Protective Effect of the Naringin–Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Histology Examination
2.3. Inflammatory Cytokines Examination
2.4. Myeloperoxidase (MPO) Activity and Oxidative Stress Indicator Examination
2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
2.6. Statistical Analysis
3. Results
3.1. Effect of the Complex on Body Posture, Body Weight, and Food Intake in LPS-Induced SIRS Model Mice
3.2. Effect of the Complex on the LPS-Induced Viscera Index of the Mouse Model of SIRS
3.3. Complex Regulate Inflammatory Cytokine Levels
3.4. Complex-Reduced MPO Activity and Oxidative Stress Indicators
3.5. The Complex Inhibited the mRNA Expression of Inflammatory Cytokines
3.6. The Inhibition of SIRS Is Related to TLR4/NF-κB Signaling Pathways and Oxidative Stress
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition, Antioxidant Potential and Health Benefits of Citrus Peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef]
- El-desoky, A.H.; Abdel-Rahman, R.F.; Ahmed, O.K.; El-Beltagi, H.S.; Hattori, M. Anti-Inflammatory and Antioxidant Activities of Naringin Isolated from Carissa Carandas L.: In Vitro and in Vivo Evidence. Phytomedicine 2018, 42, 126–134. [Google Scholar] [CrossRef]
- He, J.; Zhang, H.-P. Research Progress on the Anti-Tumor Effect of Naringin. Front. Pharmacol. 2023, 14, 1217001. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.A.; Hozayen, W.G.; Abo Sree, H.T.; Al-Muzafar, H.M.; Amin, K.A.; Ahmed, O.M. Naringin and Hesperidin Counteract Diclofenac-Induced Hepatotoxicity in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. Oxidative Med. Cell. Longev. 2021, 2021, 9990091. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; You, D.; Zhuang, J.; Lin, S.; Dong, L.; Weng, S.; Zhang, B.; Cheng, K.; Weng, W.; Wang, H. Controlled Release of Naringin in Metal-Organic Framework-Loaded Mineralized Collagen Coating to Simultaneously Enhance Osseointegration and Antibacterial Activity. ACS Appl. Mater. Interfaces 2017, 9, 19698–19705. [Google Scholar] [CrossRef]
- Gao, S.; Chen, X.; Yu, Z.; Du, R.; Chen, B.; Wang, Y.; Cai, X.; Xu, J.; Chen, J.; Duan, H.; et al. Progress of Research on the Role of Active Ingredients of Citri Reticulatae Pericarpium in Liver Injury. Phytomedicine 2023, 115, 154836. [Google Scholar] [CrossRef] [PubMed]
- Falobi, A.A.; Falana, A.B.; Ofosu, W.A.; Beinarovica, J.; Ojo, O.O. Mechanisms Underlying the In Vitro Insulin Secretory Actions and In Vivo Antidiabetic Effects of Grapefruit’s Naringin. Metabolism 2020, 104, 154098. [Google Scholar] [CrossRef]
- Liu, P.; Bian, Y.; Fan, Y.; Zhong, J.; Liu, Z. Protective Effect of Naringin on In Vitro Gut-Vascular Barrier Disruption of Intestinal Microvascular Endothelial Cells Induced by TNF-α. J. Agric. Food Chem. 2020, 68, 168–175. [Google Scholar] [CrossRef]
