Unraveling the Impact of Aspergillus sojae—A Food-Grade Fungus—On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Induction of Legume Seeds by Food-Grade Fungus A. sojae
Fungal Cultures and Fungal Inoculations of Legume Seeds
2.3. Extraction of A. sojae-Induced and Non-Induced Legumes
2.4. UPLC-DAD Quantification of Phytoalexins
2.5. Total Phenolic Content and Total Flavonoid Content
2.6. UPLC-ESI-QTOF-MS/MS Analysis of Phenolic Acids in Legume Extracts
2.7. Antioxidant Capacity of A. sojae-Induced and Non-Induced Legumes
2.7.1. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.7.2. DPPH Radical Scavenging Activity
2.7.3. ABTS Radical Cation-Based Assay
2.8. Antidiabetic Assays
2.8.1. α-Glucosidase Enzymatic Inhibition
2.8.2. α-Amylase Inhibition
2.9. Pancreatic Lipase Inhibition
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Phytoalexins in A. sojae-Induced Legumes
3.2. Total Phenolics and Total Flavonoid Content
3.3. UPLC-ESI-QTOF-MS/MS Characterization of Phenolic Acids in Legumes
3.4. Antioxidant Activity
3.5. Enzyme Inhibition of A. sojae-Induced and Non-Induced Legumes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.M.; Lim, J.; Lee, J.J.; Hurh, B.-S.; Lee, I. Characterization of Aspergillus sojae isolated from meju, Korean traditional fermented soybean brick. J. Microbiol. Biotechnol. 2017, 27, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhao, X.; Hu, F.; Fu, J.; Zhang, Z.; Liu, Z.; Wang, B.; He, R.; Ma, H.; Ho, C.T. The latest advances on soy sauce research in the past decade: Emphasis on the advances in China. Food Res. Int. 2023, 173, 113407. [Google Scholar] [CrossRef] [PubMed]
- Salunkhe, D.K.; Jadhav, S.J.; Kadam, S.S.; Chavan, J.K. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. Crit. Rev. Food Sci. Nutr. 1982, 17, 277–305. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.-Q.; Gan, R.-Y.; Ge, Y.-Y.; Zhang, D.; Corke, H. Polyphenols in common beans (Phaseolus vulgaris L.): Chemistry, analysis, and factors affecting composition. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1518–1539. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Clément, C.; Courot, E.; Cordelier, S. Modulation of phytoalexin biosynthesis in engineered plants for disease resistance. Int. J. Mol. Sci. 2013, 14, 14136–14170. [Google Scholar] [CrossRef]
- Aisyah, S.; Gruppen, H.; Andini, S.; Bettonvil, M.; Severing, E.; Vincken, J.P. Variation in accumulation of isoflavonoids in Phaseoleae seedlings elicited by Rhizopus. Food Chem. 2016, 196, 694–701. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Walk, T.E.; Arias, R.S.; Massa, A.N.; Orner, V.A.; Lamb, M.C. Transformation of major peanut (Arachis hypogaea) stilbenoid phytoalexins caused by selected microorganisms. J. Agric. Food Chem. 2022, 70, 1101–1110. [Google Scholar] [CrossRef]
- Zhuang, W.B.; Li, Y.H.; Shu, X.C.; Pu, Y.T.; Wang, X.J.; Wang, T.; Wang, Z. The classification, molecular structure and biological biosynthesis of flavonoids, and their roles in biotic and abiotic stresses. Molecules 2023, 28, 3599. [Google Scholar] [CrossRef]
- Dhull, S.B.; Punia, S.; Kidwai, M.K.; Kaur, M.; Chawla, P.; Purewal, S.S.; Sangwan, M.; Palthania, S. Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: Effect on phenolic compounds, mineral content, and their bioavailability. Legume Sci. 2020, 2, e37. [Google Scholar] [CrossRef]
- Sobolev, V.S.; Neff, S.A.; Gloer, J.B. New stilbenoids from peanut (Arachis Hypogaea) seeds challenged by an Aspergillus caelatus strain. J. Agric. Food Chem. 2009, 57, 62–68. [Google Scholar] [CrossRef]
- Burow, M.E.; Boue, S.M.; Collins-Burow, B.M.; Melnik, L.I.; Duong, B.N.; Carter-Wientjes, C.H.; Li, S.; Wiese, T.E.; Cleveland, T.E.; McLachlan, J.A. Phytochemical glyceollins, isolated from soy, mediate antihormonal effects through estrogen receptor alpha and beta. J. Clin. Endocrinol. Metab. 2001, 86, 1750–1758. [Google Scholar] [PubMed]
- Didinger, C.; Thompson, H.J. The role of pulses in improving human health: A review. Legume Sci. 2022, 4, e147. [Google Scholar] [CrossRef]
