The Viscoelastic Behavior of Legume Protein Emulsion Gels—The Effect of Heating Temperature and Oil Content on Viscoelasticity, the Degree of Networking, and the Microstructure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Suspensions and Emulsions
2.2.2. Rheological Measurement
2.2.3. Scanning Electron Microscopy (SEM)
2.2.4. Statistical Analysis
3. Results
3.1. Viscoelastic Behavior
3.1.1. Loss Factor
3.1.2. LVR Limit
3.2. Networking Factor
3.3. Analysis of the Microstructe by Scanning Electron Microscopy (SEM)
4. Discussion
4.1. Viscoelasticity
4.2. Influence of Macronutrient Components
4.3. Influence of Protein Chemistry
4.4. Influence of Heating
4.5. Influence of Oil Content
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Least Gelling Concentration (LGC)
SPI | PPI | SPC | PPC | |
---|---|---|---|---|
LGC (%) | 9.50 | 12.00 | 11.50 | 10.75 |
References
- Sha, L.; Xiong, Y.L. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Bashi, Z.; McCullough, R.; Ong, L.; Ramirez, M. Alternative Proteins: The Race for Market Share Is on; McKinsey & Company: New York, NY, USA, 2019; 11p. [Google Scholar]
- Gorissen, S.H.M.; Crombag, J.J.R.; Joan, M.G.S.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Stone, A.K.; Karalash, A.; Tyler, R.T.; Warkentin, T.D.; Nickerson, M.T. Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res. Int. 2015, 76, 31–38. [Google Scholar] [CrossRef]
- Day, L. Proteins from land plants—Potential resources for human nutrition and food security. Trends Food Sci. Technol. 2013, 32, 25–42. [Google Scholar] [CrossRef]
- Nicolai, T.; Chassenieux, C. Heat-induced gelation of plant globulins. Curr. Opin. Food Sci. 2019, 27, 18–22. [Google Scholar] [CrossRef]
- Dickinson, E. Food colloids e an overview. Colloids Surfaces 1989, 42, 191–204. [Google Scholar] [CrossRef]
- van Vliet, T.; Lakemond, C.M.; Visschers, R.W. Rheology and structure of milk protein gels. Curr. Opin. Colloid Interface Sci. 2004, 9, 298–304. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Zheng, H. Introduction: Measuring heological Properties of Foods. In Rheology of Semisolid Foods; Joyner, H.S., Ed.; Springer International Publishing AG: Cham, Switzerland, 2019; pp. 3–30. ISBN 9783030271343. [Google Scholar]
- Bird, R.B.; Armstrong, R.C.; Hassager, O. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1987; Volume 1, ISBN 978-0-471-80245-7. [Google Scholar]
- Kim, K.-H.; Renkema, J.; van Vilet, T. Rheological properties of soybean protein isolate gels containing emulsion droplets. Food Hydrocoll. 2001, 15, 295–302. [Google Scholar] [CrossRef]
- Gu, X.; Campbell, L.J.; Euston, S.R. Effects of different oils on the properties of soy protein isolate emulsions and gels. Food Res. Int. 2009, 42, 925–932. [Google Scholar] [CrossRef]
- Kornet, R.; Sridharan, S.; Venema, P.; Sagis, L.M.; Nikiforidis, C.V.; van der Goot, A.J.; Meinders, M.B.; van der Linden, E. Fractionation methods affect the gelling properties of pea proteins in emulsion-filled gels. Food Hydrocoll. 2022, 125, 107427. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Nguyen, B.T.; Schmitt, C.; Nicolai, T.; Chassenieux, C. Heat-set emulsion gels of casein micelles in mixtures with whey protein isolate. Food Hydrocoll. 2017, 73, 213–221. [Google Scholar] [CrossRef]
