Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation
2.2. Health Risk Assessment
3. Results and Discussions
3.1. Analysis of Li Concentration in Food and Beverages
3.2. Lithium in Beverages
3.3. Estimated Daily Intake (EDI) of Li via Food and Beverage Ingestion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, T.L.S.; Wong, J.K.J.; Ho, E.N.M.; Kwok, W.H.; Leung, G.N.W.; Curl, P.; Wan, T.S.M. Doping control analysis of lithium in horse urine and plasma by inductively coupled plasma mass spectrometry. Drug Test Anal. 2017, 9, 1407–1411. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Greim, P.; Solomon, A.A.; Breyer, C. Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation. Nat. Commun. 2020, 11, 4570. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, R. An efficient lithium-ion imprinted adsorbent using multiwall carbon nanotubes as support to recover lithium from water. J. Clean. Prod. 2018, 205, 201–209. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Sathuluri, R.R.; Ohto, K.; Iwasaki, W.; Kawakita, H.; Morisada, S.; Miyazaki, M.; Jumina. A rapid and efficient lithium-ion recovery from seawater with tripropylmonoacetic acid calix [4] arene derivative employing droplet-based microreactor system. Separ. Purif. Technol. 2019, 211, 925–934. [Google Scholar] [CrossRef]
- Ryu, T.; Shin, J.; Ghoreishian, S.M.; Chung, K.S.; Huh, Y.S. Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite. Hydrometallurgy 2019, 184, 22–28. [Google Scholar] [CrossRef]
- Arienzo, I.; Liotta, M.; Brusca, L.; D'Antonio, M.; Lupone, F.; Cucciniello, C. Analytical Method for Lithium Isotopes Determination by Thermal Ionization Mass Spectrometry: A Useful Tool for Hydrogeochemical Applications. Water 2020, 12, 2182. [Google Scholar] [CrossRef]
- Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment. A literature reviews. Ecotoxicol. Environ. Saf. 2008, 70, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, L.; Keohane, J.; Cleary, J.; Cabellos, G.G.; Lloyd, A. Lithium in the Natural Waters of the south east of Ireland. Int. J. Environ. Res. Public Health. 2017, 14, 561. [Google Scholar] [CrossRef]
- Millot, R.; Vigier, N.; Gaillardet, J. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochem. Cosmochim. Acta. 2010, 74, 3897–3912. [Google Scholar] [CrossRef]
- Nechita, C.; Iordache, A.M.; Lemr, K.; Levanič, T.; Pluhacek, T. Evidence of declining trees resilience under long term heavy metal stress combined with climate change heating. J. Clean. Prod. 2021, 317, 128428. [Google Scholar] [CrossRef]
- USEPA 2021a. Revisions to the Unregulated Contaminant Monitoring Rule (UCMR 5) for Public Water Systems and Announcement of Public Meetings. Available online: https://www.govinfo.gov/content/pkg/FR-2021-12-27/pdf/2021-27858.pdf (accessed on 18 December 2023).
- USEPA 2021b. Drinking Water Contaminant Candidate List 5—Draft. Available online: https://www.federalregister.gov/documents/2021/07/19/2021-15121/drinking-water-contaminant-candidate-list-5-draft (accessed on 18 December 2023).
