Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Fluorescence Spectral Data Acquisition
2.3. Data Analysis
3. Results and Discussion
3.1. Spectral Analysis of SBH and Non-SBH Samples
3.2. Principal Component Analysis
3.3. Results of Classification: Model Development
3.4. Result of Classification: Model Evaluation
3.5. Result of Quantification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ávila, S.; Beux, M.R.; Ribani, R.H.; Zambiazi, R.C. Stingless bee honey: Quality parameters, bioactive compounds, health-promotion properties and modification detection strategies. Trends Food Sci. Technol. 2018, 81, 37–50. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Rosset, M.; de Sousa, J.M.B.; de Oliveira, L.I.G.; Mafaldo, I.M.; Pintado, M.M.E.; de Souza, E.L.; Magnani, M. Stingless bee honey: An overview of health benefits and main market challenges. J. Food Biochem. 2022, 46, e13883. [Google Scholar] [CrossRef] [PubMed]
- Yaacob, M.; Rajab, N.F.; Shahar, S.; Sharif, R. Stingless bee honey and its potential value: A systematic review. Food Res. 2018, 2, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef]
- Dos Santos, A.C.; Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds. Food Res. Int. 2021, 147, 110553. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, S.; Selamat, J.; Shomad, M.A.; Aziz, M.F.A.; Akanda, M.J.H. Antioxidant properties and characterization of Heterotrigona itama honey from various botanical origins according to their polyphenol compounds. J. Food Qual. 2022, 2022, 2893401. [Google Scholar] [CrossRef]
- Ranneh, Y.; Ali, F.; Zarei, M.; Akim, A.M.; Hamid, H.A.; Khazaai, H. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. LWT 2018, 89, 1–9. [Google Scholar] [CrossRef]
- Marcinkevicius, K.; Gennari, G.; Salomón, V.; Vera, N.; Maldonado, L. Detection of adulterations in native stingless bees honey from Argentina using UV–Vis spectroscopy coupled with chemometrics. J. Food Meas. Charact. 2024, 18, 7283–7294. [Google Scholar] [CrossRef]
- Biswas, A.; Chaudhari, S.R. Exploring the role of NIR spectroscopy in quantifying and verifying honey authenticity: A review. Food Chem. 2024, 445, 138712. [Google Scholar] [CrossRef]
- Fakhlaei, R.; Selamat, J.; Khatib, A.; Razis, A.F.A.; Sukor, R.; Ahmad, S.; Babadi, A.A. The toxic impact of honey adulteration: A review. Foods 2020, 9, 1538. [Google Scholar] [CrossRef]
- Johnson, R.J.; Fuggle, S.V.; Mumford, L.; Bradley, J.A.; Forsythe, J.L.; Rudge, C.J.; Kidney Advisory Group of NHS Blood and Transplant. A new UK 2006 national kidney allocation scheme for deceased heart-beating donor kidneys. Transplantation 2010, 89, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Samat, S.; Enchang, F.K.; Hussein, F.N.; Ismail, W.I.W. Four-week consumption of Malaysian honey reduces excess weight gain and improves obesity-related parameters in high fat diet induced obese rats. Evid. Based Complement. Altern. Med. 2017, 2017, 1342150. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.P.; Mafra, I. A comprehensive review on the main honey authentication issues: Production and origin. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1072–1100. [Google Scholar] [CrossRef]
- Shapiro, A.; Mu, W.; Roncal, C.; Cheng, K.-Y.; Johnson, R.J.; Scarpace, P.J. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am. J. Physiol. Regulat. Integr. Compar. Physiol. 2008, 295, R1370–R1375. [Google Scholar] [CrossRef]
- Brar, D.S.; Nanda, V. A comprehensive introduction to honey adulteration. In Advanced Techniques of Honey Analysis, 1st ed.; Nayik, G.A., Uddin, J., Nanda, V., Eds.; Academic Press: London, UK, 2024; Volume 1, pp. 63–91. [Google Scholar] [CrossRef]