- Luo, D.; Huang, Z.; Jia, G.; Zhao, H.; Liu, G.; Chen, X. Naringin Mitigates LPS-Induced Intestinal Barrier Injury in Mice. Food Funct. 2023, 14, 1617–1626. [Google Scholar] [CrossRef]
- Ge, X.; Jiang, F.; Wang, M.; Chen, M.; Li, Y.; Phipps, J.; Cai, J.; Xie, J.; Ong, J.; Dubovoy, V.; et al. Naringin@Metal–Organic Framework as a Multifunctional Bioplatform. ACS Appl. Mater. Interfaces 2023, 15, 677–683. [Google Scholar] [CrossRef]
- Pereira, R.; Andrades, N.; Paulino, N.; Sawaya, A.; Eberlin, M.; Marcucci, M.; Favero, G.; Novak, E.; Bydlowski, S. Synthesis and Characterization of a Metal Complex Containing Naringin and Cu, and Its Antioxidant, Antimicrobial, Antiinflammatory and Tumor Cell Cytotoxicity. Molecules 2007, 12, 1352–1366. [Google Scholar] [CrossRef]
- Iturriaga, L.; Olabarrieta, I.; Castellan, A.; Gardrat, C.; Coma, V. Active Naringin-Chitosan Films: Impact of UV Irradiation. Carbohydr. Polym. 2014, 110, 374–381. [Google Scholar] [CrossRef]
- Chotphruethipong, L.; Chanvorachote, P.; Reudhabibadh, R.; Singh, A.; Benjakul, S.; Roytrakul, S.; Hutamekalin, P. Chitooligosaccharide from Pacific White Shrimp Shell Chitosan Ameliorates Inflammation and Oxidative Stress via NF-κB, Erk1/2, Akt and Nrf2/HO-1 Pathways in LPS-Induced RAW264.7 Macrophage Cells. Foods 2023, 12, 2740. [Google Scholar] [CrossRef]
- Wang, D.-W.; Li, S.-J.; Tan, X.-Y.; Wang, J.-H.; Hu, Y.; Tan, Z.; Liang, J.; Hu, J.-B.; Li, Y.-G.; Zhao, Y.-F. Engineering of Stepwise-Targeting Chitosan Oligosaccharide Conjugate for the Treatment of Acute Kidney Injury. Carbohydr. Polym. 2021, 256, 117556. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, F.; Eltem, R. Chitooligosaccharides and Their Biological Activities: A Comprehensive Review. Carbohydr. Polym. 2018, 184, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Du, R.; Zhao, F.; Han, Y.; Zhou, Z. Characterization of Antibacterial Bacterial Cellulose Composite Membranes Modified with Chitosan or Chitooligosaccharide. Carbohydr. Polym. 2020, 229, 115520. [Google Scholar] [CrossRef] [PubMed]
- Balk, R.A. Systemic Inflammatory Response Syndrome (SIRS): Where Did It Come from and Is It Still Relevant Today? Virulence 2014, 5, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Doyle, M.; Manning, B.J.; Blankson, S.; Wu, Q.D.; Power, C.; Cahill, R.; Redmond, H.P. Cutting Edge: Bacterial Lipoprotein Induces Endotoxin-Independent Tolerance to Septic Shock. J. Immunol. 2003, 170, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhang, Q.; Dong, Z.; Yan, Y.; Fu, Y.; Liu, X.; Zhao, B.; Duan, X. Phosphatidylcholine Ameliorates LPS-Induced Systemic Inflammation and Cognitive Impairments via Mediating the Gut–Brain Axis Balance. J. Agric. Food Chem. 2020, 68, 14884–14895. [Google Scholar] [CrossRef]
