Evaluation of the Sensory Quality and Shelf Life of a Bioactive Essence Rich in Monounsaturated Fatty Acids and Antioxidants, Obtained from Eco-Sustainable Iberian Ham
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material: Essences Derived from Cured Iberian Ham Fat
2.2. Hedonic and Preference Test/Analysis
2.2.1. Recruitment of Participants: Inclusion and Exclusion Criteria
2.2.2. Preparation of Questionnaires
2.2.3. Sample Preparation
2.2.4. Preparation of Shipments and Home Delivery
2.3. Stability and Shelf Life Evaluation
2.3.1. Sample Extraction and Preparation
2.3.2. Microbiological Analyses
2.4. Physicochemical Analyses
2.4.1. Characterization of the Fatty Acid Composition
2.4.2. Determination of the Degree of Acidity and Peroxide Index
2.4.3. pH Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Hedonic and Preference Test
3.1.1. Visual, Olfactory, and Taste Assessment
3.1.2. Differences According to Age Group and Sex/Gender
3.1.3. General Product Purchase and Acquisition Preferences and Information on Product Consumption and Modifications
3.2. Shelf Life Evaluation
3.2.1. Microbiological Stability Study
3.2.2. Characterization of the Fatty Acid Composition
3.2.3. Determination of the Degree of Acidity and Peroxide Index
3.2.4. pH Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conrad, Z.; Niles, M.T.; Neher, D.A.; Roy, E.D.; Tichenor, N.E.; Jahns, L. Relationship between Food Waste, Diet Quality, and Environmental Sustainability. PLoS ONE 2018, 13, e0195405. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.M.; de Moura, A.P.; Deliza, R.; Cunha, L.M. The Role of Local Seasonal Foods in Enhancing Sustainable Food Consumption: A Systematic Literature Review. Foods 2021, 10, 2206. [Google Scholar] [CrossRef] [PubMed]
- Caballero, D.; Asensio, M.; Fernández, C.; Martín, N.; Silva, A. Classifying Different Iberian Pig Genetic Lines by Applying Chemical–Instrumental Parameters of Dry-Cured Iberian Shoulders. J. Food Sci. Technol. 2018, 55, 4589–4599. [Google Scholar] [CrossRef]
- Díaz-Caroa, C.; García-Torres, S.; Elghannamc, A.; Tejerinab, D.; Mesiasc, F.; Ortizb, A. Is Production System a Relevant Attribute in Consumers’ Food Preferences? T The Case of Iberian Dry-Cured Ham in Spain. Meat Sci. 2019, 158, 107908. [Google Scholar] [CrossRef]
- Segura-Borrego, M.; Ríos-Reina, R.; Galán-Soldevilla, H.; Forero, F.; Venegas, M.; Ruiz Pérez-Cacho, P.; Morales, M.; Callejón, R. Influence of the Ripening Chamber’s Geographical Location on Dry-Cured Iberian Ham’s Key Odorants. Food Res. Int. 2022, 152, 110977. [Google Scholar] [CrossRef] [PubMed]
- Nieto, R.; García-Casco, J.; Lara, L.; Palma-Granados, P.; Izquierdo, M.; Hernandez, F.; Dieguez, E.; Duarte, J.L.; Batorek-Lukač, N. Ibérico (Iberian) Pig. In European Local Pig Breeds—Diversity and Performance. A Study of Project TREASURE; Interchopen: London, UK, 2019; pp. 1–25. [Google Scholar]
- Vieira, C.; Sarmiento-García, A.; García, J.J.; Rubio, B.; Martínez, B. Quality and Shelf Life of Fresh Meat from Iberian Pigs as Affected by a New Form of Presentation of Oleic Acid and an Organic-Acid Mix in the Diet. Foods 2021, 10, 985. [Google Scholar] [CrossRef]
- Villanueva, A.J.; Salazar-Ordonez, M.; Granado-Díaz, R.; Rodríguez-Entrena, M. Consumers’ Preferences for Traditional Meat Products: Production System and Objective Quality Cues in Iberian Ham. Ital. J. Anim. Sci. 2021, 20, 1987–2001. [Google Scholar] [CrossRef]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in Value-Addition of Edible Meat by-Products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef]
- Bruna-García, E.; Isabel Redondo, B.; Miguel Castro, M. New Method for Obtaining a Bioactive Essence Extracted from Iberian Ham Fat Rich in MUFA and Antioxidants. Molecules 2022, 27, 428. [Google Scholar] [CrossRef]