- Bose, D.; Padmavati, M. Honey authentication: A review of the issues and challenges associated with honey adulteration. Food BioSci. 2024, 61, 105004. [Google Scholar] [CrossRef]
- White, J.W. Internal standard stable carbon isotope ratio method for determination of c-4 plant sugars in honey: Collaborative study, and evaluation of improved protein preparation procedure. J. AOAC Int. 1992, 75, 543–548. [Google Scholar] [CrossRef]
- Limm, W.; Karunathilaka, S.R.; Mossoba, M.M. Fourier transform infrared spectroscopy and chemometrics for the rapid screening of economically motivated adulteration of honey spiked with corn or rice syrup. J. Food Prot. 2023, 86, 100054. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef] [PubMed]
- Lao, M.R.; Bautista VII, A.T.; Mendoza, N.D.S.; Cervancia, C.R. Stable carbon isotope ratio analysis of Philippine honeys for the determination of adulteration with C4 sugars. Food Anal. Methods 2021, 14, 1443–1455. [Google Scholar] [CrossRef]
- Hao, S.; Yuan, J.; Wu, Q.; Liu, X.; Cui, J.; Xuan, H. Rapid identification of corn sugar syrup adulteration in wolfberry honey based on fluorescence spectroscopy coupled with chemometrics. Foods 2023, 12, 2309. [Google Scholar] [CrossRef]
- Berriel, V.; Perdomo, C. Determination of high fructose corn syrup concentration in Uruguayan honey by 13C analyses. LWT 2016, 73, 649–653. [Google Scholar] [CrossRef]
- Cárdenas-Escudero, J.; Galán-Madruga, D.; Cáceres, J.O. Rapid, reliable and easy-to-perform chemometric-less method for rice syrup adulterated honey detection using FTIR-ATR. Talanta 2023, 253, 123961. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Magdas, D.A. Authentication of honey origin and harvesting year based on Raman spectroscopy and chemometrics. Talanta Open 2024, 10, 100342. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Han, T.; Pei, H.; Ren, H.; Stead, S. A novel methodology for real-time identification of the botanical origins and adulteration of honey by rapid evaporative ionization mass spectrometry. Food Control 2019, 106, 106753. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Q.; Wang, L.; Lin, L.; Shi, H.; Cao, H.; Cao, B. Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem. 2015, 172, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Akyıldız, I.E.; Erdem, O.; Raday, S.; Daştan, T.; Acar, S.; Uzunöner, D.; Düz, G.; Damarlı, E. Elucidating the false positive tendency at AOAC 998.12 C-4 sugar test for pine honey samples: Modified sample preparation method for accurate δ13C measurement of honey proteome. J. Food Compos. Anal. 2022, 114, 104787. [Google Scholar] [CrossRef]
- Shehata, M.; Sophie Dodd, S.; Sara Mosca, S.; Matousek, P.; Parmar, B.; Kevei, Z.; Anastasiadi, M. Application of spatial offset Raman spectroscopy (SORS) and machine learning for sugar syrup adulteration detection in UK honey. Foods 2024, 13, 2425. [Google Scholar] [CrossRef]
- Hajj, R.E.; Skaff, W.; Estephan, N. Application of common components analysis to mid-infrared spectra for the authentication of Lebanese honey. J. Spectros. 2024, 2024, 3370665. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Li, M.; Han, D.; Liu, W. Determination of invert syrup adulterated in acacia honey by terahertz spectroscopy with different spectral features. J. Sci. Food Agric. 2020, 100, 1913–1921. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Yang, S.; Han, D. Terahertz time-domain attenuated total reflection spectroscopy applied to the rapid discrimination of the botanical origin of honeys. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 123–130. [Google Scholar] [CrossRef]
