Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Anthocyanins from Purple Sweet Potato and Their pH-Sensitivity
2.3. Film Preparation
2.4. Structural Characterization of Films
2.4.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.4.2. X-ray Diffraction (XRD) Analysis
2.4.3. Scanning Electron Microscopy (SEM) Analysis
2.5. Physical Properties of Films
2.5.1. Physical Appearance and Color
2.5.2. pH-Sensitivity
2.5.3. Thickness
2.5.4. Mechanical Properties
2.5.5. Thermogravimetric Analysis
2.5.6. Water Contact Angle (WCA)
2.5.7. Moisture Content (MC)
2.5.8. Water Vapor Permeability (WVP)
2.6. Functional Properties of Films
2.6.1. Light Transmittance and Opacity
2.6.2. Antioxidant Properties
2.7. Application of Films
2.7.1. Discoloration of PSC-PPE Films during Pork Spoilage
2.7.2. Cherry Preservation
2.8. Biodegradability of Films
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Films
3.1.1. Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) Analysis
3.1.2. Scanning Electron Microscopy (SEM) Analysis
3.1.3. Color and Opacity
3.2. Performance Analysis of Films
3.2.1. Color Response to pH Changes
3.2.2. Thickness and Mechanical Properties
3.3. Thermogravimetric Analysis of Films to Assess Stability
3.4. Water Contact Angle, Moisture Content, and Water Vapor Permeability of Films
3.5. Barrier Properties of Films
3.6. Antioxidant Properties of Films
3.7. Application of PSC-PPE Films for Pork and Cherry Preservation
3.8. Biodegradability of PSC Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koshy, R.R.; Koshy, J.T.; Mary, S.K.; Sadanandhan, S.; Pothan, L.A. Preparation of pH sensitive film based on starch/carbon nano dots incorporating anthocyanin for monitoring spoilage of pork. Food Control 2021, 126, 108039. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Ying, Y.; Hu, L.; Hu, Y. pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study. Int. J. Biol. Macromol. 2021, 178, 104–112. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lu, L.; Lin, Y.; Li, R.; Yuan, Y.; Lu, X.; Zou, Y.; Zhou, W.; Wang, Z.; Li, J. Intelligent pH-sensing film based on polyvinyl alcohol/cellulose nanocrystal with purple cabbage anthocyanins for visually monitoring shrimp freshness. Int. J. Biol. Macromol. 2022, 218, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Huang, X.; Arslan, M.; Shi, J.; Li, Z.; Gong, Y.; Holmes, M.; Zou, X. Fabrication and characterization of polyvinyl alcohol/sodium alginate/zein/chitosan bilayer film for dynamic visualization of pork quality. Int. J. Biol. Macromol. 2023, 243, 125065. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Zhang, L. An active and pH-responsive film developed by sodium carboxymethyl cellulose/polyvinyl alcohol doped with rose anthocyanin extracts. Food Chem. 2022, 373, 131367. [Google Scholar] [CrossRef] [PubMed]
- Miranda, B.M.; Cruz, M.V.; De Campos, I.T.N.; Fernandes, K.F.; Silva, F.A. A halochromic film containing Plinia cauliflora peel anthocyanins loaded into a cashew gum polysaccharide-polyvinyl alcohol matrix. Waste Biomass Valorization 2022, 13, 2565–2574. [Google Scholar] [CrossRef]