- Sharma, N.; Westerhoff, P.; Zeng, C. Lithium occurrence in drinking water sources of the United States. Chemosphere 2022, 305, 135458. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M. Geochemistry of European Bottled Water; Gebr. Borntraeger Verlagsbuchhandlung: Stuttgart, Germany, 2010. [Google Scholar]
- Blüml, V.; Regier, M.D.; Hlavin, G.; Rockett, I.R.H.; Konig, F.; Vyssoki, B.; Bschor, T.; Kapusta, N.D. Lithium in the public water supply and suicide mortality in Texas. J. Psychiatr. Res. 2013, 47, 407–411. [Google Scholar] [CrossRef]
- González-Weller, D.; Rubio, C.; Gutiérrez, J.; González, G.L.; Mesa, J.M.C.; Gironés, C.R.; Ojeda, A.B.; Hardisson, A. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem. Toxicol. 2013, 62, 856–868. [Google Scholar] [CrossRef]
- Liaugaudaite, V.; Mickuviene, N.; Raskauskiene, N.; Naginiene, R.; Sher, L. Lithium levels in the public drinking water supply and risk of suicide: A pilot study. J. Trace Elem. Med. Biol. 2017, 43, 197–201. [Google Scholar] [CrossRef]
- Helbich, M.; Leitner, M.; Kapusta, N.D. Lithium in drinking water and suicide mortality: Interplay with lithium prescriptions. Br. J. Psychiatry 2015, 207, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Kessing, L.V.; Gerds, T.A.; Knudsen, N.N.; Jørgensen, L.F.; Kristiansen, S.M.; Voutchkova, D.; Ernstsen, V.; Schullehner, J.; Hansen, B.; Andersen, P.K.; et al. Association of lithium in drinking water with the incidence of dementia. JAMA Psychiatry 2017, 74, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, N.N.; Schullehner, J.; Hansen, B.; Jørgensen, L.F.; Kristiansen, S.M.; Voutchkova, D.D.; Gerds, T.A.; Andersen, P.K.; Bihrmann, K.; Grønbæk, M.; et al. Lithium in drinking water and incidence of suicide: A nationwide individual-level cohort study with 22 years of follow-up. Int. J. Environ. Res. Public Health. 2017, 14, 627. [Google Scholar] [CrossRef] [PubMed]
- Kabacs, N.; Memon, A.; Obinwa, T.; Stochl, J.; Perez, J. Lithium in drinking water and suicide rates across the East of England. Br. J. Psychiatry. 2011, 198, 406–407. [Google Scholar] [CrossRef] [PubMed]
- Giotakos, O.; Nisianakis, P.; Tsouvelas, G.; Giakalou, V. Lithium in the public water supply and suicide mortality in Greece. Biol. Trace Elem. Res. Biolog. 2013, 156, 376–379. [Google Scholar] [CrossRef]
- Frengstad, B.S.; Lax, K.; Tarvainen, T.; Jæger, Ø.; Wigum, B.J. The chemistry of bottled mineral and spring waters from Norway, Sweden, Finland and Iceland. J. Geochem. Explor. 2010, 107, 350–361. [Google Scholar] [CrossRef]
- Harari, F.; Ronco, A.M.; Concha, G.; Llanos, M.; Grandér, M.; Castro, F.; Palm, B.; Nermell, B.; Vahter, M. Early-life exposure to lithium and boron from drinking water. Reprod. Toxicol. 2012, 34, 552–560. [Google Scholar] [CrossRef]
- Zaldivar, R. High lithium concentrations in drinking water and plasma of exposed subjects. Arch. Toxicol. 1980, 46, 319–320. [Google Scholar] [CrossRef]
- Ishii, N.; Terao, T.; Araki, Y.; Kohno, K.; Mizokami, Y.; Shiotsuki, I.; Hatano, K. Low risk of male suicide and lithium in drinking water. J. Clin. Psychiatry 2015, 76, 319–326. [Google Scholar] [CrossRef]
- Shimodera, S.; Koike, S.; Ando, S.; Yamasaki, S.; Fujito, R.; Endo, K.; Iijima, Y.; Yamamoto, Y.; Morita, M.; Sawada, K.; et al. Lithium levels in tap water and psychotic experiences in a general population of adolescents. Schizophr. Res. 2018, 201, 294–298. [Google Scholar] [CrossRef]
- Ewuzie, U.; Nnorom, I.C.; Eze, S.O. Lithium in drinking water sources in rural and urban communities in Southeastern Nigeria. Chemosphere 2020, 245, 125593. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, L.; Keohane, J.; Cabellos, G.G.; Lloyd, A.; Cleary, J. Induced Plant Accumulation of Lithium. Geosciences 2018, 8, 56. [Google Scholar] [CrossRef]
