Variation in Flavonoid Compounds, Volatiles and Yield Related Traits in Different Iranian Rosa damascena Mill. Cultivars Based on SPME Arrow and LC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Experimentand Sampling
2.3. Morphological Traits
2.4. Liquid Chromatography Mass Spectrometry
2.4.1. Sample Preparation
2.4.2. Instrumental Analysis
2.5. HS-SPME-GC-MS
2.5.1. Sample Preparation
2.5.2. HS-SPME-GC-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Rose Petals Based on SPME Arrow
3.2. Flavonoid Compounds of Rose Petals Based on LC/MS
3.3. Analysis of Variance and Multivariate Analyses
3.4. Correlation Analysis of Metabolites and Environmental Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirjalili, S.A. Assessment of concurrent of the sucrose and silver nitrate on cut flower of rose (Rosa hybrida cv.‘Red One’). J. Biodivers. Environ. Sci. 2015, 6, 122–126. [Google Scholar]
- Yaghoobi, M.; Farimani, M.M.; Sadeghi, Z.; Asghari, S.; Rezadoost, H. Chemical analysis of Iranian Rosa damascena essential oil, concrete, and absolute oil under different bio-climatic conditions. Ind. Crops Prod. 2022, 187, 115266. [Google Scholar] [CrossRef]
- Nedeltcheva-Antonova, D.; Stoicheva, P.; Antonov, L. Chemical profiling of Bulgarian rose absolute (Rosa damascena Mill.) using gas chromatography–mass spectrometry and trimethylsilyl derivatives. Ind. Crops Prod. 2017, 108, 36–43. [Google Scholar] [CrossRef]
- Nunes, H.; Miguel, M.G. Rosa damascena essential oils: A brief review about chemical composition and biological properties. Trends Phytochem. Res. 2017, 1, 111–128. [Google Scholar]
- Mahboubi, M. Rosa damascena as holy ancient herb with novel applications. J. Tradit. Complement. Med. 2016, 6, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Najem, W.; El Beyrouthy, M.; Wakim, L.H.; Neema, C.; Ouaini, N. Essential oil composition of Rosa damascena Mill. from different localities in Lebanon. Acta Bot. Gall. 2011, 158, 365–373. [Google Scholar] [CrossRef]
- Mokhtari, R.; Ajorpaz, N.M.; Golitaleb, M. The effects of Rosa damascene aromatherapy on anxiety and sleep quality in burn patients: A randomized clinical trial. Burns 2023, 49, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Saghafi, F.; Mirzaie, F.; Gorji, E.; Nabimeybodi, R.; Fattahi, M.; Mahmoodian, H.; Zareshahi, R. Antibacterial and anti-Trichomonas Vaginalis effects of Rosa Damascena mill petal oil (a persian medicine product), aqueous and hydroalcoholic extracts. BMC Complement. Med. Ther. 2021, 21, 265. [Google Scholar] [CrossRef] [PubMed]