- Bodor, Z.; Majadi, M.; Benedek, C.; Zaukuu, J.-L.Z.; Bálint, M.V.; Csobod, É.C.; Kovacs, Z. Detection of low-level adulteration of Hungarian honey using near infrared spectroscopy. Chemosensors 2023, 11, 89. [Google Scholar] [CrossRef]
- Peng, J.; Xie, W.; Jiang, J.; Zhao, Z.; Zhou, F.; Liu, F. Fast quantification of honey adulteration with laser-induced breakdown spectroscopy and chemometric methods. Foods 2020, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, Y.; Xia, J.; Xiong, Y.; Min, S. Quantitative analysis of honey adulteration by spectrum analysis combined with several high-level data fusion strategies. Vib. Spectrosc. 2020, 108, 103060. [Google Scholar] [CrossRef]
- de Souza, R.R.; de Sousa Fernandes, D.D.; Diniz, P.H.G.D. Honey authentication in terms of its adulteration with sugar syrups using UV–Vis spectroscopy and one-class classifiers. Food Chem. 2021, 365, 130467. [Google Scholar] [CrossRef] [PubMed]
- Valinger, D.; Longin, L.; Grbeš, F.; Benković, M.; Jurina, T.; Kljusurić, J.G.; Tušek, A.J. Detection of honey adulteration—The potential of UV-VIS and NIR spectroscopy coupled with multivariate analysis. LWT 2021, 145, 111316. [Google Scholar] [CrossRef]
- Nunes, A.; Azevedo, G.Z.; Rocha dos Santos, B.; de Liz, M.S.M.; Schneider, F.S.S.; Rodrigues, E.R.O.; Moura, S.; Maraschin, M. A guide for quality control of honey: Application of UV–vis scanning spectrophotometry and NIR spectroscopy for determination of chemical profiles of floral honey produced in southern Brazil. Food Humanit. 2023, 1, 1423–1435. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Ploskas, N.; Koutsoumanis, K.; Katsanidis, E. Identification of geographical and botanical origin of Mediterranean honeys using UV-vis spectroscopy and multivariate statistical analysis. J. Food Meas. Charact. 2024, 18, 3923–3934. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The use of UV spectroscopy and SIMCA for the authentication of Indonesian honeys according to botanical, entomological and geographical origins. Molecules 2021, 26, 915. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Ploskas, N.; Serrano, S.; Silva, C.S.; Valdramidis, V.; Koutsoumanis, K.; Katsanidis, E. Application of UV–Vis spectroscopy for the detection of adulteration in Mediterranean honeys. Eur. Food Res. Technol. 2023, 249, 3043–3053. [Google Scholar] [CrossRef]
- Mitra, P.K.; Karmakar, R.; Nandi, R.; Gupta, S. Low-cost rapid workflow for honey adulteration detection by UV–Vis spectroscopy in combination with factorial design, response surface methodology and supervised machine learning classifiers. Bioresource Technol. Rep. 2023, 21, 101327. [Google Scholar] [CrossRef]
- Nunes, A.; Azevedo, G.Z.; Rocha dos Santos, B.; Vanz Borges, C.; Lima, G.P.P.; Crocoli, C.; Moura, L.S.; Maraschin, M. Characterization of Brazilian floral honey produced in the States of Santa Catarina and São Paulo through ultraviolet-visible (UV–vis), near-infrared (NIR), and nuclear magnetic resonance (NMR) spectroscopy. Food Res. Int. 2022, 162, 111913. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.J.; Al-Ghamdi, A.; Khan, K.A.; Adgaba, N.; El-Ahmady, S.H.; Gad, H.A.; Roshan, A.; Meo, S.A.; Kolyali, S. Validation of botanical origins and geographical sources of some Saudi honeys using ultraviolet spectroscopy and chemometric analysis. Saudi J. Biol. Sci. 2018, 25, 377–382. [Google Scholar] [CrossRef]