- He, Y.; Li, B.; Du, J.; Cao, S.; Liu, M.; Li, X.; Ren, D.; Wu, X.; Xu, D. Development of pH-responsive absorbent pad based on polyvinyl alcohol/agarose/anthocyanins for meat packaging and freshness indication. Int. J. Biol. Macromol. 2022, 201, 203–215. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Shi, J.; Liu, L.; Zhang, X.; Zou, X.; Xiao, J.; Zhai, X.; Zhang, D.; Li, Y.; et al. A visual bi-layer indicator based on roselle anthocyanins with high hydrophobic property for monitoring griskin freshness. Food Chem. 2021, 355, 129573. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Pu, Y.; Chen, S.; Li, H.; Zhong, Y. Novel colorimetric films based on polyvinyl alcohol/sodium carboxymethyl cellulose doped with anthocyanins and betacyanins to monitor pork freshness. Food Chem. 2023, 404, 134426. [Google Scholar] [CrossRef]
- Yam, K.L.; Takhistov, P.T.; Miltz, J. Intelligent packaging: Concepts and applications. J. Food Sci. 2010, 70, R1–R10. [Google Scholar] [CrossRef]
- Subramanian, K.; Logaraj, H.; Ramesh, V.; Mani, M.; Balakrishnan, K.; Selvaraj, H.; Pugazhvendan, S.R.; Velmurugan, S.; Aruni, W. Intelligent pH indicative film from plant-based extract for active biodegradable smart food packing. J. Nanomater. 2022, 8, 4482114. [Google Scholar] [CrossRef]
- Akhila, K.; Sultana, A.; Ramakanth, D.; Gaikwad, K.K. Monitoring freshness of chicken using intelligent pH indicator packaging film composed of polyvinyl alcohol/guar gum integrated with Ipomoea coccinea extract. Food Biosci. 2023, 52, 102397. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Ezati, P.; Rhim, J.W. Recent advances in intelligent food packaging applications using natural food colorants. Food Sci. Technol. 2021, 1, 124–138. [Google Scholar] [CrossRef]
- Wang, X.; Yong, H.; Gao, L.; Li, L.; Jin, M.; Liu, J. Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocoll. 2018, 89, 56–66. [Google Scholar] [CrossRef]
- Zhao, M.; Nuerjiang, M.; Bai, X.; Feng, J.; Kong, B.; Sun, F.; Li, Y.; Xia, X. Monitoring dynamic changes in chicken freshness at 4 °C and 25 °C using pH-sensitive intelligent films based on sodium alginate and purple sweet potato peel extracts. Int. J. Biol. Macromol. 2022, 216, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, M.; Zhou, Y.; Li, Y.; Hu, Y. Functional characteristics improvement by structural modification of hydroxypropyl methylcellulose modified polyvinyl alcohol films incorporating roselle anthocyanins for shrimp freshness monitoring. Int. J. Biol. Macromol. 2020, 162, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Tang, P.; Li, G. Development of a pH-sensitive film based on collagen/chitosan/ZnO nanoparticles and mulberry extract for pork freshness monitoring. Food Chem. 2023, 402, 134428. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Lu, D.; Gao, W.; Zhao, Q.; Shi, X. Multifunctional intelligent film integrated with purple sweet potato anthocyanin and quercetin-loaded chitosan nanoparticles for monitoring and maintaining freshness of shrimp. Food Packag. Shelf Life 2023, 35, 101022. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X.; Zhu, Y.; Zeng, Y.; Fang, C.; Liu, Y.; Hu, S.; Ge, Y.; Jiang, W. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins. Food Chem. 2022, 393, 133342. [Google Scholar] [CrossRef]