- Dadkhah, A.; Fatemi, F.; Mohammadi Malayeri, M.R.; Karvin Ashtiani, M.H.; Mosavi, Z.; Naij, S.; Dini, S. The anti-inflammatory and antioxidant effects of Rosa damascena Mill. essential oil on the lung injury in the CLP model. J. Med. Plants 2020, 19, 277–294. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Fattahi, M. Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Sci. Hortic. 2021, 288, 110341. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, R.D.; Singh, S.; Chauhan, R.; Kumar, M.; Kumar, D.; Kumar, A.; Singh, S. Phenotyping floral traits and essential oil profiling revealed considerable variations in clonal selections of damask rose (Rosa damascena Mill.). Sci. Rep. 2023, 13, 8101. [Google Scholar] [CrossRef]
- Dobreva, A.; Nedeltcheva-Antonova, D.; Nenov, N.; Getchovska, K.; Antonov, L. Subcritical extracts from major species of oil-bearing roses—A comparative chemical profiling. Molecules 2021, 26, 4991. [Google Scholar] [CrossRef]
- Rusanov, K.; Kovacheva, N.; Rusanova, M.; Atanassov, I. Low variability of flower volatiles of Rosa damascena Mill. plants from rose plantations along the Rose Valley, Bulgaria. Ind. Crops Prod. 2012, 37, 6–10. [Google Scholar] [CrossRef]
- Omidi, M.; Khandan-Mirkohi, A.; Kafi, M.; Rasouli, O.; Shaghaghi, A.; Kiani, M.; Zamani, Z. Comparative study of phytochemical profiles and morphological properties of some Damask roses from Iran. Chem. Biol. Technol. Agric. 2022, 9, 51. [Google Scholar] [CrossRef]
- Farooq, A.; Younis, A.; Qasim, M.; RlAZ, A.T.I.F.; Abbas, S.M.; Tariq, U. Gas chromatography analysis of the absolute rose oil from Rosa damascena landraces and scented rose species from Pakistan. Int. J. Agric. Biol. 2012, 14, 333. [Google Scholar]
- Pachura, N.; Zimmer, A.; Grzywna, K.; Figiel, A.; Szumny, A.; Łyczko, J. Chemical investigation on Salvia officinalis L. Affected by multiple drying techniques–The comprehensive analytical approach (HS-SPME, GC–MS, LC-MS/MS, GC-O and NMR). Food Chem. 2022, 397, 133802. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Ind. Crops Prod. 2020, 155, 112818. [Google Scholar]
- Erbas, S.; Baydar, H. Variation in scent compounds of oil-bearing rose (Rosa damascena Mill.) produced by headspace solid phase microextraction, hydrodistillation and solvent extraction. Rec. Nat. Prod. 2016, 10, 555. [Google Scholar]
- Jirovetz, L.; Buchbauer, G.; Stoyanova, A.; Balinova, A.; Guangjiun, Z.; Xihan, M. Solid phase microextraction/gas chromatographic and olfactory analysis of the scent and fixative properties of the essential oil of Rosa damascena L. from China. Flavour Fragr. J. 2005, 20, 7–12. [Google Scholar] [CrossRef]