- Seemann, S.; Zohles, F.; Lupp, A. Comprehensive Comparison of Three Different Animal Models for Systemic Inflammation. J. Biomed. Sci. 2017, 24, 60. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.K.; Lee, Y.R.; Lee, E.-O.; Park, M.S.; Choi, S.; Kim, C.-S.; Park, J.-B.; Jeon, B.H. The Extracellular Role of Ref-1 as Anti-Inflammatory Function in Lipopolysaccharide-Induced Septic Mice. Free Radic. Biol. Med. 2019, 139, 16–23. [Google Scholar] [CrossRef]
- Shinde, T.; Perera, A.P.; Vemuri, R.; Gondalia, S.V.; Karpe, A.V.; Beale, D.J.; Shastri, S.; Southam, B.; Eri, R.; Stanley, R. Synbiotic Supplementation Containing Whole Plant Sugar Cane Fibre and Probiotic Spores Potentiates Protective Synergistic Effects in Mouse Model of IBD. Nutrients 2019, 11, 818. [Google Scholar] [CrossRef]
- Bai, J.; Wang, B.; Tan, X.; Huang, L.; Xiong, S. Regulatory Effect of Lactulose on Intestinal Flora and Serum Metabolites in Colitis Mice: In Vitro and in Vivo Evaluation. Food Chem. X 2023, 19, 100821. [Google Scholar] [CrossRef]
- Tran, C.D.; Makuvaza, J.; Munson, E.; Bennett, B. Biocompatible Copper Oxide Nanoparticle Composites from Cellulose and Chitosan: Facile Synthesis, Unique Structure, and Antimicrobial Activity. ACS Appl. Mater. Interfaces 2017, 9, 42503–42515. [Google Scholar] [CrossRef]
- Yadav, P.; Bandyopadhyay, A.; Chakraborty, A.; Sarkar, K. Enhancement of Anticancer Activity and Drug Delivery of Chitosan-Curcumin Nanoparticle via Molecular Docking and Simulation Analysis. Carbohydr. Polym. 2018, 182, 188–198. [Google Scholar] [CrossRef]
- Gao, F.; Ye, Y.-J.; Wang, Y.; Lou, K.-Y.; Chen, Y.-Z.; Chen, R. The Preparation, Characterization, and Pharmacokinetic Studies of Chitosan Nanoparticles Loaded with Paclitaxel/Dimethyl-β-Cyclodextrin Inclusion Complexes. Int. J. Nanomed. IJN 2015, 10, 4309. [Google Scholar] [CrossRef]
- Termkwancharoen, C.; Malakul, W.; Phetrungnapha, A.; Tunsophon, S. Naringin Ameliorates Skeletal Muscle Atrophy and Improves Insulin Resistance in High-Fat-Diet-Induced Insulin Resistance in Obese Rats. Nutrients 2022, 14, 4120. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, Y.; Luo, X.; Wang, C.; Wang, N.; He, H.; Zhang, T.; Chen, L. Chitooligosaccharides Modulate Glucose-Lipid Metabolism by Suppressing SMYD3 Pathways and Regulating Gut Microflora. Mar. Drugs 2020, 18, 69. [Google Scholar] [CrossRef] [PubMed]
- Lehár, J.; Krueger, A.S.; Avery, W.; Heilbut, A.M.; Johansen, L.M.; Price, E.R.; Rickles, R.J.; Short Iii, G.F.; Staunton, J.E.; Jin, X.; et al. Synergistic Drug Combinations Tend to Improve Therapeutically Relevant Selectivity. Nat. Biotechnol. 2009, 27, 659–666. [Google Scholar] [CrossRef]