- Qin, J.; Yang, M.; Wang, Y.; Wa, W.; Zheng, J. Interaction between caffeic acid/caffeic acid phenethyl ester and micellar casein. Food Chem. 2021, 349, 129154. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, M.; Qin, J.; Wa, W. Interactions between puerarin/daidzein and micellar casein. J. Food Biochem. 2021, 46, e14048. [Google Scholar] [CrossRef]
- Liu, D.; Cui, Z.; Shang, M.; Zhong, Y. A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag. Shelf Life 2021, 28, 100641. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; Xie, F.; Fan, Y.; Xu, X.; Qi, J.; Xiong, G.; Gao, X.; Zhang, F. pH-responsive double-layer indicator films based on konjac glucomannan/camellia oil and carrageenan/anthocyanin/curcumin for monitoring meat freshness. Food Hydrocoll. 2021, 118, 106695. [Google Scholar] [CrossRef]
- Yong, H.; Wang, X.; Bai, R.; Miao, Z.; Zhang, X.; Liu, J. Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocoll. 2019, 90, 216–224. [Google Scholar] [CrossRef]
- Valencia, G.A.; Luciano, C.G.; Lourenço, R.V.; Bittante, A.M.Q.B.; Do Amaral Sobral, P.J. Morphological and physical properties of nano-biocomposite films based on collagen loaded with laponite®. Food Packag. Shelf Life 2019, 19, 24–30. [Google Scholar] [CrossRef]
- Valencia, G.A.; Luciano, C.G.; Lourenço, R.V.; Do Amaral Sobral, P.J. Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite. Int. J. Biol. Macromol. 2018, 107, 1576–1583. [Google Scholar] [CrossRef]
- Guo, H.; Shao, C.; Ma, Y.; Zhang, Y.; Lu, P. Development of active and intelligent pH food packaging composite films incorporated with litchi shell extract as an indicator. Int. J. Biol. Macromol. 2023, 226, 77–89. [Google Scholar] [CrossRef]
- Shan, P.; Wang, K.; Yu, F.; Yi, L.; Sun, L.; Li, H. Gelatin/sodium alginate multilayer composite film crosslinked with green tea extract for active food packaging application. Colloid Surface A 2023, 662, 131013. [Google Scholar] [CrossRef]
- Zhao, S.; Jia, R.; Yang, J.; Dai, L.; Ji, N.; Xiong, L.; Sun, Q. Development of chitosan/tannic acid/corn starch multifunctional bilayer smart films as pH-responsive actuators and for fruit preservation. Int. J. Biol. Macromol. 2022, 205, 419–429. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Cao, J.; Jiang, W. Effect of purple sugarcane peel extracts on properties of films based on lemon peel waste pectin and the application in the visible detection of food freshness. Food Hydrocoll. 2022, 133, 107982. [Google Scholar] [CrossRef]
- Zong, Z.; Liu, M.; Chen, H.; Farag, M.A.; Wu, W.; Fang, X.; Niu, B.; Gao, H. Preparation and characterization of a novel intelligent starch/gelatin binary film containing purple sweet potato anthocyanins for Flammulina velutipes mushroom freshness monitoring. Food Chem. 2023, 405, 134839. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active Chitosan/PVA films with anthocyanins from Brassica oleraceae (red cabbage) as time-temperature indicators for application in intelligent food packaging. Food Hydrocoll. 2014, 43, 180–188. [Google Scholar] [CrossRef]