- Önder, S.; Tonguç, M.; Erbaş, S.; Önder, D.; Mutlucan, M. Investigation of phenological, primary and secondary metabolites changes during flower developmental of Rosa damascena. Plant Physiol. Biochem. 2022, 192, 20–34. [Google Scholar] [CrossRef]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic Composition, Antioxidant and Antibacterial Activities of Extract from Flowers of Rosa damascena from Morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Ghavam, M.; Afzali, A.; Manconi, M.; Bacchetta, G.; Manca, M.L. Variability in chemical composition and antimicrobial activity of essential oil of Rosa× damascena Herrm. from mountainous regions of Iran. Chem. Biol. Technol. Agric. 2021, 8, 22. [Google Scholar] [CrossRef]
- Jaimand, K.; Rezaee, M.B.; Asareh, M.H.; Tabaei Aghdaei, S.R.; Meshkizadeh, S. Extraction and determination of Kaempferol and Quercetin in petals of 10 genotypes of Rosa damascena Mill. from western Iran. Iran. J. Med. Aromat. Plants Res. 2010, 25, 547–555. [Google Scholar]
- Rechinger, K.H. Flora Iranica; Akademische Druke-U Verlagsanstalt: Wien, Austria, 1963; pp. 49–71. [Google Scholar]
- Rahimmalek, M.; Szumny, A.; Gharibi, S.; Pachura, N.; Miroliaei, M.; Łyczko, J. Chemical Investigations in Kelussia odoratissima Mozaff. Leaves Based on Comprehensive Analytical Methods: LC-MS, SPME, and GC-MS Analyses. Molecules 2023, 28, 6140. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Pietrzak, W.; Nowak, R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa Thunb. leaves and achenes using LC–ESI–MS/MS–MRM methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef] [PubMed]
- Varga, E.R.; Fülöp, I.B.; Farczadi, L.; Croitoru, M.D. Polyphenolic determination from medicinal plants used in veterinary medicine by an UHPLC-LC-MS/MS method. Farmacia 2020, 68, 1129–1135. [Google Scholar] [CrossRef]
- Baydar, N.G.; Baydar, H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind. Crops Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Kumar, N.; Bhandari, P.; Singh, B.; Bari, S.S. Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of Rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii. Food Chem. Toxicol. 2009, 47, 361–367. [Google Scholar] [CrossRef]
- Pastore, C.; Dal Santo, S.; Zenoni, S.; Movahed, N.; Allegro, G.; Valentini, G.; Filippetti, I.; Tornielli, G.B. Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries. Front. Plant Sci. 2017, 8, 929. [Google Scholar] [CrossRef]
- Jaakola, L.; Hohtola, A. Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ. 2010, 33, 1239–1247. [Google Scholar] [CrossRef]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Ghavam, M.; Afzali, A. Evaluation of the effect of treated wastewater and well water irrigation on the quality, quantity and antibacterial/antifungal activities of Rosa× damascena Herrm. essential oil. Agric. Water Manag. 2022, 269, 107644. [Google Scholar] [CrossRef]
- Efendi, D.; Budiarto, R.; Poerwanto, R.; Santosa, E.; Agusta, A. Relationship among agroclimatic variables, soil and leaves nutrient status with the yield and main composition of kaffir lime (Citrus hystrix DC) leaves essential oil. Metabolites 2021, 11, 260. [Google Scholar] [CrossRef] [PubMed]