- Naeem, A.; Aslam, M.; Mühlin, K.H. Lithium: Perspectives of nutritional beneficence, dietary intake, biogeochemistry, and biofortification of vegetables and mushrooms. Sci. Total Environ. 2021, 798, 149249. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Ammari, T.G.; Al-Zu'bi, Y.; Abu-Baker, S.; Dababneh, B.; Gnemat, W.; Tahboub, A. The occurrence of lithium in the environment of the Jordan Valley and its transfer into the food chain. Environ. Geochem. Health 2011, 33, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Jathar, V.S.; Pendharkar, P.R.; Pandey, V.K.; Raut, S.J.; Doongaji, D.R.; Bharucha, M.P.; Satoskar, R.S. Manic depressive psychosis in India and the possible role of lithium as a natural prophylactic. II—Lithium content of diet and some biological fluids in Indian subjects. J. Postgrad. Med. 1980, 26, 39–44. [Google Scholar] [PubMed]
- Erdemir, U.S.; Gucer, S. Correlation of lithium bioaccessibility from tea (Camellia sinensis L.) with tea type and consumption habits. Food Chem. 2018, 244, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Vetter, J. Lithium content of some common edible wild-growing mushrooms. Food Chem. 2005, 90, 31–37. [Google Scholar] [CrossRef]
- Falandysz, J.; Fernandes, A.R.; Meloni, D. An overview of the lithium content and lithiation of the cultivable macrofungal species, Agaricus bisporus and Pleurotus spp. Trends Food Sci. Technol. 2022, 119, 338–347. [Google Scholar] [CrossRef]
- Huthwaite, M.A.; Stanley, J. Lithium in drinking water. Br. J. Psychiatry 2010, 196, 159. [Google Scholar] [CrossRef] [PubMed]
- Zarse, K.; Terao, T.; Tian, J.; Iwata, N.; Ishii, N.; Ristow, M. Low-dose lithium uptake promotes longevity in humans and metazoans. Eur. J. Nutr. 2011, 50, 387–389. [Google Scholar] [CrossRef]
- Ohgami, H.; Terao, T.; Shiotsuki, I.; Ishii, N.; Iwata, N. Lithium levels in drinking water and risk of suicide. Br. J. Psychiatry 2009, 194, 464–465. [Google Scholar] [CrossRef]
- Liaugaudaite, V.; Raskauskiene, N.; Naginiene, R.; Mickuviene, N.; Sher, L. Association between lithium levels in drinking water and suicide rates: Role of affective disorders. J. Affect. Disord. 2022, 298, 516–521. [Google Scholar] [CrossRef]
- Bauer, M.; Adli, M.; Ricken, R.; Severus, E.; Pilhatsch, M. Role of lithium augmentation in the management of major depressive disorder. CNS Drugs 2014, 28, 331–342. [Google Scholar] [CrossRef]
- Miura, T.; Noma, H.; Furukawa, T.; Mitsuyasu, H.; Tanaka, S.; Stockton, S.; Salanti, G.; Motomura, K.; Shimano-Katsuki, S.; Leucht, S.; et al. Comparative efficacy and tolerability of pharmacological treatments in the maintenance treatment of bipolar disorder: A systematic review and network meta-analysis. Lancet Psychiatry 2014, 1, 351–359. [Google Scholar] [CrossRef]
- Smith, K.; Cipriani, A. Lithium and suicide in mood disorders: Updated metareview of the scientific literature. Bipolar Disord. 2017, 19, 575–586. [Google Scholar] [CrossRef]
- Dudev, T.; Mazmanian, K.; Weng, W.H.; Grauffel, C.; Lim, C. Free and bound therapeutic lithium in brain signaling. Acc. Chem. Res. 2019, 52, 2960–2970. [Google Scholar] [CrossRef]
- Angst, J.; Angst, F.; Gerber-Werder, R.; Gamma, A. Suicide in 406 mood-disorder patients with and without long-term medication: A 40 to 44 years' follow-up. Arch. Suicide Res. 2005, 9, 279–300. [Google Scholar] [CrossRef]
- Fazio, F.; Aragona, F.; Piccione, G.; Arfuso, F.; Giannetto, C. Lithium Concentration in Biological Samples and Gender Difference in Athletic Horses. J. Equine Vet. Sci. 2022, 117, 104081. [Google Scholar] [CrossRef] [PubMed]
- Ferensztajn-Rochowiak, E.; Chłopocka-Woźniak, M.; Rybakowski, J.K. Ultra-Long-Term Lithium Therapy: All-Important Matters and a Case of Successful 50-Year Lithium Treatment. Rev. Bras. Psiquiatr. Sao Paulo Braz. 2020, 43, 407–413. [Google Scholar] [CrossRef] [PubMed]
- McKnight, R.F.; Adida, M.; Budge, K.; Stockton, S.; Goodwin, G.M.; Geddes, J.R. Lithium toxicity profile: A systematic review and meta-analysis. Lancet 2012, 379, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Vannozzi, R. Lithium-induced electrocardiographic changes: A complete review. Clin. Cardiol. 2017, 40, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Kakhki, S.; Ahmadi-Soleimani, S.M. Experimental data on lithium salts: From neuroprotection to multi-organ complications. Life Sci. 2022, 306, 120811. [Google Scholar] [CrossRef] [PubMed]