- Zhai, X.; Shi, J.; Zou, X.; Wang, S.; Jiang, C.; Zhang, J.; Huang, X.; Zhang, W.; Holmes, M. Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocoll. 2017, 69, 308–317. [Google Scholar] [CrossRef]
- Eze, F.N.; Jayeoye, T.J.; Singh, S. Fabrication of intelligent pH-sensing films with antioxidant potential for monitoring shrimp freshness via the fortification of chitosan matrix with broken Riceberry phenolic extract. Food Chem. 2022, 366, 130574. [Google Scholar] [CrossRef]
- Wang, F.; Xie, C.; Tang, H.; Hao, W.; Wu, J.; Sun, Y.; Liu, Y.; Jiang, L. Development, characterization and application of intelligent/active packaging of chitosan/chitin nanofibers films containing eggplant anthocyanins. Food Hydrocoll. 2023, 139, 108496. [Google Scholar] [CrossRef]
- Calderaro, A.; Barreca, D.; Bellocco, E.; Smeriglio, A.; Trombetta, D.; Laganà, G. Colored phytonutrients: Role and applications in the functional foods of anthocyanins. In Phytonutrients in Food; Woodhead Publishing: Sawston, UK, 2020; pp. 177–195. [Google Scholar] [CrossRef]
- Grajeda-Iglesias, C.; Figueroa-Espinoza, M.C.; Barouh, N.; Barea, B.; Fernandes, A.; de Freitas, V.; Salas, E. Isolation and characterization of anthocyanins from Hibiscus sabdariffa flowers. J. Nat. Prod. 2016, 79, 1709–1718. [Google Scholar] [CrossRef]
- Zhang, R.; Ye, S.; Guo, Y.; Wu, M.; Jiang, S.; He, J. Studies on the interaction between homological proteins and anthocyanins from purple sweet potato (PSP): Structural characterization, binding mechanism and stability. Food Chem. 2023, 400, 134050. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr. Polym. 2019, 222, 115030. [Google Scholar] [CrossRef]
- Jamroz, E.; Kulawik, P.; Guzik, P.; Duda, I. The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2 °C. Food Hydrocoll. 2019, 97, 105211. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, T.S.; Yan, H.; Hu, X.; Ren, T. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. Int. J. Biol. Macromol. 2019, 145, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Liu, Y.; Yong, H.; Liu, J.; Liu, J. Preparation and characterization of active and intelligent packaging films based on cassava starch and anthocyanins from Lycium ruthenicum Murr. Int. J. Biol. Macromol. 2019, 134, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, G.; Cao, L.; Wang, L. Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocoll. 2020, 108, 106012. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Alvarez, V.A. Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll. 2018, 77, 407–420. [Google Scholar] [CrossRef]
- Liang, T.; Sun, G.; Cao, L.; Li, J.; Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll. 2018, 87, 858–868. [Google Scholar] [CrossRef]
- Saleem Akhtar, H.M.; Zhao, Y.; Li, L.; Shi, Q. Novel active composite films based on carboxymethyl cellulose and sodium alginate incorporated with phycocyanin: Physico-chemical, microstructural and antioxidant properties. Food Hydrocoll. 2024, 147, 109440. [Google Scholar] [CrossRef]