- Yu, B.; Ren, F.; Zhao, H.; Cui, B.; Liu, P. Effects of native starch and modified starches on the textural, rheological and microstructural characteristics of soybean protein gel. Int. J. Biol. Macromol. 2020, 142, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Baeza, R.I.; Carp, D.J.; Pérez, O.E.; Pilosof, A. κ-Carrageenan—Protein Interactions: Effect of Proteins on Polysaccharide Gelling and Textural Properties. LWT 2002, 35, 741–747. [Google Scholar] [CrossRef]
- Damodaran, S. Amino Acids, Peptides and Proteins. In Fennema’s Food Chemistry, 5th ed.; Damodaran, S., Parkin, K.L., Eds.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 295–308. ISBN 9781482208122. [Google Scholar]
- Ran, X.; Yang, H. Promoted strain-hardening and crystallinity of a soy protein-konjac glucomannan complex gel by konjac glucomannan. Food Hydrocoll. 2022, 133, 107959. [Google Scholar] [CrossRef]
- Samant, S.K.; Singhal, R.S.; Kulkarni, P.R.; Rege, D.V. Protein-polysaccharide interactions: A new approach in food formulations. Int. J. Food Sci. Technol. 1993, 28, 547–562. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Bandyopadhyay, P. Polysaccharide-Protein Interactions and Their Relevance in Food Colloids. In The Complex World of Polysaccharides; Karunaratne, D.N., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0819-1. [Google Scholar]
- Nieto Nieto, T.V.; Wang, Y.; Ozimek, L.; Chen, L. Improved thermal gelation of oat protein with the formation of controlled phase-separated networks using dextrin and carrageenan polysaccharides. Food Res. Int. 2016, 82, 95–103. [Google Scholar] [CrossRef]
- Li, M.; Hou, X.; Lin, L.; Jiang, F.; Qiao, D.; Xie, F. Legume protein/polysaccharide food hydrogels: Preparation methods, improvement strategies and applications. Int. J. Biol. Macromol. 2023, 243, 125217. [Google Scholar] [CrossRef]
- Turgeon, S.L.; Schmitt, C.; Sanchez, C. Protein–polysaccharide complexes and coacervates. Curr. Opin. Colloid Interface Sci. 2007, 12, 166–178. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Lin, Q.; Jiang, X.; Yao, J.; Yang, Y.; Shao, Z.; Chen, X. A Robust, Resilient, and Multi-Functional Soy Protein-Based Hydrogel. ACS Sustain. Chem. Eng. 2018, 6, 13730–13738. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Yang, X.-Q.; Ahmad, I.; Jiang, Y.; Wang, X.-Y.; Wu, L.-Y. Effect of guar gum on the rheological, thermal and textural properties of soybean β-conglycinin gel. Int. J. Food Sci. Technol. 2009, 44, 1314–1322. [Google Scholar] [CrossRef]
- Leite, T.S.; de Jesus, A.L.T.; Schmiele, M.; Tribst, A.A.; Cristianini, M. High pressure processing (HPP) of pea starch: Effect on the gelatinization properties. LWT Food Sci. Technol. 2017, 76, 361–369. [Google Scholar] [CrossRef]
- Kornet, R.; Veenemans, J.; Venema, P.; van der Goot, A.J.; Meinders, M.; Sagis, L.; van der Linden, E. Less is more: Limited fractionation yields stronger gels for pea proteins. Food Hydrocoll. 2021, 112, 106285. [Google Scholar] [CrossRef]
- Dreher, J.; Blach, C.; Terjung, N.; Gibis, M.; Weiss, J. Formation and characterization of plant-based emulsified and crosslinked fat crystal networks to mimic animal fat tissue. J. Food Sci. 2020, 85, 421–431. [Google Scholar] [CrossRef]