- Beutler, B.A. TLRs and Innate Immunity. Blood 2009, 113, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Ciesielska, A.; Matyjek, M.; Kwiatkowska, K. TLR4 and CD14 Trafficking and Its Influence on LPS-Induced pro-Inflammatory Signaling. Cell. Mol. Life Sci. 2021, 78, 1233–1261. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Wang, K.; Deng, L.; Chen, Y.; Nice, E.C.; Huang, C. Redox Regulation of Inflammation: Old Elements, a New Story. Med. Res. Rev. 2015, 35, 306–340. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.J.; Fantone, J.C.; Kaplan, J.; Ward, P.A. In Vivo Damage of Rat Lungs by Oxygen Metabolites. J. Clin. Investig. 1981, 67, 983–993. [Google Scholar] [CrossRef] [PubMed]
- Malle, E.; Buch, T.; Grone, H.-J. Myeloperoxidase in Kidney Disease. Kidney Int. 2003, 64, 1956–1967. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A. The Role of Antioxidants in the Chemistry of Oxidative Stress: A Review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, X.; Zhao, Z.; Pi, X.; Meng, Y.; Fei, D.; Liu, D.; Wang, X. Effect of Chitooligosaccharides on Human Gut Microbiota and Antiglycation. Carbohydr. Polym. 2020, 242, 116413. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Jin, M.; Li, Q.; Wu, Q.; Liao, Z.; Wei, M.; Fan, X.; Yang, Q.; Tian, X.; Giuseppe, B.; et al. Chitooligosaccharide Reconstitutes Intestinal Mucus Layer to Improve Oral Absorption of Water-Soluble Drugs. J. Control. Release 2023, 360, 831–841. [Google Scholar] [CrossRef]
- Cao, R.; Li, X.; Zhou, Z.; Zhao, Z. Synthesis and Biophysical Analysis of Naringin-Chitooligosaccharide Complex. Nat. Prod. Res. 2021, 35, 305–311. [Google Scholar] [CrossRef]
- Hao, W.; Li, K.; Li, P. Review: Advances in Preparation of Chitooligosaccharides with Heterogeneous Sequences and Their Bioactivity. Carbohydr. Polym. 2021, 252, 117206. [Google Scholar] [CrossRef]
Group | TLR4 | IL-6 | MyD88 | IκBa | IL-1β | NF-κB p65 | TNF-α |
---|---|---|---|---|---|---|---|
CT | 1.0 ± 0.0 g | 1.0 ± 0.0 e | 1.0 ± 0.0 f | 1.0 ± 0.0 e | 1.0 ± 0.0 f | 1.0 ± 0.0 e | 1.0 ± 0.0 e |
LPS | 30.7 ± 1.3 a | 7.6 ± 0.4 a | 21.7 ± 1.8 a | 8.7 ± 0.6 a | 7.2 ± 0.4 a | 26.1 ± 1.3 a | 30.7 ± 1.4 a |
DXMS | 2.5 ± 0.4 f | 0.9 ± 0.4 e | 1.3 ± 0.1 f | 1.3 ± 0.2 de | 1.2 ± 0.1 ef | 3.1 ± 0.4 d | 1.3 ± 0.1 e |
Naringin | 8.8 ± 0.7 cd | 3.1 ± 0.2 bc | 9.3 ± 0.5 c | 2.4 ± 0.2 c | 3.1 ± 0.4 d | 4.5 ± 0.2 c | 4.3 ± 0.2 b |
COSA | 9.8 ± 1.4 c | 3.6 ± 0.5 b | 11.3 ± 0.8 b | 2.4 ± 0.5 c | 3.9 ± 0.1 c | 11.1 ± 0.7 b | 3.7 ± 0.3 bc |
COSB | 11.7 ± 0.6 b | 2.6 ± 0.4 c | 7.3 ± 0.5 d | 3.2 ± 0.6 b | 4.4 ± 0.3 b | 4.6 ± 0.2 c | 3.3 ± 0.3 c |
NG-COSA | 7.6 ± 0.4 de | 1.3 ± 0.1 de | 6.0 ± 0.1 e | 1.5 ± 0.4 de | 1.5 ± 0.3 e | 4.0 ± 0.1 cd | 3.1 ± 0.1 cd |
NG-COSB | 6.7 ± 0.5 e | 1.6 ± 0.2 d | 5.6 ± 0.3 e | 1.9 ± 0.2 cd | 2.8 ± 0.1 d | 3.1 ± 0.2 d | 2.3 ± 0.2 d |