- Ameer, K.; Murtaza, M.A.; Jiang, G.; Zhao, C.-C.; Siddique, F.; Kausar, T.; Mueen-ud-Din, G.; Mahmood, S. Fluorescence and ultraviolet-visible spectroscopy in the honey analysis. In Advanced Techniques of Honey Analysis, 1st ed.; Nayik, G.A., Uddin, J., Nanda, V., Eds.; Academic Press: London, UK, 2024; Volume 1, pp. 153–191. [Google Scholar] [CrossRef]
- Banaś, J.; Banaś, M. Combined application of fluorescence spectroscopy and principal component analysis in characterisation of selected herbhoneys. Molecules 2024, 29, 749. [Google Scholar] [CrossRef]
- Ropciuc, S.; Dranca, F.; Pauliuc, D.; Oroian, M. Honey authentication and adulteration detection using emission—excitation spectra combined with chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 293, 122459. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Kluwer Academic/Plenum: New York, NY, USA, 2007; pp. 63–94. [Google Scholar]
- Truong, H.T.D.; Reddy, P.; Reis, M.M.; Archer, R. Internal reflectance cell fluorescence measurement combined with multi-way analysis to detect fluorescence signatures of undiluted honeys and a fusion of fluorescence and NIR to enhance predictability. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 290, 122274. [Google Scholar] [CrossRef]
- Suhandy, D.; Al Riza, D.F.; Yulia, M.; Kusumiyati, K. Non-targeted detection and quantification of food adulteration of high-quality stingless bee honey (SBH) via a portable LED-based fluorescence spectroscopy. Foods 2023, 12, 3067. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Li, J.; Liu, X.; Yuan, J.; Yuan, W.; Tian, Y.; Xuan, H. Authentication of acacia honey using fluorescence spectroscopy. Food Control 2021, 130, 108327. [Google Scholar] [CrossRef]
- Becerril-Sánchez, A.L.; Quintero-Salazar, B.; Dublán-García, O.; Escalona-Buendía, H.B. Phenolic compounds in honey and their relationship with antioxidant activity, botanical origin, and color. Antioxidants 2021, 10, 1700. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, M.; Santander, E. Physicochemical and sensory analysis of honeys from eastern Formosa province (Argentina) and its relationship with their botanical origin. Food Chem. Adv. 2022, 1, 100026. [Google Scholar] [CrossRef]
- Julika, W.N.; Ajit, A.; Naila, A.; Sulaiman, A.Z. The effect of storage condition on physicochemical properties of some stingless bee honey collected in Malaysia local market. Mater. Today Proc. 2022, 57, 1396–1402. [Google Scholar] [CrossRef]
- Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, J.L.; Macías-López, E.; Bujdud-Pérez, J.M.; Medina-Ramírez, I. Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 178, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Lastra-Mejías, M.; Torreblanca-Zanca, A.; Aroca-Santos, R.; Cacilla, J.C.; Izquierdo, J.G.; Torrecilla, J.S. Characterization of an array of honeys of different types and botanical origins through fluorescence emission based on LEDs. Talanta 2018, 185, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Mehretie, S.; Al Riza, D.F.; Yoshito, S.; Kondo, N. Classification of raw Ethiopian honeys using front face fluorescence spectra with multivariate analysis. Food Control 2018, 84, 83–88. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Künzli, R.; Bogdanov, S.; Bosset, J.O.; von der Ohe, K.; von der Ohe, W.; Amadò, R. Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. J. Agric. Food Chem. 2006, 54, 6858–6866. [Google Scholar] [CrossRef] [PubMed]
- Parri, E.; Santinami, G.; Domenici, V. Front-face fluorescence of honey of different botanic origin: A case study from Tuscany (Italy). Appl. Sci. 2020, 10, 1776. [Google Scholar] [CrossRef]