Code | Genotype Name | Origin | Geographical Latitude | Longitude | Average Annual Rainfall (mm) | Average Temperature (°C) | Elevation (m) | Major Characteristics | ||
---|---|---|---|---|---|---|---|---|---|---|
Blooming Period (Days) | Mean Yield (kg/ha) | Maximum Yield (kg/ha) | ||||||||
A | D237 | Maymand, Fars | 28°52′6.797″ | 52°45′8.524″ | 450 | 25 | 1537 | 23 | 2557 | 3481 |
B | D234 | Bardsir, Kerman | 29°55′53.527″ | 56°34′32.334″ | 52 | 2.5 | 2043 | 25 | 2383 | 3848 |
C | A104 | Kashan, Isfahan | 33°58′52.991″ | 51°26′45.184″ | 116 | 28 | 944 | 23 | 2784 | 4379 |
D | A105 | Kashan, Isfahan | 33°58′52.991″ | 51°26′45.184″ | 116 | 28 | 944 | 23 | 2228 | 3416 |
E | C193 | Kashan, Isfahan | 33°58′52.991″ | 51°26′45.184″ | 116 | 28 | 944 | 25 | 2533 | 3812 |
F | C294 | Khatam, Yazd | 30°28′29.946″ | 54°12′39.078″ | 110 | 18.9 | 1545 | 25 | 2858 | 3758 |
G | B215 | Kashan, Isfahan | 33°58′52.991″ | 51°26′45.184″ | 116 | 28 | 944 | 25 | 2340 | 3140 |
H | B211 | Kashan, Isfahan | 33°58′52.991″ | 51°26′45.184″ | 116 | 28 | 944 | 25 | 2418 | 3361 |
I | D231 | Bardsir, Kerman | 29°55′53.527″ | 56°34′32.334″ | 52 | 2.5 | 2043 | 24 | 2256 | 2073 |
Compound | Precursor Ion Mass | Mode of Ionisation | Product on Mass | Q1 Pre Bias [V] | Collision Energy [V] | Q3 Pre Bias [V] |
---|---|---|---|---|---|---|
Genistein | 270.9 [M+H]+ | positive | 152.8 | −13 | −33 | −23 |
118.8 | −30 | −33 | −19 | |||
90.8 | −13 | −44 | −14 | |||
Apigenin | 270.9 [M+H]+ | positive | 152.9 | −30 | −32 | −24 |
118.9 | −14 | −34 | −18 | |||
90.8 | −14 | −42 | −14 | |||
trans-Chalcone | 208.5 [M+H]+ | positive | 157.9 | −13 | −10 | −25 |
94.7 | −14 | −21 | −30 | |||
143.9 | −11 | −10 | −25 | |||
Flavone | 222.9 [M−H]− | negative | 76.8 | −11 | −38 | −29 |
120.9 | −11 | −29 | −18 | |||
64.8 | −11 | −46 | −24 | |||
Kaempferol | 284.9 [M−H]− | negative | 132.9 | 13 | 33 | 24 |
150.9 | 13 | 25 | 28 | |||
174.9 | 13 | 25 | 11 | |||
Epicatechin | 288.9 [M−H]− | negative | 245.0 | 13 | 13 | 16 |
253.0 | 13 | 10 | 25 | |||
203.0 | 13 | 17 | 14 | |||
Phloridzin | 435.0 [M−H]− | negative | 273.0 | 11 | 16 | 18 |
227.0 | 11 | 22 | 15 | |||
389.0 | 11 | 10 | 26 | |||
Fisetin | 285.2 [M−H]− | negative | 133.0 | 14 | 32 | 24 |
150.9 | 14 | 23 | 29 | |||
174.9 | 14 | 24 | 17 | |||
Biochanin A | 282.9 [M−H]− | negative | 255.0 | 13 | 17 | 17 |
226.9 | 30 | 24 | 15 | |||
226.0 | 30 | 27 | 10 | |||
Naringenin | 270.9 [M−H]− | negative | 150.9 | 30 | 17 | 23 |
119.0 | 12 | 22 | 20 | |||
Luteolin | 284.9 [M−H]− | negative | 238.8 | 12 | 8 | 15 |
132.9 | 30 | 32 | 25 | |||
216.8 | 24 | 8 | 26 | |||
Diosmetin | 298.9 [M−H]− | negative | 283.9 | 14 | 20 | 28 |
252.8 | 14 | 10 | 17 | |||
227.0 | 25 | 34 | 18 | |||