- Hadrup, N.; Sørli, J.B.; Sharma, A.K. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology 2022, 467, 153098. [Google Scholar] [CrossRef] [PubMed]
- Krull, F.; Akkouh, I.; Hughes, T.; Bettella, F.; Athanasiu, L.; Smeland, O.B.; O'Connell, K.S.; Brattbakk, H.R.; Steen, V.M.; Steen, N.E.; et al. Dose-dependent transcriptional effects of lithium and adverse effect burden in a psychiatric co-hort. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 112, 11040. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, B.; Mughal, M.N.; Tanveer, M.; Gupta, D.; Abbas, G. Is lithium biologically an important or toxic element to living organisms? An overview. Environ. Sci. Pollut. Res. 2017, 24, 103–115. [Google Scholar] [CrossRef]
- Voica, C.; Roba, C.; Iordache, A.M. Lithium Levels in Food from the Romanian Market by Inductively Coupled Plasma—Mass Spectrometry (ICP-MS): A Pilot Study. Anal. Lett. 2021, 54, 242–254. [Google Scholar] [CrossRef]
- EPA 2007. Non-Carcinogen Tolerable Daily Intake (TDI) Values from US EPA. US EPA Region III. Available online: http://www.popstoolkit.com/tools/HHRA/TDI_USEPA.aspx (accessed on 11 August 2022).
- Filippini, T.; Tancredi, S.; Malagoli, C.; Malavolti, M.; Bargellini, A.; Vescovi, L.; Nicolini, F.; Vinceti, M. Dietary Estimated Intake of Trace Elements: Risk Assessment in an Italian Population. Expo. Health. 2020, 12, 641–655. [Google Scholar] [CrossRef]
- NIS (National Institute of Statistic) 2021a. Beverage Consumption in 2021 (in Romania). Available online: https://insse.ro/cms/ro/tags/consumul-de-bauturi (accessed on 7 August 2023).
- NIS (National Institute of Statistic) 2021b. Consumption Availability of the Population in 2021. Available online: https://insse.ro/cms/sites/default/files/field/publicatii/disponibilitatile_de_consum_ale_populatiei_anul_2021.pdf (accessed on 7 August 2023).
- Devanand, D.P.; Crocco, E.; Forester, B.P.; Husain, M.; Lee, S.; Huey, E.D.; Pelton, G.H. Low dose lithium treatment of behavioral complications in Alzheimer's disease: Lit-AD randomized clinical trial. Am. J. Geriatr. Psychiatry 2022, 30, 32–42. [Google Scholar] [CrossRef]
- Prashanth, L.; Kattapagari, K.K.; Chitturi, R.T.; Baddam, V.R.R.; Prasad, L.K. A review on role of essential trace elements in health and disease. J. Rr. NTR Univ. Health Sci. 2015, 4, 75–85. [Google Scholar]
- Gong, R.; Wang, P.; Dworkin, L. What we need to know about the effect of lithium on the kidney. Am. J. Physiol. Ren. Physiol. 2016, 311, F1168–F1171. [Google Scholar] [CrossRef] [PubMed]
- Concha, G.; Broberg, K.; Grandér, M.; Cardozo, A.; Palm, B.; Vahter, M. High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina. Environ. Sci. Technol. 2010, 44, 6875–6880. [Google Scholar] [CrossRef] [PubMed]
- Szklarska, D.; Rzymski, P. Is lithium a micronutrient? From biological activity and epidemiological observation to food fortification. Biol. Trace Elem. Res. 2019, 189, 18–27. [Google Scholar] [CrossRef]
- Yanagida, N.; Sato, S.; Asaumi, T.; Ogura, K.; Borres, M.P.; Ebisawa, M. Safety and feasibility of heated egg yolk challenge for children with egg allergies. Pediatr. Allergy Immunol. 2017, 28, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Sanlier, N.; Üstün, D. Egg consumption and health effects: A narrative review. J. Food Sci. 2021, 86, 4250–4261. [Google Scholar] [CrossRef]
- Lemos, B.S.; Medina-Vera, I.; Blesso, C.N.; Fernandez, M.L. Intake of 3 Eggs per Day When Compared to a Choline Bitartrate Supplement, Downregulates Cholesterol Synthesis without Changing the LDL/HDL Ratio. Nutrients 2018, 10, 258. [Google Scholar] [CrossRef]