- Mara, A.; Migliorini, M.; Ciulu, M.; Roberto Chignola, R.; Egido, C.; Núñez, O.; Sentellas, S.; Saurina, J.; Caredda, M.; Deroma, M.A.; et al. Elemental fingerprinting combined with machine learning techniques as a powerful tool for geographical discrimination of honeys from nearby regions. Foods 2024, 13, 243. [Google Scholar] [CrossRef]
- Masoomi, S.; Sharifi, H.; Hemmateenejad, B. A paper-based optical tongue for characterization of iranian honey: Identification of geographical/botanical origins and adulteration detection. Food Control 2024, 155, 110052. [Google Scholar] [CrossRef]
- Ibarra-Pérez, T.; Jaramillo-Martínez, R.; Correa-Aguado, H.C.; Ndjatchi, C.; Martínez-Blanco, M.R.; Héctor, A.; Guerrero-Osuna, H.A.; Mirelez-Delgado, F.D.; Casas-Flores, J.I.; Reveles-Martínez, R.; et al. A performance comparison of CNN models for bean phenology classification using transfer learning techniques. AgriEngineering 2024, 6, 841–857. [Google Scholar] [CrossRef]
- Ghafoor, N.A.; Sitkowska, B. MasPA: A machine learning application to predict risk of mastitis in cattle from AMS sensor data. AgriEngineering 2021, 3, 575–583. [Google Scholar] [CrossRef]
- Vitale, R.; Cocchi, M.; Biancolillo, A.; Ruckebusch, C.; Marini, F. Class modelling by soft independent modelling of class analogy: Why, when, how? A tutorial. Anal. Chim. Acta 2023, 1270, 341304. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, B.; Yang, J.; Zhou, J.; Xu, Y. Linear discriminant analysis. Nat. Rev. Methods Primers 2024, 4, 70. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Kharbach, M.; Mansouri, M.A.; Taabouz, M.; Yu, H. Current application of advancing spectroscopy techniques in food analysis: Data handling with chemometric approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 37–43. [Google Scholar] [CrossRef]
- Truong, H.T.D.; Al-Sarayreh, M.; Reddy, P.; Reis, M.M.; Archer, R. The potential of deep learning to counter the matrix effect for assessment of honey quality and monoflorality. Microchem. J. 2024, 204, 111200. [Google Scholar] [CrossRef]
- Babatunde, H.A.; Collins, J.; Lukman, R.; Saxton, R.; Andersen, T.; McDougal, O.M. SVR chemometrics to quantify β-lactoglobulin and α-lactalbumin in milk using MIR. Foods 2024, 13, 166. [Google Scholar] [CrossRef]
- El Mrabet, A.; El Orche, A.; Diane, A.; Alami, L.; Said, A.A.H.; Bouatia, M.; El Otmani, I.S. Application of multivariate data analysis methods for rapid detection and quantification of adulterants in lavender essential oil using infrared spectroscopy. Flavour. Fragr. J. 2024. [Google Scholar] [CrossRef]
- Aykas, D.P. Determination of possible adulteration and quality assessment in commercial honey. Foods 2023, 12, 523. [Google Scholar] [CrossRef]
- Ghosh, N.; Verma, Y.; Majumder, S.K.; Gupta, P.K. A fluorescence spectroscopic study of honey and cane sugar syrup. Food Sci. Technol. Res. 2005, 11, 59–62. [Google Scholar] [CrossRef]
- Yan, S.; Sun, M.; Wang, X.; Shan, J.; Xue, X. A novel, rapid screening technique for sugar syrup adulteration in honey using fluorescence spectroscopy. Foods 2022, 11, 2316. [Google Scholar] [CrossRef]
- Barbieri, D.; Gabriele, M.; Summa, M.; Colosimo, R.; Leonardi, D.; Domenici, V.; Pucci, L. Antioxidant, nutraceutical properties, and fluorescence spectral profiles of bee pollen samples from different botanical origins. Antioxidants 2020, 9, 1001. [Google Scholar] [CrossRef]