Diosmin | 607.0 [M−H]− | negative | 299.2 | 30 | 30 | 20 |
283.7 | 30 | 49 | 18 |
Component | RT | Genotype | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CAs-Number | A104 | A105 | B211 | B215 | C193 | C294 | D231 | D234 | D237 | ||
Hex-5-en-2-one | 109-49-9 | 5.34 | 5.10 ab | 5.75 ab | 1.60 b | 3.68 n | 2.70 ab | 2.95 ab | 6.30 a | 3.05 ab | 5.75 ab |
Thiazoline | 504-79-0 | 5.49 | 2.30 ab | 2.80 ab | 1.55 b | 2.25 ab | 3.20 a | 3.15 a | 3.25 a | 2.70 ab | 3.20 a |
Benzaldehyde | 100-52-7 | 7.92 | 3.45 b | 8.25 b | 9.65 b | 1.65 b | 3.50 b | 10.60 b | 5.70 b | 33.95 a | 6.30 b |
Hexanol | 111-27-3 | 9.99 | 6.50 a | 7.0 a | 5.25 a | 4.20 a | 4.55 a | 6.75 a | 6.80 a | 4.80 a | 3.55 a |
Benzylalcohol | 100-51-6 | 10.22 | 93.75 a | 52.35 bc | 51.65 bcl | 32.0 c | 80.85 ab | 63.85 abc | 68.0 ab | 77.70 ab | 52.70 bc |
Phenylacetaldehyde | 122-78-1 | 10.58 | 4.10 de | 27.70 ab | 23.30 abcd | 1.95 e | 6.70 cde | 26.20 abc | 13.80 bcde | 35.60 a | 24.55 abc |
Linalool | 78-70-6 | 12.43 | 5.95 abc | 6.65 abc | 7.35 ab | 2.50 c | 5.35 abc | 4.50 abc | 4.50 abc | 9.10 a | 2.75 bc |
Nonanal | 124-19-6 | 12.59 | 3.70 ab | 4.20 a | 2.35 b | 2.85 abc | 3.55 ab | 4.25 a | 3.90 a | 3.95 a | 4.15 a |
Roseoxide | 16409-43-1 | 12.84 | 1.15 b | 1.90 ab | 1.55 ab | 0.65 b | 0.55 b | 1.65 ab | 1.10 b | 2.75 a | 0.95 b |
Phenethylalcohol | 60-12-8 | 13.02 | 1338.60 ab | 892.30 abcd | 739.85 cd | 538.30 d | 1156.65 abc | 1000.10 abcd | 821.75 bcd | 1422.95 a | 1106.95 abc |
Phenethylformate | 104-62-1 | 15.15 | 2.10 ab | 1.95 abc | 1.50 bc | 1.0 c | 1.65 bc | 1.85 abc | 1.55 bc | 2.75 a | 1.90 abc |
Citronellol | 106-22-9 | 16.90 | 76.30 abc | 125.15 a | 64.45 bc | 37.30 c | 90.55 abc | 90.75 abc | 78.20 abc | 115.50 ab | 113.30 ab |
Geraniol | 106-24-1 | 17.81 | 60.30 a | 29.50 b | 22.60 b | 20.15 b | 34.05 ab | 38.70 ab | 37.40 ab | 25.50 b | 26.20 b |
Phenethylacetate | 103-45-7 | 17.94 | 4.50 b | 4.30 b | 5.70 b | 1.75 c | 5.10 b | 5.0 b | 3.30 bc | 8.30 a | 4.35 b |
Isoeugenol | 97-54-1 | 22.3 | 1.65 abc | 2.30 ab | 1.25 bc | 0.45 c | 1.70 abc | 1.50 abc | 1.10 bc | 2.90 a | 2.70 ab |
Hexadecane | 544-76-3 | 25.64 | 0.70 ab | 1.10 ab | 0.55 b | 2.15 a | 1.20 ab | 1.30 ab | 0.70 ab | 1.60 ab | 1.35 ab |
Hexadec-(8Z)-enal | 56219-04-6 | 28.13 | 1.25 c | 1.25 c | 0.65 c | 0.95 c | 1.35 c | 1.45 b | 1.20 c | 3.15 a | 1.60 b |
Hexadecanol | 36653-82-4 | 28.28 | 1.90 cd | 2.50 bcd | 2.35 bcd | 1.85 d | 3.15 bcd | 3.55 bc | 3.30 bcd | 7.85 a | 3.85 b |
Component | A104 | A105 | B111 | B215 | C193 | C294 | D231 | D234 | D237 |
---|---|---|---|---|---|---|---|---|---|
mg/100 g dw | |||||||||
Genistein | 35.09 a ± 4.79 | 28.47 a ± 0.20 | 23.24 a ± 0.96 | 42.57 b ± 1.58 | 31.29 a ± 0.19 | 43.02 b ± 3.95 | 32.04 a ± 0.46 | 30.66 a ± 0.95 | 23.44 a ± 0.65 |