- Sawrey-Kubicek, L.; Zhu, C.; Bardagjy, A.S.; Rhodes, C.H.; Sacchi, R.; Randolph, J.M.; Steinberg, F.M.; Zivkovic, A.M. Whole egg consumption compared with yolk-free egg increases the cholesterol efflux capacity of high-density lipoproteins in overweight, postmenopausal women. Am. J. Clin. Nutr. 2019, 110, 617–627. [Google Scholar] [CrossRef]
- Cristea, G.; Dehelean, A.; Puscas, R.; Hategan, A.R.; Magdas, D.A. Isotopic and Elemental Fingerprint of Edible Egg Parts—The Health Risk Assessment Based on Potentially Toxic Elements Content. Molecules 2023, 28, 503. [Google Scholar] [CrossRef]
- Anke, M.; Arnhold, W.; Schäfer, U.; Müller, R. Recent progress in exploring the essentiality of the ultra-trace element lithium to the nutrition of animals and man. Biol. Trace Elem. Res. 2005, 16, 169–176. [Google Scholar]
- Seidel, U.; Jans, K.; Hommen, N.; Ipharraguerre, I.R.; Lüersen, K.; Birringe, M.; Rimbach, G. Lithium Content of 160 Beverages and Its Impact on Lithium Status in Drosophila melanogaster. Foods 2020, 9, 795. [Google Scholar] [CrossRef]
- Sobolev, O.I.; Gutyj, B.V.; Darmohray, L.M.; Sobolievа, S.V.; Ivanina, V.V.; Kuzmenko, O.A.; Karkach, P.M.; Fesenko, V.F.; Bilkevych, V.V.; Mashkin, Y.O.; et al. Lithium in the natural environment and its migration in the trophic chain. Ukr. J. Ecol. 2019, 9, 195–203. [Google Scholar]
- Négrel, P.; Millot, R. Lithium isotopic fingerprints of sources and processes in surface waters of the Ebro River Basin (Spain). Sci. Total Environ. 2023, 876, 162793. [Google Scholar] [CrossRef]
- Freire, C.; Iribarne-Durán, L.M.; Gil, F.; Olmedo, P.; Serrano-Lopez, L.; Peña-Caballero, M.; Hurtado-Suazo, J.-A.; Alvarado-González, N.E.; Fernández, M.F.; Peinado, F.M.; et al. Concentrations and predictors of aluminum, antimony, and lithium in breast milk: A repeated-measures study of donors. Environ. Pollut. 2023, 319, 120901. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, E.; Argüello-Miranda, O.; Chiu, S.-W.; Fazal, Z.; Kruczek, J.; Nunez-Corrales, S.; Pandit, S.; Pritchet, L. Towards a unified understanding of lithium action in basic biology and its significance for applied biology. J. Membr. Biol. 2017, 250, 587–604. [Google Scholar] [CrossRef]
- Song, O.Y.; Islam, M.A.; Son, J.H.; Jeong, J.Y.; Kim, H.E.; Yeon, L.S.; Khan, N.; Jamila, N.; Kim, K.S. Elemental composition of pork meat from conventional and animal welfare farms by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS) and their authentication via multivariate chemometric analysis. Meat Sci. 2021, 172, 108344. [Google Scholar] [CrossRef] [PubMed]
- Nabrzyski, M.; Gajewska, R. Content of strontium, lithium and calcium in selected milk products and in some marine smoked fish. Food/Nahr. 2022, 4, 204–208. [Google Scholar] [CrossRef]
- dos Santos, A.C.M.; Marques, K.R.; Rodrigues, L.U.; de Faria, Á.J.G.; Nascimento, V.L.; Fidélis, R.R. Biofortification of soybean grains with foliar application of Li sources. J. Plant Nutr. 2019, 42, 2522–2531. [Google Scholar] [CrossRef]
- Tutun, H.; Kahraman, H.A.; Aluc, Y.; Avci, T.; Ekici, H. Investigation of some metals in honey samples from West Mediterranean region of Turkey. Vet. Res. Forum. 2019, 10, 181–186. [Google Scholar] [PubMed]
- Alqarni, A.S.; Owayss, A.A.; Mahmoud, A.A.; Hannan, M.A. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc. 2014, 18, 618–625. [Google Scholar] [CrossRef]
- Neves, M.O.; Marques, J.; Eggenkamp, H.G.M. Lithium in Portuguese Bottled Natural Mineral Waters—Potential for Health Benefits? Int. J. Environ. Res. Public Health. 2020, 17, 8369. [Google Scholar] [CrossRef]
- Baloch, S.; Kazi, T.G.; Baig, J.A.; Talpur, F.N.; Arain, M.B.; Afridi, H.I. Correlation of Lithium Levels Between Drinking Water Obtained from Different Sources and Scalp Hair Samples of Adult Male Subjects. Environ. Geochem. Health 2016, 39, 1191–1199. [Google Scholar] [CrossRef]
- ANSES Second French Total Diet Study (FTDS2) Report 1. Inorganic Contaminants, Minerals, Persistent Organic Pollutants, Mycotoxins and Phytoestrogens. 2011 :60. Available online: https://www.anses.fr/en/system/files/PASER2006sa0361Ra1EN.pdf (accessed on 12 May 2020).