- Bruna-García, E.; Isabel-Redondo, B.; Sabater-Munoz, B.; Miguel-Castro, M. Assessment of Antioxidant Bioactive Properties of Iberian Dry-Cured Ham Fat-Derived Essences Using the Yeast Saccharomyces Cerevisiae as Experimental Model. LWT 2023, 186, 115235. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.-H.; Chen, C.-M. The Role of Oxidative Stress in Parkinson’s Disease. Antioxidants 2020, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Lima Filho, T.; Minim Paula Rodrigues, V.; de Cássia dos Santos Navarro da Silva, R.; Della Lucia, S.M.; Minim, L.A. Methodology for Determination of Two New Sensory Thresholds: Compromised Acceptance Threshold and Rejection Threshold. Food Res. Int. 2015, 76, 561–566. [Google Scholar] [CrossRef]
- Calligaris, S.; Manzocco, L.; Anese, M.; Nicoli, M.C. Shelf-Life Assessment of Food Undergoing Oxidation–A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1903–1912. [Google Scholar] [CrossRef]
- Corradini, M.G. Shelf Life of Food Products: From Open Labeling to Real-Time Measurements. Annu. Rev. Food Sci. Technol. 2018, 9, 251–269. [Google Scholar] [CrossRef]
- Da Cunha, D.T.; Assunção Botelho, R.B.; Ribeiro de Brito, R.; de Oliveira Pineli, L.d.L.; Stedefeldt, E. Métodos Para Aplicar Las Pruebas de Aceptación Para La Alimentación Escolar: Validación de La Tarjeta Lúdica. Rev. Chil. Nutr. 2013, 40, 357–363. [Google Scholar] [CrossRef]
- The European Commission. COMMISSION REGULATION (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2007, 338, 1–29. [Google Scholar]
- Lopez-Bote, C.J.; Isabel, B.; Ruiz, J.; Daza, A. Effect of Vitamin E Supplementation and Partial Substitution of Poly- with Mono-Unsaturated Fatty Acids in Pig Diets on Muscle, and Microsome Extract α-Tocopherol Concentration and Lipid Oxidation. Arch. Anim. Nutr. 2003, 57, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Isabel, B.; Cordero, G.; Olivares, A.; Daza, A.; Lopez-Bote, C.J. Differential response of Iberian and lean pig crossbreeds to dietary linoleic acid administration. Span. J. Agric. Res. 2014, 12, 419. [Google Scholar] [CrossRef]
- The European Commission. COMMISSION IMPLEMENTING REGULATION (EU) 2015/1833 of 12 October 2015 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Off. J. Eur. Union 2015, 2015, 29–52. [Google Scholar]
- Geier, U.; Büssing, A.; Kruse, P.; Greiner, R.; Buchecker, K. Development and Application of a Test for Food-Induced Emotions. PLoS ONE 2016, 11, e0165991. [Google Scholar] [CrossRef]
- Haș, I.M.; Vodnar, D.C.; Bungau, A.F.; Tarce, A.G.; Tit, D.M.; Teleky, B.E. Enhanced Elderberry Snack Bars: A Sensory, Nutritional, and Rheological Evaluation. Foods 2023, 12, 3544. [Google Scholar] [CrossRef]
- Sharif, M.K.; Sharif, H.R.; Nasir, M. Sensory Evaluation and Consumer Acceptability. In Handbook of Food Science and Technology; Royal Society of Chemistry: London, UK, 2017; pp. 361–386. [Google Scholar]
- Ruiz, J.; García, C.; Muriel, E.; Andrés, A.I.; Ventanas, J. Influence of Sensory Characteristics on the Acceptability of Dry-Cured Ham. Meat Sci. 2002, 61, 347–354. [Google Scholar] [CrossRef]
- Sugimoto, M.; Obiya, S.; Kaneko, M.; Enomoto, A.; Honma, M.; Wakayama, M.; Tomita, M. Simultaneous Analysis of Consumer Variables, Acceptability and Sensory Characteristics of Dry-Cured Ham. Meat Sci. 2016, 121, 210–215. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Ruiz, J.; Martín, D.; Barat, J.M.; Antequera, T. Pre-Cure Freezing Effect on Physicochemical, Texture and Sensory Characteristics of Iberian Ham. Food Sci. Technol. Int. 2011, 17, 127–133. [Google Scholar] [CrossRef]
- Weaver, M.R.; Brittin, H.C. Food Preferences of Men and Women by Sensory Evaluation versus Questionnaire. Fam. Consum. Sci. Res. J. 2001, 29, 288–301. [Google Scholar] [CrossRef]
- Nordin, S.; Broman, D.A.; Garvill, J.; Nyroos, M. Gender Differences in Factors Affecting Rejection of Food in Healthy Young Swedish Adults. Appetite 2004, 43, 295–301. [Google Scholar] [CrossRef]
- Booth, D.A. “I Like It!” Preference Actions Separated from Hedonic Reactions. J. Sens. Stud. 2016, 31, 213–232. [Google Scholar] [CrossRef]
- COMMISSION REGULATION (EEC) No 2568/91 of 11 July 1991 on the characteristics of olive oils and olive-residue oils and on the relevant methods of analysis. Off. J. Eur. Union 1999, 248, 1–18.