- Langendörfer, L.J.; Avdylaj, B.; Hensel, O.; Diakité, M. Design of Plant-Based Food: Influences of Macronutrients and Amino Acid Composition on the Techno-Functional Properties of Legume Proteins. Foods 2023, 12, 3787. [Google Scholar] [CrossRef]
- Batista, A.P.; Portugal, C.A.M.; Sousa, I.; Crespo, J.G.; Raymundo, A. Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques. Int. J. Biol. Macromol. 2005, 36, 135–143. [Google Scholar] [CrossRef]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Li, J.-Y.; Yeh, A.-I.; Fan, K.-L. Gelation characteristics and morphology of corn starch/soy protein concentrate composites during heating. J. Food Eng. 2007, 78, 1240–1247. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, M.; Chassenieux, C.; Nicolai, T. Thermal aggregation and gelation of soy globulin at neutral pH. Food Hydrocoll. 2016, 61, 740–746. [Google Scholar] [CrossRef]
- Al-Ali, H.A.; Shah, U.; Hackett, M.J.; Gulzar, M.; Karakyriakos, E.; Johnson, S.K. Technological strategies to improve gelation properties of legume proteins with the focus on lupin. Innov. Food Sci. Emerg. Technol. 2021, 68, 102634. [Google Scholar] [CrossRef]
- Oliver, L.; Scholten, E.; van Aken, G.A. Effect of fat hardness on large deformation rheology of emulsion-filled gels. Food Hydrocoll. 2015, 43, 299–310. [Google Scholar] [CrossRef]
- Guo, Q.; Ye, A.; Lad, M.; Dalgleish, D.; Singh, H. The breakdown properties of heat-set whey protein emulsion gels in the human mouth. Food Hydrocoll. 2013, 33, 215–224. [Google Scholar] [CrossRef]
- Dickinson, E.; Chen, J. Heat-set whey protein emulsion gels: Role of active and inactive filler particels. J. Dispers. Sci. Technol. 1999, 20, 197–213. [Google Scholar] [CrossRef]
- Mezger, T. Das Rheologie Handbuch: Für Anwender von Rotations-und Oszillations-Rheometern, 5th ed.; vollständig überarbeitete Auflage; Vincentz Network: Hannover, Germany, 2016; ISBN 9783748600121. [Google Scholar]
- Kokini, J.; van Aken, G. Discussion session on food emulsions and foams. Food Hydrocoll. 2006, 20, 438–445. [Google Scholar] [CrossRef]
- Geremias-Andrade, I.M.; Souki, N.P.B.G.; Moraes, I.C.F.; Pinho, S.C. Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials. Gels 2016, 2, 22. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Mc Clements, D.J. Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9, 305–313. [Google Scholar] [CrossRef]
- Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2005, 70, R54–R66. [Google Scholar] [CrossRef]
- Silva, J.V.; Jacquette, B.; Amagliani, L.; Schmitt, C.; Nicolai, T.; Chassenieux, C. Heat-induced gelation of micellar casein/plant protein oil-in-water emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 569, 85–92. [Google Scholar] [CrossRef]
- Sala, G.; Vandeevelde, F.; Cohenstuart, M.; Vanaken, G. Oil droplet release from emulsion-filled gels in relation to sensory perception. Food Hydrocoll. 2007, 21, 977–985. [Google Scholar] [CrossRef]
- van Vilet, T. Rheological properties of filled gels. Influence of filler matrix interaction. Colloid Polym. Sci. 1988, 266, 518–524. [Google Scholar] [CrossRef]