- ANZ Guidelines ANZECC-ARMCANZ-2000-Guidelines-Vol1. Available online: https://www.waterquality.gov.au/media/57 (accessed on 20 May 2020).
- Kapusta, N.D.; Mossaheb, N.; Etzersdorfer, E.; Hlavin, G.; Thau, K.; Willeit, M.; Praschak-Rieder, N.; Sonneck, G.; Leithner-Dziubas, K. Lithium in drinking water and suicide mortality. Br. J. Psychiatr. 2011, 198, 346–350. [Google Scholar] [CrossRef]
- Pompili, M.; Vichi, M.; Dinelli, E.; Pycha, R.; Valera, P.; Albanese, S.; Lima, A.; De Vivo, B.; Cicchella, D.; Fiorillo, A.; et al. Relationships of local lithium concentrations in drinking water to regional suicide rates in Italy. World J. Biol. Psychiatr. 2015, 16, 567–574. [Google Scholar] [CrossRef]
- Oliveira, P.; Zagalo, J.; Madeira, N.; Neves, O. Lithium in Public Drinking Water and Suicide Mortality in Portugal: Initial Approach. Acta Med. Port. 2019, 32, 47–52. [Google Scholar] [CrossRef]
- Seidel, U.; Baumhof, E.; Hägele, F.A.; Bosy-Westphal, A.; Birringer, M.; Rimbach, G. Lithium-Rich Mineral Water is a Highly Bioavailable Lithium Source for Human Consumption. Mol. Nutr. Food Res. 2019, 63, 1900039. [Google Scholar] [CrossRef] [PubMed]
- Voica, C.; Feher, I.; Iordache, A. Evaluation of metal concentration in herbal tea beverages by ICP-MS and chemometrics techniques. Qual. Control Bevage Ind. 2019, 17, 205–224. [Google Scholar]
- Pohl, P.; Dzimitrowicz, A.; Jedryczko, D.; Szymczycha-Madeja, A.; Welna, M.; Jamroz, P. The determination of elements in herbal teas and medicinal plant formulations and their tisanes. J. Pharm. Biomed. Anal. 2016, 130, 326–335. [Google Scholar] [CrossRef]
- Iordache, A.M.; Nechita, C.; Podea, P.; Șuvar, N.S.; Mesaroṣ, C.; Voica, C.; Bleiziffer, R.; Culea, M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. Plants 2023, 12, 2183. [Google Scholar] [CrossRef]
- Nookabkaew, S.; Rangkadilok, N.; Satayavivad, J. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. J. Agric. Food Chem. 2006, 54, 6939–6944. [Google Scholar] [CrossRef]
- Voica, C.; Feher, I.; Iordache, A.M.; Cristea, G.; Dehelean, A.; Magdas, D.M.; Mirel, V. Multielemental Analysis of Coffee by Inductively Coupled Plasma-Mass Spectrometry. Anal. Lett. 2016, 49, 2627–2643. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, L.; Tanveer, M.; Tian, C. Lithium Biofortification of Medicinal Tea Apocynum venetum. Sci. Rep. 2019, 9, 8182. [Google Scholar] [CrossRef] [PubMed]
- Maria, D.; Zaneta, K.; Jadwiga, M. Lithium content in the tea and herbal infusions. Eur. Food Res. Technol. 2015, 241, 289–293. [Google Scholar] [CrossRef]
- Nomani, H.; Moghadam, A.T.; Emami, S.A.; Mohammadpour, A.H.; Johnston, T.P.; Sahebkar, A. Drug Interactions of Cola-containing Drinks. Clin. Nutr. 2019, 38, 2545–2551. [Google Scholar] [CrossRef] [PubMed]
- USEPA (United States Environmental Protection Agency). Integrated Risk Information System (IRIS); United States Environmental Protection Agency: Washington, DC, USA, 2010. Available online: www.epa.gov/ ncea/iris/index.html (accessed on 11 January 2024).