- Tarlak, F. The Use of Predictive Microbiology for the Prediction of the Shelf Life of Food Products. Foods 2023, 12, 4461. [Google Scholar] [CrossRef]
- Piras, F.; Fois, F.; Casti, D.; Mazza, R.; Consolati, S.G.; Mazzette, R. Shelf Life of Sliced Dry-Cured Ham Packaged Under Vacuum. J. Food Process. Preserv. 2016, 40, 1223–1228. [Google Scholar] [CrossRef]
- Calo-Mata, P.; Arlindo, S.; Boehme, K.; de Miguel, T.; Pascoal, A.; Barros-Velazquez, J. Current Applications and Future Trends of Lactic Acid Bacteria and Their Bacteriocins for the Biopreservation of Aquatic Food Products. Food Bioprocess Technol. 2008, 1, 43–63. [Google Scholar] [CrossRef]
- Simoncini, N.; Pinna, A.; Toscani, T.; Virgili, R. Effect of Added Autochthonous Yeasts on the Volatile Compounds of Dry-Cured Hams. Int. J. Food Microbiol. 2015, 212, 25–33. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Sánchez, C.; Nuñez, M.; Picon, A. Microbiota of Iberian Dry-Cured Ham as Influenced by Chemical Composition, High Pressure Processing and Prolonged Refrigerated Storage. Food Microbiol. 2019, 80, 62–69. [Google Scholar] [CrossRef]
- Smeriglio, A.; Toscano, G.; Denaro, M.; De Francesco, C.; Agozzino, S.; Trombetta, D. Nitrogen Headspace Improves the Extra Virgin Olive Oil Shelf-Life, Preserving Its Functional Properties. Antioxidants 2019, 8, 331. [Google Scholar] [CrossRef]
- Santa-María, C.; López-Enríquez, S.; Montserrat-de la Paz, S.; Geniz, I.; Reyes-Quiroz, M.E.; Moreno, M.; Palomares, F.; Sobrino, F.; Alba, G. Update on Anti-Inflammatory Molecular Mechanisms Induced by Oleic Acid. Nutrients 2023, 15, 224. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; del Mar Bibiloni, M.; Tur, J. Dietary Fat Intake and Metabolic Syndrome in Adults: A Systematic Review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary Linoleic Acid and Human Health: Focus on Cardiovascular and Cardiometabolic Effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Ariza-Ortega, A.; López Valdez, F.; Coyotl Huerta, J.; Ramos Cassellis, M.; Díaz Reyes, J.; Martínez-Zavala, A. Artículo Efecto de Diferentes Métodos de Extracción Sobre El Perfil de Ácidos Grasos En El Aceite de Aguacate (Persea Americana Mill. Var. Hass) Effect of Different Extraction Methods on the Fatty Acid Profile in the Avocado. Rev. Venez. Cienc. Tecnol. Aliment. 2011, 2, 263–276. [Google Scholar]
- Grossi, M.; Bendini, A.; Valli, E.; Gallina Toschi, T. Field-Deployable Determinations of Peroxide Index and Total Phenolic Content in Olive Oil Using a Promising Portable Sensor System. Sensors 2023, 23, 5002. [Google Scholar] [CrossRef]
- Alvarruiz, A.; Pardo, J.E.; Copete, M.E.; de Miguel, C.; Rabadán, A.; López, E.; Álvarez-Ortí, M. Evolution of Virgin Olive Oil during Long-Term Storage. J. Oleo Sci. 2020, 69, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Čandek-Potokar, M.; Škrlep, M. Factors in Pig Production That Impact the Quality of Dry-Cured Ham: A Review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef] [PubMed]