- Sergiel, I.; Pohl, P.; Biesaga, M.; Mironczyk, A. 2014. Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles. Food Chem. 2014, 145, 319–326. [Google Scholar] [CrossRef]
- Lang, M.; Stober, F.; Uchtenthaler, H.K. Fluorescence emission spectra of plant leaves and plant constituents. Rad. Environ. Biophys. 1991, 30, 333–347. [Google Scholar] [CrossRef]
- Balcázar-Zumaeta, C.R.; Maicelo-Quintana, J.L.; Salón-Llanos, G.; Barrena, M.; Muñoz-Astecker, L.D.; Cayo-Colca, I.S.; Torrejón-Valqui, L.; Castro-Alayo, E.M. A novel technique using confocal Raman spectroscopy coupled with PLS-DA to identify the types of sugar in three tropical fruits. Appl. Sci. 2024, 14, 8476. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. Classification of Lampung robusta specialty coffee according to differences in cherry processing methods using UV spectroscopy and chemometrics. Agriculture 2021, 11, 109. [Google Scholar] [CrossRef]
- Matwijczuk, A.; Budziak-Wieczorek, I.; Czernel, G.; Karcz, D.; Barańska, A.; Jedlińska, A.; Samborska, K. Classification of honey powder composition by FTIR spectroscopy coupled with chemometric analysis. Molecules 2022, 27, 3800. [Google Scholar] [CrossRef]
- Raypah, M.E.; Zhi, L.J.; Loon, L.Z.; Omar, A.F. Near-infrared spectroscopy with chemometrics for identification and quantification of adulteration in high-quality stingless bee honey. Chemom. Intell. Lab. Syst. 2022, 224, 104540. [Google Scholar] [CrossRef]
- Nayik, G.A.; Suhag, Y.; Majid, I.; Nanda, V. Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals. J. Saudi Soc. Agric. Sci. 2018, 17, 200–207. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Lin, L.; Zhang, J.; Zhu, J.; Yao, L.; Wang, S.; Yao, Z.; Wu, Z. Low risk of category misdiagnosis of rice syrup adulteration in three botanical origin honey by ATR-FTIR and general model. Food Chem. 2020, 332, 127356. [Google Scholar] [CrossRef]
- Wu, X.; Xu, B.; Ma, R.; Gao, S.; Niu, Y.; Zhang, X.; Du, Z.; Liu, H.; Zhang, Y. Botanical origin identification and adulteration quantification of honey based on Raman spectroscopy combined with convolutional neural network. Vib. Spectrosc. 2022, 123, 103439. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Shan, Y.; Su, D.; Ma, Q.; Wen, R.; Li, J. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food Chem. 2017, 218, 231–236. [Google Scholar] [CrossRef]
- Ferreiro-González, M.; Espada-Bellido, E.; Guillén-Cueto, L.; Palma, M.; Barroso, C.G.; Barbero, G.F. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Talanta 2018, 188, 288–292. [Google Scholar] [CrossRef]
- Amiry, S.; Esmaiili, M.; Alizadeh, M. Classification of adulterated honeys by multivariate analysis. Food Chem. 2017, 224, 390–397. [Google Scholar] [CrossRef]
- Egido, C.; Saurina, J.; Sentellas, S.; Núñez, O. Honey fraud detection based on sugar syrup adulterations by HPLC-UV fingerprinting and chemometrics. Food Chem. 2024, 436, 137758. [Google Scholar] [CrossRef]
- Parrini, S.; Staglianò, N.; Bozzi, R.; Argenti, G. Can Grassland chemical quality be quantified using transform near-infrared spectroscopy? Animals 2022, 12, 86. [Google Scholar] [CrossRef]
- Williams, P.C.; Sobering, D.C. Comparison of commercial near infrared transmittance and reflectance instruments for analysis of whole grains and seeds. J. Near Infrared Spectrosc. JNIRS 1993, 1, 25–32. [Google Scholar] [CrossRef]