- Cauwenbergh, R.V.; Hendrix, P.; Robberecht, H.; Deelstra, H. Daily dietary lithium intake in Belgium using duplicate portion sampling. Eur. Food Res. Technol. 1991, 208, 153–155. [Google Scholar] [CrossRef]
- Ysart, G.; Miller, P.; Crews, H.; Robb, P.; Baxter, M.; De L’Argy, C.; Lofthouse, S.; Sargent, C.; Harrison, N. Dietary exposure estimates of 30 elements from the UK Total Diet Study. Food Addit. Contam. 1999, 16, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Marcussen, H.; Jensen, B.H.; Petersen, A.; Holm, P.E. Dietary exposure to essential and potentially toxic elements for the population of Hanoi, Vietnam. Asia Pac. J. Clin. Nutr. 2013, 22, 300–311. [Google Scholar]
- Pearson, A.J.; Ashmore, E. Risk assessment of antimony, barium, beryllium, boron, bromine, lithium, nickel, strontium, thallium, and uranium concentrations in the New Zealand diet. Food Addit. Contam. Part A 2020, 37, 451–464. [Google Scholar] [CrossRef]
- EPA (Environmental Protection Agency), Provisional Peer Reviewed Toxicity Values for Lithium (CASRN 7439‐93‐2). EPA/690/R‐08/016F. 2008. Available online: https://cfpub.epa.gov/ncea/pprtv/documents/Lithium.pdf (accessed on 11 January 2024).
- Baldessarini, R.J.; Tondo, L.; Hennen, J. Lithium treatment and suicide risk in major affective disorders: Update and new findings. J. Clin. Psychiatry 2003, 64, 44–52. [Google Scholar]
- Severus, E.; Taylor, M.J.; Sauer, C.; Pfennig, A.; Ritter, P.; Bauer, M.; Geddes, J.R. Lithium for prevention of mood episodes in bipolar disorders: Systematic review and meta-analysis. Int. J. Bipolar Disord. 2014, 2, 1–17. [Google Scholar] [CrossRef]
- Börjesson, J.; Gøtzsche, P.C. Effect of lithium on suicide and mortality in mood disorders: A systematic review. Int. J. Risk Saf. Med. 2019, 30, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, H.; Soares, A.M.V.M.; Pereira, E.; Freitas, R. Lithium: A review on concentrations and impacts in marine and coastal systems. Sci. Total Environ. 2023, 857, 159374. [Google Scholar] [CrossRef] [PubMed]
- Young, W. Review of lithium effects on brain and blood. Cell Transplant. 2009, 1, 951–975. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Ahmad, M.A.; Hussain, M.; Azeem, I.; Zain, M.; Zhou, P.; Li, Y.; Xu, M.; Rui, Y. Environment relevant concentrations of lithium influence soybean development via metabolic reprogramming. J. Hazard. Mater. 2023, 441, 129898. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, A.M.; Voica, C.; Roba, C.; Nechita, C. Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market. Foods 2024, 13, 592. https://doi.org/10.3390/foods13040592
Iordache AM, Voica C, Roba C, Nechita C. Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market. Foods. 2024; 13(4):592. https://doi.org/10.3390/foods13040592
Chicago/Turabian StyleIordache, Andreea Maria, Cezara Voica, Carmen Roba, and Constantin Nechita. 2024. "Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market" Foods 13, no. 4: 592. https://doi.org/10.3390/foods13040592
APA StyleIordache, A. M., Voica, C., Roba, C., & Nechita, C. (2024). Lithium Content and Its Nutritional Beneficence, Dietary Intake, and Impact on Human Health in Edibles from the Romanian Market. Foods, 13(4), 592. https://doi.org/10.3390/foods13040592