Analysis Time | Refrigeration (2 to 4 °C ) | Freezing (−18 to −22 °C ) |
---|---|---|
Time 0 | T0 | |
1 week | R-1W | F-1W |
1 month | R-1M | F-1M |
4 months | R-4M | F-4M |
6 months | R-6M | F-6M |
8 months | R-8M | F-8M |
10 months | - | F-10M |
15 months | - | F-15M |
Microorganism Tested | Detection Limit |
---|---|
Aerobic mesophiles | 103 cfu/gr |
Anaerobic mesophiles | 102 cfu/gr |
Anaerobic spores | 102 cfu/gr |
Aerobic spores | 102 cfu/gr |
Fungi and yeasts | 102 cfu/g |
Escherichia coli | 102 cfu/gr |
Salmonella spp. | Absence in 25 g |
Listeria monocytogenes | Absence in 25 g |
Microorganism | Sample | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | R-1S | R-1M | R-4M | R-6M | R-8M | |||||||
A * | B * | A * | B * | A * | B * | A * | B * | A * | B * | A * | B * | |
Aerobic mesophiles | 5 × 101 | 1 × 101 | 5 × 101 | <101 | 1 × 101 | <101 | <101 | <101 | <101 | <101 | <101 | 1.1 × 102 |
Anaerobic mesophiles | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 |
Anaerobic spores | <101 | 1 × 101 | <101 | <101 | 1 × 101 | <101 | 1 × 101 | <101 | 1 × 101 | <101 | <101 | <101 |
Aerobic spores | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 |
Fungi and yeasts | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 |
Escherichia coli | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 |
Salmonella spp. | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** |
Listeria monocytogenes | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** |
Microorganism | Sample | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | F-1S | F-1M | F-4M | F-6M | F-8M | F-10M | F-15M | |||||||||
A * | B * | A * | B * | A * | B * | A * | B * | A * | B * | A * | B * | A * | B * | A * | B * | |
Aerobic mesophiles | 5 × 101 | 1 × 101 | <101 | <101 | <101 | <101 | <101 | <101 | 1 × 101 | <101 | <101 | <101 | 1 × 102 | 1.1 × 102 | <101 | <101 |
Anaerobic mesophiles | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | 3 × 101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 |
Anaerobic spores | <101 | 1 × 101 | 1 × 101 | <101 | 1 × 101 | <101 | <101 | <101 | <101 | <101 | 1 × 101 | <101 | <101 | <101 | 1 × 101 | <101 |
Aerobic spores | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 | <101 |
Fungi and yeasts | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 |
Escherichia coli | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 | <102 |
Salmonella spp. | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** |
Listeria monocytogenes | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** | Abs. 25gr ** |
Fatty Acid | Sample | ||||||
---|---|---|---|---|---|---|---|
T0 | R-1W | R-1M | R-4M | R-6M | R-8M | ||