- Benković, M.; Jurina, T.; Longin, L.; Grbeš, F.; Valinger, D.; Tušek, A.J.; Kljusurić, J.G. Qualitative and quantitative detection of acacia honey adulteration with glucose syrup using near-infrared spectroscopy. Separations 2022, 9, 312. [Google Scholar] [CrossRef]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Ciursă, P.; Pauliuc, D.; Dranca, F.; Ropciuc, S.; Oroian, M. Detection of honey adulterated with agave, corn, inverted sugar, maple and rice syrups using FTIR analysis. Food Control 2021, 130, 108266. [Google Scholar] [CrossRef]
- Chen, Q.; Qi, S.; Li, H.; Han, X.; Ouyang, Q.; Zhao, J. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 131, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Mouazen, A.M.; Al-Walaan, N. Glucose adulteration in Saudi honey with visible and near infrared spectroscopy. Int. J. Food Prop. 2014, 17, 2263–2274. [Google Scholar] [CrossRef]
SIMCA Model | Calibration and Validation Samples | Principal Components (PCs) | The Cumulative Percentage Variance (CPV) (%) | |
---|---|---|---|---|
Calibration | Validation | |||
Authentic SBH | 60 | 3 | 98.3490 | 98.1350 |
Adulterated SBH | 72 | 4 | 99.3491 | 99.2453 |
Fake SBH | 60 | 4 | 99.0731 | 98.8279 |
Rice Syrup (RS) | 120 | 4 | 98.8600 | 98.7172 |
Model | Samples | Actual | Accuracy | ||||
---|---|---|---|---|---|---|---|
Authentic SBH | Adulterated SBH | Fake SBH | Rice Syrup | ||||
SIMCA | Predicted | Authentic SBH | 19 | 4 | 0 | 0 | 78.1% |
Adulterated SBH | 20 | 39 | 0 | 19 | |||
Fake SBH | 0 | 0 | 39 | 0 | |||
Rice Syrup | 0 | 0 | 0 | 56 | |||
PLS-DA | Predicted | Authentic SBH | 30 | 0 | 0 | 0 | 86.5% |
Adulterated SBH | 10 | 35 | 2 | 0 | |||
Fake SBH | 0 | 13 | 38 | 3 | |||
Rice Syrup | 0 | 0 | 0 | 77 | |||
LDA | Predicted | Authentic SBH | 36 | 11 | 0 | 1 | 85.6% |
Adulterated SBH | 2 | 25 | 0 | 2 | |||
Fake SBH | 2 | 0 | 40 | 0 | |||
Rice Syrup | 0 | 12 | 0 | 77 | |||
PCA-LDA | Predicted | Authentic SBH | 40 | 0 | 0 | 0 | 99.5% |
Adulterated SBH | 0 | 48 | 1 | 0 | |||
Fake SBH | 0 | 0 | 39 | 0 | |||
Rice Syrup | 0 | 0 | 0 | 80 |
Intervals | Region | R2 | RMSEC (%) | RMSECV (%) | RPD | RER |
---|---|---|---|---|---|---|
Full spectrum | 348.5–866.5 nm | 0.899 | 5.439 | 6.157 | 2.793 | 8.121 |
1 | 348.5–398.0 nm | 0.823 | 7.189 | 7.821 | 2.199 | 6.393 |
2 | 398.5–448.0 nm | 0.844 | 6.750 | 7.247 | 2.373 | 6.899 |
3 | 448.5–498.0 nm | 0.873 | 6.082 | 6.567 | 2.619 | 7.614 |
4 | 498.5–548.0 nm | 0.873 | 6.077 | 6.654 | 2.585 | 7.514 |
5 | 548.5–598.0 nm | 0.871 | 6.138 | 6.821 | 2.521 | 7.330 |
6 | 598.5–648.0 nm | 0.824 | 7.172 | 7.446 | 2.310 | 6.715 |
7 | 648.5–698.0 nm | 0.795 | 7.727 | 8.128 | 2.116 | 6.152 |
8 | 698.5–748.0 nm | 0.824 | 7.167 | 8.874 | 1.938 | 5.634 |
9 | 748.5–798.0 nm | 0.764 | 8.305 | 12.642 | 1.360 | 3.955 |
10 | 798.5–866.5 nm | 0.684 | 9.607 | 11.134 | 1.545 | 4.491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suhandy, D.; Al Riza, D.F.; Yulia, M.; Kusumiyati, K.; Telaumbanua, M.; Naito, H. Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods 2024, 13, 3648. https://doi.org/10.3390/foods13223648
Suhandy D, Al Riza DF, Yulia M, Kusumiyati K, Telaumbanua M, Naito H. Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods. 2024; 13(22):3648. https://doi.org/10.3390/foods13223648
Chicago/Turabian StyleSuhandy, Diding, Dimas Firmanda Al Riza, Meinilwita Yulia, Kusumiyati Kusumiyati, Mareli Telaumbanua, and Hirotaka Naito. 2024. "Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics" Foods 13, no. 22: 3648. https://doi.org/10.3390/foods13223648
APA StyleSuhandy, D., Al Riza, D. F., Yulia, M., Kusumiyati, K., Telaumbanua, M., & Naito, H. (2024). Rapid Authentication of Intact Stingless Bee Honey (SBH) by Portable LED-Based Fluorescence Spectroscopy and Chemometrics. Foods, 13(22), 3648. https://doi.org/10.3390/foods13223648