- Yue, C.; Huang, Y.; Kong, B.; Wang, G. Effect of anthocyanin indicator addition on cellulose nanocrystals/gellan gum-based intelligent packaging films. Membranes 2022, 11, 242. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, F.; Xie, X.; Xie, C.; Li, A.; Xia, N.; Gong, X.; Zhang, H. Development and characterization of chitosan/guar gum active packaging containing walnut green husk extract and its application on fresh-cut apple preservation. Int. J. Biol. Macromol. 2022, 209, 1307–1318. [Google Scholar] [CrossRef]
- Gasti, T.; Dixit, S.; Hiremani, V.D.; Chougale, R.B.; Masti, S.P.; Vootle, S.K.; Mudigoudra, B.S. Chitosan/pullulan based films incorporated with clove essential oil loaded chitosan-ZnO hybrid nanoparticles for active food packaging. Carbohydr. Polym. 2021, 277, 118866. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh-Sani, M.; Tavassoli, M.; Mohammadian, E.; Ehsani, A.; Khaniki, G.J.; Priyadarshi, R.; Rhim, J.W. pH-responsive color indicator films based on methylcellulose/chitosan nanofiber and barberry anthocyanins for real-time monitoring of meat freshness. Int. J. Biol. Macromol. 2020, 166, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, J.; Wang, C.; Yang, G.; Janaswamy, S.; Xu, F.; Liu, Z. Preparation and characterization of lignin nanoparticles and chitin nanofibers reinforced PVA films with UV shielding properties. Ind. Crops Prod. 2022, 188, 115669. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, H.; Zhao, J.; Humayun, M.; Wu, S.; Wang, C.; Zhi, Z.; Pang, J. A novel strategy to formulate edible active-intelligent packaging films for achieving dynamic visualization of product freshness. Food Hydrocoll. 2022, 133, 107998. [Google Scholar] [CrossRef]
- Hao, Y.; Kang, J.; Guo, X.; Sun, M.; Li, H.; Bai, H.; Cui, H.; Shi, L. pH-responsive chitosan-based film containing oregano essential oil and black rice bran anthocyanin for preserving pork and monitoring freshness. Food Chem. 2023, 403, 134393. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Liu, L.; Zhou, Y.; Shao, P. Highly ammonia-responsive starch/PVA film with gas absorption system as the ‘bridge’ for visually spoilage monitoring of animal-derived food. Food Chem. 2024, 430, 137032. [Google Scholar] [CrossRef]
- Filipini, G.D.S.; Romani, V.P.R.; Martins, V.G. Biodegradable and active-intelligent films based on methylcellulose and jambolão (Syzygium cumini) skins extract for food packaging. Food Hydrocoll. 2020, 109, 106139. [Google Scholar] [CrossRef]
Films | PVA (g/100 mL) | SA (g/100 mL) | CMC-Na (g/100 mL) | PPE (mg/100 mL) |
---|---|---|---|---|
PSC-10:0 | 5.00 | - | - | - |
PSC-9:1 | 4.50 | 0.25 | 0.25 | - |
PSC-8:2 | 4.00 | 0.50 | 0.50 | - |
PSC-7:3 | 3.50 | 0.75 | 0.75 | - |
PSC-6:4 | 3.00 | 1.00 | 1.00 | - |
PSC-PPE-300 | 3.00 | 1.00 | 1.00 | 300 |
PSC-PPE-500 | 3.00 | 1.00 | 1.00 | 500 |
PSC-PPE-700 | 3.00 | 1.00 | 1.00 | 700 |
Films | PSC-10:0 | PSC-9:1 | PSC-8:2 | PSC-7:3 | PSC-6:4 | PSC-PPE-300 | PSC-PPE-500 | PSC-PPE-700 |
---|---|---|---|---|---|---|---|---|
L* | 87.74 ± 0.30 a | 87.42 ± 0.06 ab | 87.27 ± 0.22 abc | 87.04 ± 0.16 bc | 86.88 ± 0.33 Ac | 83.87 ± 0.18 B | 82.64 ± 0.10 C | 81.21 ± 0.07 D |