Group | TLR4 | IL-6 | MyD88 | IκBa | IL-1β | NF-κB p65 | TNF-α |
---|---|---|---|---|---|---|---|
CT | 1.0 ± 0.0 g | 1.0 ± 0.0 e | 1.0 ± 0.0 f | 1.0 ± 0.0 e | 1.0 ± 0.0 f | 1.0 ± 0.0 e | 1.0 ± 0.0 e |
LPS | 30.7 ± 1.3 a | 7.6 ± 0.4 a | 21.7 ± 1.8 a | 8.7 ± 0.6 a | 7.2 ± 0.4 a | 26.1 ± 1.3 a | 30.7 ± 1.4 a |
DXMS | 2.5 ± 0.4 f | 0.9 ± 0.4 e | 1.3 ± 0.1 f | 1.3 ± 0.2 de | 1.2 ± 0.1 ef | 3.1 ± 0.4 d | 1.3 ± 0.1 e |
Naringin | 8.8 ± 0.7 cd | 3.1 ± 0.2 bc | 9.3 ± 0.5 c | 2.4 ± 0.2 c | 3.1 ± 0.4 d | 4.5 ± 0.2 c | 4.3 ± 0.2 b |
COSA | 9.8 ± 1.4 c | 3.6 ± 0.5 b | 11.3 ± 0.8 b | 2.4 ± 0.5 c | 3.9 ± 0.1 c | 11.1 ± 0.7 b | 3.7 ± 0.3 bc |
COSB | 11.7 ± 0.6 b | 2.6 ± 0.4 c | 7.3 ± 0.5 d | 3.2 ± 0.6 b | 4.4 ± 0.3 b | 4.6 ± 0.2 c | 3.3 ± 0.3 c |
NG-COSA | 7.6 ± 0.4 de | 1.3 ± 0.1 de | 6.0 ± 0.1 e | 1.5 ± 0.4 de | 1.5 ± 0.3 e | 4.0 ± 0.1 cd | 3.1 ± 0.1 cd |
NG-COSB | 6.7 ± 0.5 e | 1.6 ± 0.2 d | 5.6 ± 0.3 e | 1.9 ± 0.2 cd | 2.8 ± 0.1 d | 3.1 ± 0.2 d | 2.3 ± 0.2 d |
Group | TLR4 | IL-6 | MyD88 | IκBa | IL-1β | NF-κB p65 | TNF-α |
---|---|---|---|---|---|---|---|
CT | 1.0 ± 0.0 d | 1.0 ± 0.0 f | 1.0 ± 0.0 e | 1.0 ± 0.0 d | 1.0 ± 0.0 f | 1.0 ± 0.0 c | 1.0 ± 0.0 e |
LPS | 6.9 ± 0.5 a | 14.7 ± 0.4 a | 34.0 ± 1.8 a | 19.7 ± 0.6 a | 9.1 ± 0.2 a | 20.5 ± 0.7 a | 24.9 ± 0.6 a |
DXMS | 1.1 ± 0.1 d | 1.1 ± 0.1 f | 1.1 ± 0.0 e | 1.0 ± 0.2 d | 1.2 ± 0.1 ef | 1.0 ± 0.2 c | 1.0 ± 0.3 e |
Naringin | 1.4 ± 0.1 d | 3.1 ± 0.2 c | 3.5 ± 0.4 c | 1.8 ± 0.1 bc | 2.3 ± 0.1 c | 2.8 ± 0.3 b | 2.8 ± 0.3 b |
COSA | 2.3 ± 0.3 c | 2.5 ± 0.1 d | 2.6 ± 0.0 cd | 2.0 ± 0.2 b | 2.6 ± 0.1 b | 2.2 ± 0.3 b | 1.9 ± 0.1 c |
COSB | 5.0 ± 0.3 b | 5.6 ± 0.1 b | 6.4 ± 0.2 b | 1.6 ± 0.2 bc | 2.6 ± 0.2 b | 2.5 ± 0.2 b | 2.5 ± 0.2 b |
NG-COSA | 1.2 ± 0.1 d | 1.1 ± 0.0 f | 1.9 ± 0.1 de | 1.3 ± 0.0 cd | 1.3 ± 0.1 e | 1.0 ± 0.3 c | 1.2 ± 0.0 de |
NG-COSB | 1.1 ± 0.1 d | 1.6 ± 0.3 e | 2.1 ± 0.2 de | 1.4 ± 0.0 cd | 2.0 ± 0.1 d | 1.4 ± 0.1 c | 1.6 ± 0.1 cd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Ouyang, Z.; Tan, X.; Liu, X.; Bai, J.; Wang, H.; Huang, L. Protective Effect of the Naringin–Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice. Foods 2024, 13, 576. https://doi.org/10.3390/foods13040576
Tang S, Ouyang Z, Tan X, Liu X, Bai J, Wang H, Huang L. Protective Effect of the Naringin–Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice. Foods. 2024; 13(4):576. https://doi.org/10.3390/foods13040576
Chicago/Turabian StyleTang, Sheng, Zhu Ouyang, Xiang Tan, Xin Liu, Junying Bai, Hua Wang, and Linhua Huang. 2024. "Protective Effect of the Naringin–Chitooligosaccharide Complex on Lipopolysaccharide-Induced Systematic Inflammatory Response Syndrome Model in Mice" Foods 13, no. 4: 576. https://doi.org/10.3390/foods13040576