SFAs (%) | Lauric | 0.05 ± 0 | 0.03 ± 0 | 0.05 ± 0 | 0.06 ± 0.01 | 0.06 ± 0 | 0.68 ± 0 |
Myristic | 1.05 ± 0.03 | 1.16 ± 0.02 | 1.10 ± 0.02 | 1.16 ± 0.02 | 1.15 ± 0.03 | 1.16 ± 0 | |
Palmitic | 19.62 ± 0.02 | 21.44 ± 0.12 | 20.01 ± 0.01 | 20.27 ± 0.11 | 20.25 ± 0.16 | 21.52 ± 0.03 | |
Margaric | 0.19 ± 0 | 0.25 ± 0.12 | 0.19 ± 0 | 0.24 ± 0 | 0.26 ± 0.1 | 0.25 ± 0 | |
Stearic | 6.52 ± 0.1 | 8.27 ± 0.08 | 9.43 ± 0.05 | 8.99 ± 0.05 | 9.37 ± 0.08 | 8.44 ± 0.06 | |
Arachidic | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.16 ± 0 | 0.15 ± 0.01 | 0.17 ± 0.01 | 0.17 ± 0 | |
Total SFAs (%) | 27.60 ± 0.02 a | 31.23 ± 0.16 c | 31.00 ± 0.01 b | 30.81 ± 0.07 b | 31.32 ± 0.14 c | 31.60 ± 0.09 d | |
MUFAs (%) | Palmitoleic | 2.41 ± 0 | 2.20 ± 0.03 | 2.08 ± 0.01 | 2.26 ± 0.01 | 2.08 ± 0.01 | 2.20 ± 0.02 |
Cis-10-heptadecenoic | 0.25 ± 0.01 | 0.29 ± 0.01 | 0.27 ± 0 | 0.28 ± 0.01 | 0.28 ± 0.01 | 0.29 ± 0.01 | |
Oleic | 60.95 ± 0.02 | 57.63 ± 0.15 | 57.50 ± 0.11 | 58 ± 0.09 | 57.45 ± 0.11 | 57.35 ± 0.09 | |
Eicosanoid | 1.26 ± 0.02 | 1.35 ± 0.03 | 1.36 ± 0 | 1.26 ± 0 | 1.26 ± 0.04 | 1.36 ± 0.03 | |
Total MUFAs (%) | 64.88 ± 0.02 d | 61.50 ± 0.21 b | 61.21 ± 0.01 a | 61.82 ± 0.07 c | 61.00 ± 0.13 a | 61.20 ± 0.08 a | |
PUFAs (%) | Linoleic | 7.05 ± 0.01 | 6.62 ± 0.01 | 7.18 ± 0.01 | 6.81 ± 0 | 7.10 ± 0.01 | 6.60 ± 0.02 |
α-linolenic | 0.48 ± 0.01 | 0.64 ± 0.01 | 0.61 ± 0.01 | 0.57 ± 0.01 | 0.60 ± 0.01 | 0.61 ± 0.02 | |
Total PUFAs (%) | 7.53 ± 0 b,c | 7.30 ± 0.01 a | 7.79 ± 0.01 d | 7.37 ± 0.01 a,b | 7.67 ± 0.05 c,d | 7.21 ± 0.01 a |
Fatty Acid (%) | Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
T0 | F-1W | F-1M | F-4M | F-6M | F-8M | F-10M | F-15M | ||
SFAs (%) | Lauric | 0.05 ± 0 | 0.06 ± 0 | 0.05 ± 0.01 | 0.06 ± 0 | 0.06 ± 0 | 0.06 ± 0 | 0.05 ± 0 | 0.05 ± 0 |
Myristic | 1.05 ± 0.03 | 1.12 ± 0.02 | 1.09 ± 0.02 | 1.20 ± 0.01 | 1.17 ± 0.02 | 1.15 ± 0.01 | 1.05 ± 0 | 1.03 ± 0.02 | |
Palmitic | 19.62 ± 0.02 | 21.23 ± 0.24 | 21.45 ± 0.12 | 20.71 ± 0.11 | 21.27 ± 0.29 | 20.88 ± 0.34 | 20.86 ± 0.14 | 19.79 ± 0.08 | |
Margaric | 0.19 ± 0 | 0.25 ± 0.01 | 0.24 ± 0.04 | 0.23 ± 0 | 0.24 ± 0.02 | 0.23 ± 0.01 | 0.23 ± 0 | 0.23 ± 0.01 | |
Stearic | 6.52 ± 0.1 | 8.32 ± 0.05 | 9.34 ± 0.04 | 8.87 ± 0.05 | 11.42 ± 0.04 | 10.16 ± 0 | 8.81 ± 0 | 8.82 ± 0.03 | |
Arachidic | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.16 ± 0.01 | 0.16 ± 0.01 | 0.20 ± 0.01 | 0.16 ± 0 | 0.15 ± 0.01 | 0.16 ± 0.01 | |
Total SFAs (%) | 27.60 ± 0.02 a | 31.12 ± 0.10 c | 32.33 ± 0.10 e | 31.22 ± 0.07 c,d | 34.37 ± 0.06 g | 32.64 ± 0.05 f | 31.37 ± 0.15 d | 30.08 ± 0.06 b | |
MUFAs (%) | Palmitoleic | 2.41 ± 0 | 2.19 ± 0.03 | 2.05 ± 0.01 | 2.31 ± 0.03 | 1.95 ± 0.02 | 2.07 ± 0.01 | 1.97 ± 0.01 | 1.98 ± 0.02 |
Cis-10-heptadecenoic | 0.25 ± 0.01 | 0.28 ± 0.01 | 0.26 ± 0.01 | 0.26 ± 0.01 | 0.22 ± 0.01 | 0.25 ± 0.01 | 0.22 ± 0.01 | 0.25 ± 0.01 | |