Apigenin | 19.39 a ± 6.04 | 23.76 a ± 0.03 | 20.50 a ± 0.34 | 36.08 b ± 1.39 | 27.78 a ± 1.34 | 34.12 b ± 2.04 | 25.48 a ± 1.92 | 26.20 a ± 1.21 | 20.98 a ± 1.11 |
trans-Chalcone | nd | 31.45 c ± 6.14 | 43.44 c ± 0.35 | 83.15 a ± 2.28 | 96.27 a ± 0.54 | 95.05 a ± 6.24 | 106.29 b ± 1.65 | 98.17 a ± 2.89 | 93.23 a ± 1.91 |
Flavone | 9.44 a ± 0.01 | 9.28 a ± 0.49 | 9.32 a ± 0.61 | 8.28 ab ± 0.60 | 8.37 ab ± 0.46 | 7.19 b ± 0.06 | 7.22 b ± 0.55 | 8.79 ab ± 0.27 | 6.20 c ± 0.25 |
Kaempferol | 18.38 cd ± 2.71 | 14.52 d ± 1.01 | 8.56 e ± 1.95 | 27.60 c ± 1.39 | 17.08 cd ± 1.69 | 67.81 a ± 1.22 | 18.63 cd ± 3.30 | 44.45 b ± 1.16 | 24.66 c ± 1.27 |
Epicatechin | nd | 23.67 b ± 4.83 | 15.28 cd ± 0.71 | 17.98 c ± 0.25 | 11.37 e ± 0.94 | 18.71 c ± 1.82 | 13.96 d ± 2.32 | 10.26 e ± 0.27 | 42.46 a ± 1.18 |
Phloridzin | 72.59 h ± 4.66 | 248.50 c ± 9.32 | 375.92 a ± 8.66 | 133.86 e ± 3.52 | 111.69 f ± 1.69 | 206.03 d ± 3.52 | 99.23 g ± 4.88 | 292.07 b ± 6.11 | 143.56 e ± 2.56 |
Fisetin | 9.29 c ± 3.01 | 4.32 e ± 0.12 | 3.88 e ± 0.69 | 6.07 d ± 0.48 | 5.35 de ± 0.26 | 23.72 a ± 1.27 | 6.27 d ± 0.41 | 14.29 b ± 1.30 | 9.16 c ± 1.16 |
Biochanin A | 39.79 de ± 3.70 | 44.38 d ± 1.66 | 116.10 c ± 2.17 | nd | 34.16 de ± 2.27 | 1066.89 a ± 4.20 | 45.32 d ± 2.44 | 965.55 b ± 6.29 | 91.37 c ± 1.73 |
Naringenin | 7.25 d ± 0.69 | 4.30 e ± 0.80 | 3.77 e ± 1.20 | 10.97 c ± 0.92 | 8.46 cd ± 0.98 | 54.70 a ± 2.26 | 10.46 c ± 1.33 | 24.85 b ± 1.71 | 10.43 c ± 0.57 |
Luteolin | 9.94 c ± 2.47 | 5.28 e ± 0.72 | 4.37 e ± 0.10 | 9.89 c ± 0.21 | 7.62 d ± 0.61 | 28.87 a ± 1.28 | 7.22 d ± 0.16 | 17.01 b ± 0.19 | 7.92 d ± 0.38 |
Diosmetin | 82.48 e ± 3.44 | 123.77 c ± 4.74 | 106.02 d ± 3.73 | 144.20 ab ± 5.18 | 109.33 d ± 2.85 | 153.16 a ± 3.23 | 111.27 d ± 2.12 | 143.94 ab ± 3.38 | 88.61 e ± 1.05 |
Diosmin | 43.38 d ± 0.41 | 68.69 b ± 8.69 | 60.62 bc ± 7.98 | 84.57 a ± 3.76 | 59.52 bc ± 3.59 | 41.55 d ± 3.34 | 53.06 c ± 2.56 | 69.30 b ± 2.98 | 53.69 c ± 0.85 |
SUM | 346.95 f ± 30.55 | 630.40 d ± 13.66 | 791.03 c ± 17.40 | 605.23 d ± 6.69 | 528.30 e ± 7.28 | 1840.82 a ± 17.08 | 536.46 e ± 8.90 | 1745.54 b ± 2.82 | 615.72 d ± 2.12 |
Sources of Changes | Degrees of Freedom | Average of Squares | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bud Fresh Weight | Bud Length | Bud Diameter | Flower Diameter | Petal Length | Petal Width | Flower Fresh Weight | Dry Weight of Flower | Dry Weight of Open Bud | Dry Weight of Semi-Open Bud | |||||
Block | 2 | 0/006 ns | 0/060 * | 0/082 ns | 0/293 ns | 0/011 ns | 0/044 ns | 0/241 * | 0/001 ns | 0/0017 ns | 0/0009 ns | |||
Cultivar | 8 | 0/032 ns | 0/143 ** | 0/401 ** | 1/43 ** | 0/106 ns | 0/337 ** | 0/090 ns | 0/0009 ns | 0/0021 ns | 0/0049 ** | |||
Test error | 26 | 0/034 | 0/016 | 0/027 | 0/151 | 0/045 | 0/044 | 0/057 | 0/0009 | 0/0012 | 0/0007 | |||