a* | −0.37 ± 0.04 a | −0.39 ± 0.06 a | −0.41 ± 0.05 ab | −0.48 ± 0.03 bc | −0.51 ± 0.04 Dc | 0.93 ± 0.02 C | 2.32 ± 0.25 B | 2.86 ± 0.03 A |
b* | −2.79 ± 0.05 d | −2.27 ± 0.09 c | −2.03 ± 0.02 b | −1.78 ± 0.07 a | −1.64 ± 0.15 Ba | −1.62 ± 0.10 C | −1.75 ± 0.09 BC | −1.34 ± 0.10 A |
ΔE | 0.40 ± 0.19 d | 0.94 ± 0.09 c | 1.23 ± 0.15 bc | 1.57 ± 0.15 ab | 1.78 ± 0.32 Da | 4.55 ± 0.19 C | 6.13 ± 0.08 B | 7.71 ± 0.07 A |
Thickness (μm) | 75.10 ± 7.12 a | 74.85 ± 4.76 a | 71.30 ± 3.82 ab | 69.10 ± 1.55 ab | 67.35 ± 1.17 Cb | 68.83 ± 0.79 C | 77.33 ± 0.63 B | 83.67 ± 0.34 A |
MC (%) | 18.43 ± 0.69 a | 17.24 ± 0.28 a | 15.28 ± 1.33 b | 14.88 ± 0.67 b | 11.64 ± 0.58 ABc | 10.23 ± 0.46 B | 11.23 ± 0.97 AB | 12.63 ± 1.06 A |
WVP (×10−11 g.cm/(cm2·s·Pa)) | 20.56 ± 2.56 a | 18.30 ± 0.39 a | 15.07 ± 1.81 b | 13.03 ± 0.88 b | 5.11 ± 0.22 Bc | 7.76 ± 1.74 A | 3.51 ± 0.21 B | 1.31 ± 0.12 C |
T245 nm | 78.23 ± 1.35 a | 71.05 ± 0.55 b | 62.67 ± 0.84 c | 61.99 ± 0.37 c | 54.48 ± 1.32 Ad | 4.37 ± 1.11 B | 1.10 ± 1.40 C | 0.21 ± 1.68 C |
T300 nm | 82.17 ± 1.70 a | 80.55 ± 0.62 a | 74.78 ± 0.55 b | 74.36 ± 1.21 b | 69.50 ± 1.30 Ac | 6.11 ± 0.23 B | 1.44 ± 0.29 C | 0.28 ± 0.92 C |
T360n m | 87.60 ± 1.16 a | 87.46 ± 0.58 a | 83.11 ± 0.47 b | 82.01 ± 0.80 bc | 81.28 ± 1.02 Ac | 13.49 ± 0.07 B | 4.09 ± 0.05 C | 1.41 ± 0.14 D |
Opacity | 1.23 ± 0.11 c | 1.46 ± 0.15 bc | 1.58 ± 0.02 ab | 1.73 ± 0.06 a | 1.79 ± 0.06 Aa | 1.55 ± 0.01 B | 1.62 ± 0.01 B | 1.90 ± 0.05 A |
Films | 1 Day | 5 Days | 8 Days | 11 Days | 14 Days | 17 Days |
---|---|---|---|---|---|---|
PSC-10:0 | 1.36 ± 0.20 f | 5.99 ± 0.31 f | 9.26 ± 0.38 e | 10.18 ± 0.66 g | 10.86 ± 0.27 h | 13.35 ± 0.48 g |
PSC-9:1 | 2.63 ± 0.15 de | 7.48 ± 0.33 f | 11.88 ± 0.49 e | 20.67 ± 1.34 f | 21.09 ± 1.47 g | 24.38 ± 1.78 f |
PSC-8:2 | 2.62 ± 0.23 de | 16.29 ± 1.85 e | 23.49 ± 1.34 d | 27.15 ± 1.56 e | 29.20 ± 0.94 f | 31.29 ± 1.07 e |
PSC-7:3 | 3.84 ± 0.39 cd | 22.44 ± 0.94 d | 30.24 ± 2.44 c | 38.82 ± 1.29 d | 42.70 ± 1.80 e | 45.31 ± 0.85 d |
PSC-6:4 | 6.30 ± 0.24 a | 26.68 ± 0.56 c | 37.60 ± 1.35 b | 50.26 ± 1.87 c | 52.3 ± 1.95 d | 52.47 ± 1.12 c |
PSC-PPE-300 | 4.87 ± 0.47 b | 38.60 ± 3.25 a | 45.06 ± 1.87 a | 60.81 ± 0.48 a | 63.66 ± 0.70 a | 64.29 ± 1.75 a |
PSC-PPE-500 | 3.09 ± 0.68 cd | 40.53 ± 1.17 a | 43.12 ± 2.11 a | 57.17 ± 1.34 b | 58.44 ± 1.20 b | 60.22 ± 1.05 b |
PSC-PPE-700 | 1.88 ± 0.47 ef | 34.49 ± 2.74 b | 38.33 ± 0.98 b | 51.52 ± 3.03 c | 55.36 ± 2.06 c | 58.18 ± 0.95 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, F.; Liu, D.; Qin, J.; Yang, M. Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation. Foods 2024, 13, 736. https://doi.org/10.3390/foods13050736
Ke F, Liu D, Qin J, Yang M. Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation. Foods. 2024; 13(5):736. https://doi.org/10.3390/foods13050736
Chicago/Turabian StyleKe, Fahui, Duanwu Liu, Juanjuan Qin, and Min Yang. 2024. "Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation" Foods 13, no. 5: 736. https://doi.org/10.3390/foods13050736
APA StyleKe, F., Liu, D., Qin, J., & Yang, M. (2024). Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation. Foods, 13(5), 736. https://doi.org/10.3390/foods13050736