Oleic | 60.95 ± 0.02 | 57.72 ± 0.11 | 56.91 ± 0.09 | 57.60 ± 0.09 | 55.12 ± 0.09 | 56.54 ± 0.28 | 58.46 ± 0.33 | 58.99 ± 0.62 | |
Eicosanoid | 1.26 ± 0.02 | 1.38 ± 0.02 | 1.36 ± 0.03 | 1.37 ± 0.01 | 1.32 ± 0.03 | 1.28 ± 0.02 | 1.22 ± 0.02 | 1.25 ± 0.03 | |
Total MUFAs (%) | 64.88 ± 0.02 f | 61.56 ± 0.09 d | 60.58 ± 0.10 c | 61.55 ± 0.06 d | 58.61 ± 0.08 a | 60.14 ± 0.03 b | 61.71 ± 0.08 d | 62.47 ± 0.06 e | |
PUFAs (%) | Linoleic | 7.05 ± 0.01 | 6.67 ± 0.01 | 6.51 ± 0.02 | 6.71 ± 0.01 | 6.53 ± 0.01 | 6.68 ± 0.01 | 6.48 ± 0.03 | 6.92 ± 0.01 |
α-linolenic | 0.48 ± 0.01 | 0.65 ± 0.01 | 0.58 ± 0.02 | 0.52 ± 0.01 | 0.49 ± 0.02 | 0.54 ± 0.02 | 0.49 ± 0.01 | 0.54 ± 0.16 | |
Total PUFAs (%) | 7.53 ± 0 g | 7.32 ± 0.02 d,e,f | 7.09 ± 0.01 b,c | 7.24 ± 0.01 c,e | 7.02 ± 0.03 a,b | 7.22 ± 0.02 c,d | 6.91 ± 0.07 a | 7.46 ± 0.01 f,g |
Sample | Degree of Acidity (% Oleic Acid) | Peroxide Value (Meq O2/kg Fat) |
---|---|---|
T0 | 24.02 ± 0.10 a | 2.78 ± 0.16 a |
R-1S | 24.94 ± 0.03 a,c | 4.10 ± 0.09 b |
R-1M | 25.81 ± 0.12 b,c | 5.03 ± 0.11c |
R-4M | 25.16 ± 0.38 a,c | 5.82 ± 0.30 d |
R-6M | 27.88 ± 0.19 d | 4.42 ± 0.14 b,c |
R-8M | 24.92 ± 0.67 a,b | 4.58 ± 0.08 b,c |
Sample | Degree of Acidity (% Oleic Acid) | Peroxide Value (Meq O2/kg Fat) |
---|---|---|
T0 | 24.02 ± 0.10 a | 2.78 ± 0.16 a |
F-1S | 24.99 ± 0.01a,c | 4.50 ± 0.33 b |
F-1M | 25.75 ± 0.27 b,c | 4.40 ± 0.66 b |
F-4M | 26.99 ± 0.77 d | 3.86 ± 0.13 b |
F-6M | 30.70 ± 0.4 e | 4.38 ± 0.8 b |
F-8M | 24.46 ± 0.62 a | 5.56 ± 0.17 c |
F-10M | 26.26 ± 0.06 d | 5.27 ± 0.16 c |
F-15M | 24.66 ± 0.05 a,b | 6.52 ± 0.11d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruna-García, E.; Miguel-Castro, M.; Isabel-Redondo, B. Evaluation of the Sensory Quality and Shelf Life of a Bioactive Essence Rich in Monounsaturated Fatty Acids and Antioxidants, Obtained from Eco-Sustainable Iberian Ham. Foods 2024, 13, 3596. https://doi.org/10.3390/foods13223596
Bruna-García E, Miguel-Castro M, Isabel-Redondo B. Evaluation of the Sensory Quality and Shelf Life of a Bioactive Essence Rich in Monounsaturated Fatty Acids and Antioxidants, Obtained from Eco-Sustainable Iberian Ham. Foods. 2024; 13(22):3596. https://doi.org/10.3390/foods13223596
Chicago/Turabian StyleBruna-García, Eva, Marta Miguel-Castro, and Beatriz Isabel-Redondo. 2024. "Evaluation of the Sensory Quality and Shelf Life of a Bioactive Essence Rich in Monounsaturated Fatty Acids and Antioxidants, Obtained from Eco-Sustainable Iberian Ham" Foods 13, no. 22: 3596. https://doi.org/10.3390/foods13223596
APA StyleBruna-García, E., Miguel-Castro, M., & Isabel-Redondo, B. (2024). Evaluation of the Sensory Quality and Shelf Life of a Bioactive Essence Rich in Monounsaturated Fatty Acids and Antioxidants, Obtained from Eco-Sustainable Iberian Ham. Foods, 13(22), 3596. https://doi.org/10.3390/foods13223596