Coefficient of variation (percentage) | - | 16/90 | 8/25 | 11/40 | 7/26 | 7/91 | 10/01 | 16/04 | 9/44 | 12/89 | 10/84 | |||
Sources of Variation | Degrees of Freedom | Average of Squares | ||||||||||||
Dry Petal Weight (g) | The Number of Petals (g) | Receptacle Length (cm) | Receptacle Diameter (cm) | The Percentage of Greenness | Maximum Photochemical Quantum Yield of Photosystem II (fv/fm) | |||||||||
Block | 2 | 0/0010 * | 67/70 ns | 0/022 ** | 0/014 ** | 24/65 ns | 0/004 ns | |||||||
Genotype | 8 | 0/0004 ns | 94/53 * | 0/009 ** | 0/0027 * | 124/80 ns | 0/009 * | |||||||
Test error | 26 | 0/0002 | 25/28 | 0/0016 | 0/0010 | 49/99 | 0/0031 | |||||||
Coefficient of variation (percentage) | - | 6/51 | 9/42 | 4/33 | 6/09 | 19/36 | 7/60 |
Sources of Changes | DF | Mean Squares | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |||||||
Replicates | 2 | 0.006 ns | 0.060 * | 0.082 ns | 0.293 ns | 0.011 ns | 0.044 ns | 0.241 * | 0.001 ns | 0.0017 ns | 0.0009 ns | |||||
Genotype | 8 | 0.032 ns | 0.143 ** | 0.401 ** | 1.43 ** | 0.106 ns | 0.337 ** | 0.090 ns | 0.0009 ns | 0.0021 ** | 0.0049 ** | |||||
Total error | 26 | 0.034 | 0.016 | 0.027 | 0.151 | 0.045 | 0.044 | 0.057 | 0.0009 | 0.0012 | 0.0007 | |||||
Sources of Changes | DF | Mean Squares | ||||||||||||||
F11 | F12 | F13 | F14 | F15 | F16 | |||||||||||
Replicates | 2 | 0.0010 * | 67.70 ns | 0.022 ** | 0.014 ** | 24.65 ns | 0.004 nd | |||||||||
Genotype | 8 | 0.0004 ns | 94.53 * | 0.009 ** | 0.0027 * | 124.80 ns | 0.009 * | |||||||||
Total error | 26 | 0.0002 | 25.28 | 0.0016 | 0.0010 | 49.99 | 0.0031 |
Genotype | Bud Length (cm) | Bud Diameter (cm) | Flower Diameter (cm) | Petal Width (cm) | Dry Weight of Semi-Open Bud (g) | The Number of Petals | Receptacle Length (cm) | Receptacle Diameter (cm) | Maximum Photochemical Quantum Yield of Photosystem II (fv/fm) |
---|---|---|---|---|---|---|---|---|---|
A104 | 1.71 abc | 2.11 a | 5.59 a | 2.40 a | 0.32 a | 46.66 b | 0.95 a | 0.47 b | 0.75 a |
A105 | 1.79 ab | 1.33 cd | 5.60 a | 2.43 a | 0.18 c | 50 ab | 0.94 a | 0.50 ab | 0.75 a |
B211 | 1.20 f | 2.01 ab | 5.71 a | 2.23 ab | 0.27 ab | 49.66 ab | 0.91 a | 0.49 ab | 0.60 b |
B215 | 1.83 a | 1.26 cd | 5.70 a | 2.33 ab | 0.219 bc | 46.33 b | 0.91 a | 0.53 ab | 0.75 a |
C193 | 1.63 abcd | 1.63 bc | 5.81 a | 2.36 a | 0.23 bc | 53 ab | 0.80 b | 0.57 a | 0.67 ab |
C294 | 1.33 ef | 1.25 cd | 5.23 a | 1.60 c | 0.27 ab | 57.33 ab | 0.98 a | 0.52 ab | 0.77 a |
D231 | 1.46 cdef | 1.26 cd | 3.56 b | 1.60 c | 0.27 ab | 60.66 a | 0.96 a | 0.52 ab | 0.77 a |
D234 | 1.50 bcde | 1.21 d | 5.48 a | 1.85 bc | 0.24 bc | 55.66 ab | 0.98 a | 0.52 ab | 0.75 a |
D237 | 1.36 ef | 1.10 d | 5.45 a | 2.16 ab | 0.27 ab | 61 a | 0.96 a | 0.56 a | 0.76 a |