- Pal, R. Complex shear modulus of concentrated suspensions of solid spherical particles. J. Colloid Interface Sci. 2002, 245, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Jampen, S.; Britt, I.J.; Yada, S.; Tung, M.A. Rheological Properties of Gellan Gels Containing Filler Particles. J. Food Sci. 2001, 66, 289–293. [Google Scholar] [CrossRef]
Nutrients | SPI 1 | PPI 2 | SPC 3 | PPC 4 |
---|---|---|---|---|
Carbohydrate | 2.30 | 0.80 | 3.26 | 18.50 |
Fiber | <1.00 | 2.40 | 2.17 | 5.78 |
Fat | 0.50 | 4.00 | 0.54 | 6.94 |
Protein | 92.50 | 81.70 | 73.91 | 47.58 |
Salt | 1.24 | 3.70 | 1.09 | 0.01 |
Nutrients | SPI 1 | PPI 2 | SPC 3 | PPC 4 |
---|---|---|---|---|
Alanin | 4.27 | 4.30 | 4.49 | 4.42 |
Arginin | 7.74 | 8.70 | 7.80 | 8.60 |
Aspartic acid | 11.67 | 11.50 | 11.52 | 12.18 |
Cysteine | 1.14 | 1.00 | 2.72 | 1.36 |
Glutamic acid | 20.79 | 16.80 | 19.79 | 17.04 |
Glycine | 4.50 | 4.10 | 4.19 | 4.36 |
Histidine | 3.23 | 2.50 | 2.64 | 2.52 |
Isoleucine | 5.31 | 4.50 | 4.96 | 4.40 |
Leucine | 8.09 | 8.40 | 8.25 | 7.69 |
Lysine | 7.05 | 7.20 | 6.63 | 8.05 |
Methionine | 1.29 | 1.10 | 1.01 | 1.01 |
Phenylalanine | 5.54 | 5.50 | 5.47 | 5.41 |
Proline | 4.85 | 4.50 | 5.53 | 4.42 |
Serine | 4.16 | 5.30 | 4.94 | 5.12 |
Threonine | 3.47 | 3.90 | 3.92 | 3.94 |
Tryptophan | 1.85 | 1.00 | 0.80 | 0.94 |
Tyrosine | 2.66 | 3.80 | 3.29 | 3.77 |
Valine | 5.54 | 5.00 | 5.18 | 4.76 |
0% Oil Concentration | 15% Oil Concentration | 30% Oil Concentration | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M (X) | EHT (kV) | WD (X) | I Probe (pA) | Width (μm) | M (X) | EHT (kV) | WD (X) | I Probe (pA) | Width (μm) | M (X) | EHT (kV) | WD (X) | I Probe (pA) | Width (μm) | |
PPI | 225 | 12.00 | 8.96 | 140 | 507.70 | 236 | 12.00 | 8.55 | 140 | 485.20 | 206 | 15.00 | 9.00 | 150 | 548.40 |
SPC | 239 | 12.00 | 8.54 | 150 | 479 | 232 | 11.00 | 8.96 | 160 | 493.80 | 239 | 11.00 | 8,66 | 150 | 478.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langendörfer, L.J.; Guseva, E.; Bauermann, P.; Schubert, A.; Hensel, O.; Diakité, M. The Viscoelastic Behavior of Legume Protein Emulsion Gels—The Effect of Heating Temperature and Oil Content on Viscoelasticity, the Degree of Networking, and the Microstructure. Foods 2024, 13, 3875. https://doi.org/10.3390/foods13233875
Langendörfer LJ, Guseva E, Bauermann P, Schubert A, Hensel O, Diakité M. The Viscoelastic Behavior of Legume Protein Emulsion Gels—The Effect of Heating Temperature and Oil Content on Viscoelasticity, the Degree of Networking, and the Microstructure. Foods. 2024; 13(23):3875. https://doi.org/10.3390/foods13233875
Chicago/Turabian StyleLangendörfer, Lena Johanna, Elizaveta Guseva, Peter Bauermann, Andreas Schubert, Oliver Hensel, and Mamadou Diakité. 2024. "The Viscoelastic Behavior of Legume Protein Emulsion Gels—The Effect of Heating Temperature and Oil Content on Viscoelasticity, the Degree of Networking, and the Microstructure" Foods 13, no. 23: 3875. https://doi.org/10.3390/foods13233875
APA StyleLangendörfer, L. J., Guseva, E., Bauermann, P., Schubert, A., Hensel, O., & Diakité, M. (2024). The Viscoelastic Behavior of Legume Protein Emulsion Gels—The Effect of Heating Temperature and Oil Content on Viscoelasticity, the Degree of Networking, and the Microstructure. Foods, 13(23), 3875. https://doi.org/10.3390/foods13233875