020 [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siladji, C.; Djordjevic, V.; Milijasevic, J.B.; Heinz, V.; Terjung, N.; Sun, W.; Tomasevic, I. Micro- and Macroalgae in Meat Products. Foods 2024, 13, 826. https://doi.org/10.3390/foods13060826
Siladji C, Djordjevic V, Milijasevic JB, Heinz V, Terjung N, Sun W, Tomasevic I. Micro- and Macroalgae in Meat Products. Foods. 2024; 13(6):826. https://doi.org/10.3390/foods13060826
Chicago/Turabian StyleSiladji, Caba, Vesna Djordjevic, Jelena Babic Milijasevic, Volker Heinz, Nino Terjung, Weizheng Sun, and Igor Tomasevic. 2024. "Micro- and Macroalgae in Meat Products" Foods 13, no. 6: 826. https://doi.org/10.3390/foods13060826
APA StyleSiladji, C., Djordjevic, V., Milijasevic, J. B., Heinz, V., Terjung, N., Sun, W., & Tomasevic, I. (2024). Micro- and Macroalgae in Meat Products. Foods, 13(6), 826. https://doi.org/10.3390/foods13060826