Compounds | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Benzylalcohol | 1 | ||||||||||||||
2 | Roseoxide | 0.28 | 1 | |||||||||||||
3 | Citronellol | 0.34 | −0.02 | 1 | ||||||||||||
4 | Geraniol | 0.51 ** | −0.32 | −0.02 | 1 | |||||||||||
5 | Citronellol/Geraniol | −0.47 * | 0.76 ** | −0.63 ** | −0.28 | 1 | ||||||||||
6 | Chalcone | 0.18 | −0.007 | 0.63 ** | −0.05 | −0.38 | 1 | |||||||||
7 | Phloridzin | 0.22 | 0.04 | 0.09 | 0.42 * | 0.08 | 0.21 | 1 | ||||||||
8 | Biochanina A | 0.19 | −0.18 | 0.25 | 0.40 * | −0.19 | −0.008 | 0.84 ** | 1 | |||||||
9 | Diosmetin | 0.36 | 0.46 * | 0.27 | −0.34 | 0.21 | 0.40 * | 0.36 | 0.21 | 1 | ||||||
10 | Diosmin | 0.33 | −0.08 | 0.28 | 0.04 | −0.24 | 0.60 ** | 0.44 * | 0.24 | 0.69 ** | 1 | |||||
11 | Elevation | −0.50 ** | 0.04 | 0.49 * | −0.74 ** | −0.21 | 0.29 | −0.24 | −0.015 | 0.25 | 0.03 | 1 | ||||
12 | Average annual rainfall | 0.46 * | −0.37 | −0.43 * | 0.47 * | −0.11 | −0.43 * | −0.27 | −0.24 | −0.29 | −0.12 | −0.71 ** | 1 | |||
13 | average temperature | 0.49 * | −0.006 | −0.42 * | 0.44 * | 0.27 | −0.11 | 0.40 * | 0.08 | −0.19 | 0.07 | −0.78 ** | −0.32 | 1 | ||
14 | Blooming Period | 0.16 | 0.31 | 0.61 ** | 0.11 | −0.19 | 0.17 | 0.06 | 0.16 | −0.03 | 0.015 | 0.22 | −0.48 * | −0.11 | 1 | |
15 | Mean Yield | −0.44 * | 0.50 ** | 0.12 | −0.34 | 0.42 * | 0.34 | 0.48 * | 0.26 | 0.31 | 0.15 | 0.39 | −0.89 ** | 0.04 | 0.30 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behnamnia, S.; Rahimmalek, M.; Haghighi, M.; Nikbakht, A.; Gharibi, S.; Pachura, N.; Szumny, A.; Łyczko, J. Variation in Flavonoid Compounds, Volatiles and Yield Related Traits in Different Iranian Rosa damascena Mill. Cultivars Based on SPME Arrow and LC-MS/MS. Foods 2024, 13, 668. https://doi.org/10.3390/foods13050668
Behnamnia S, Rahimmalek M, Haghighi M, Nikbakht A, Gharibi S, Pachura N, Szumny A, Łyczko J. Variation in Flavonoid Compounds, Volatiles and Yield Related Traits in Different Iranian Rosa damascena Mill. Cultivars Based on SPME Arrow and LC-MS/MS. Foods. 2024; 13(5):668. https://doi.org/10.3390/foods13050668
Chicago/Turabian StyleBehnamnia, Safoora, Mehdi Rahimmalek, Maryam Haghighi, Ali Nikbakht, Shima Gharibi, Natalia Pachura, Antoni Szumny, and Jacek Łyczko. 2024. "Variation in Flavonoid Compounds, Volatiles and Yield Related Traits in Different Iranian Rosa damascena Mill. Cultivars Based on SPME Arrow and LC-MS/MS" Foods 13, no. 5: 668. https://doi.org/10.3390/foods13050668
APA StyleBehnamnia, S., Rahimmalek, M., Haghighi, M., Nikbakht, A., Gharibi, S., Pachura, N., Szumny, A., & Łyczko, J. (2024). Variation in Flavonoid Compounds, Volatiles and Yield Related Traits in Different Iranian Rosa damascena Mill. Cultivars Based on SPME Arrow and LC-MS/MS. Foods, 13(5), 668. https://doi.org/10.3390/foods13050668