- Ganesan, K.; Xu, B. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Pegg, R.B. Legumes as a source of natural antioxidants. Eur. J. Lipid Sci. Technol. 2008, 110, 865–878. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, S.K.; Wang, H.; Cai, M. In vitro antioxidant activity of extracts from common legumes. Food Chem. 2014, 152, 462–466. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Takahashi, Y.; Yamaki, K. Phenolic antioxidants in some Vigna species of legumes and their distinct inhibitory effects on α-glucosidase and pancreatic lipase activities. J. Food Sci. 2012, 77, C927–C933. [Google Scholar] [CrossRef]
- Must, A.; Spadano, J.; Coakley, E.H.; Field, A.E.; Colditz, G.; Dietz, W.H. The disease burden associated with overweight and obesity. JAMA 1999, 282, 1523–1529. [Google Scholar] [CrossRef]
- Pi-Sunyer, F.X. Health implications of obesity. Am. J. Clin. Nutr. 1991, 53, 1595S–1603S. [Google Scholar] [CrossRef]
- Resnick, H.E.; Valsania, P.; Halter, J.B.; Lin, X. Relation of weight gain and weight loss on subsequent diabetes risk in overweight adults. J. Epidemiol. Community Health 2000, 54, 596–602. [Google Scholar] [CrossRef]
- Johansen, J.S.; Harris, A.K.; Rychly, D.J.; Ergul, A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc. Diabetol. 2005, 4, 5. [Google Scholar] [CrossRef]
- Singh, R.; Devi, S.; Gollen, R. Role of free radical in atherosclerosis, diabetes and dyslipidaemia: Larger-than-life. Diabetes Metab. Res. Rev. 2015, 31, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Tucci, S.A.; Boyland, E.J.; Halford, J.C.G. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: A review of current and emerging therapeutic agents. Diabetes Metab. Syndr. Obes. 2010, 3, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Rhabasa-Lhoret, R.; Chiasson, J.L. α-Glucosidase inhibitors. In International Textbook of Diabetes Mellitus, 3rd ed.; Defronzo, R.A., Ferannini, E., Keen, H., Zimmet, P., Eds.; Wiley: Chichester, UK, 2004; Volume 1, pp. 673–685. [Google Scholar]
- Fujisawa, T.; Ikegami, H.; Inoue, K.; Kawabata, Y.; Ogihara, T. Effect of two a-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism 2005, 54, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Goke, B.; Fuder, H.; Wieckhorst, G.; Theiss, U.; Stridde, E.; Littke, T.; Kleist, P.; Arnold, R.; Lücker, P.W. Voglibose (AO-128) is an efficient alpha-glucosidase inhibitor and mobilizes the endogenous GLP-1 reserve. Digestion 1995, 56, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-associated adverse effects and drug interactions: A critical review. Drug Saf. 2008, 31, 53–65. [Google Scholar] [CrossRef]
- Chiou, S.-Y.; Lai, J.-Y.; Liao, J.-A.; Sung, J.-M.; Lin, S.-D. In vitro inhibition of lipase, α-amylase, α-glucosidase, and angiotensin-converting enzyme by defatted rice bran extracts of red-pericarp rice mutant. Cereal Chem. 2018, 95, 167–176. [Google Scholar] [CrossRef]
- Fabroni, S.; Ballistreri, G.; Amenta, M.; Romeo, F.V.; Rapisarda, P. Screening of the anthocyanin profile and in vitro pancreatic lipase inhibition by anthocyanin-containing extracts of fruits, vegetables, legumes and cereals. J. Sci. Food Agric. 2016, 96, 4713–4723. [Google Scholar] [CrossRef]
- Gu, Y.; Hurst, W.J.; Stuart, D.A.; Lambert, J.D. Inhibition of key digestive enzymes by cocoa extracts and procyanidins. J. Agric. Food Chem. 2011, 59, 5305–5311. [Google Scholar] [CrossRef]
- Slanc, P.; Doljak, B.; Kreft, S.; Lunder, M.; Janes, D.; Strukelj, B. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytother. Res. 2009, 23, 874–877. [Google Scholar] [CrossRef]
- Tan, Y.; Chang, S.K.C.; Zhang, Y. Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 2017, 214, 259–268. [Google Scholar] [CrossRef]
- Boue, S.M.; Burow, M.E.; Wiese, T.E.; Shih, B.Y.; Elliott, S.; Carter-Wientjes, C.H.; McLachlan, J.A.; Bhatnagar, D. Estrogenic and antiestrogenic activities of phytoalexins from red kidney bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2011, 59, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Boue, S.M.; Carter, C.H.; Ehrlich, K.C.; Cleveland, T.E. Induction of the soybean phytoalexins coumestrol and glyceollin by Aspergillus. J. Agric. Food Chem. 2000, 48, 2167–2172. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Mani, J.S.; Naiker, M. Development and validation of a 96-well microplate assay for the measurement of total phenolic content in ginger extracts. Food Anal. Methods 2022, 15, 413–420. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N.; Boland Nazar, A.R. Total phenolic, total flavonoids, antioxidant and antimicrobial activities of scrophularia striata boiss extracts. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 15–19. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Ben Mansour, R.; Ksouri, W.M.; Cluzet, S.; Krisa, S.; Richard, T.; Ksouri, R. Assessment of Antioxidant Activity and Neuroprotective Capacity on PC12 Cell Line of Frankenia thymifolia and Related Phenolic LC-MS/MS Identification. Evid. Based Complement. Alternat. Med. eCAM 2016, 2016, 2843463. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.I.; Ghaedian, R.; Shetty, K. Fermentation of milk and soymilk by Lactobacillus bulgarius and Lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnol. 2007, 21, 217–236. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Blando, F.; Orfila, C.; Marshall, L.J.; Boesch, C. Chromogenic assay is more efficient in identifying α-amylase inhibitory properties of anthocyanin-rich samples when compared to the 3,5-dinitrosalicylic acid (DNS) assay. Molecules 2023, 28, 6399. [Google Scholar] [CrossRef]
- Podsedek, A.; Majewsk, I.; Redzynia, M.; Sosnowska, D.; Koziołkiewicz, M. In vitro inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. J. Agric. Food Chem. 2014, 62, 4610–4617. [Google Scholar] [CrossRef]
- Luo, S.; Gill, H.; Dias, D.A.; Li, M.; Hung, A.; Nguyen, L.T.; Lenon, G.B. The inhibitory effects of an eight-herb formula (RCM-107) on pancreatic lipase: Enzymatic, HTLC profiling and in silico approaches. Heliyon 2019, 5, e02453. [Google Scholar] [CrossRef] [PubMed]
- Abe, C.; Zhang, Y.; Takao, K.; Sasaki, K.; Ochiai, K.; Matsui, T. Visualization analysis of glyceollin production in germinating soybeans by matrix-assisted laser desorption/ionization mass spectrometric imaging technique. J. Agric. Food Chem. 2021, 69, 7057–7063. [Google Scholar] [CrossRef] [PubMed]
- Darvill, A.G.; Albersheim, P. Phytoalexins and their elicitors: A defense against microbial infections in plants. Annu. Rev. Plant Biol. 1984, 35, 243–275. [Google Scholar] [CrossRef]
- Graham, T.L.; Kim, J.E.; Graham, M.Y. Role of Constitutive Isoflavone Conjugates in the Accumulation of Glyceollin in Soybean Infected with Phytophthora megasperma. Mol. Plant Microbe Interact. 1989, 3, 157–166. [Google Scholar] [CrossRef]
- Paxton, J.D. Biosynthesis and accumulation of legume phytoalexins. In Mycotoxins and Phytoalexins; Sharma, R.P., Salunkhe, D.K., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 485–499. [Google Scholar]
- Yamamoto, T.; Sakamoto, C.; Tachiwana, H.; Kumabe, M.; Matsui, T.; Yamashita, T.; Shinagawa, M.; Ochiai, K.; Saitoh, N.; Nakao, M. Endocrine therapy-resistant breast cancer model cells are inhibited by soybean glyceollin I through Eleanor non-coding RNA. Sci. Rep. 2018, 8, 15202. [Google Scholar] [CrossRef]
- John, K.M.M.; Jung, E.S.; Lee, S.; Kim, J.-S.; Lee, C.-H. Primary and secondary metabolites variation of soybean contaminated with Aspergillus sojae. Food Res. Int. 2013, 54, 487–494. [Google Scholar] [CrossRef]
- Simons, R.; Vincken, J.-P.; Roidos, N.; Bovee, T.F.H.; Iersel, M.V.; Verbruggen, M.A.; Gruppen, H. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J. Agric. Food Chem. 2011, 59, 6748–6758. [Google Scholar] [CrossRef]
- Botero, L.; Vizcaíno, S.; Quiñones, W.; Echeverri, F.; Gil, J.; Durango, D. Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives. Biotechnol. Rep. 2021, 29, e00601. [Google Scholar] [CrossRef]
- Hadwiger, L.A.; Tanaka, K.A. Simple and rapid assay for measuring phytoalexin pisatin, an indicator of plant defense response in pea (Pisum sativum L.). Bio Protoc. 2017, 7, e2362. [Google Scholar] [CrossRef]
- Schwochau, M.E.; Hadwiger, L.A. Stimulation of pisatin production in Pisum sativum by actinomycin D and other compounds. Arch. Biochem. Biophys. 1968, 126, 731–733. [Google Scholar] [CrossRef]
- Wu, Q.; VanEtten, H.D. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol. Plant Microbe Interact. 2004, 17, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Song, L.; Feng, S.; Liu, Y.; He, G.; Yioe, Y.; Liu, S.Q.; Huang, D. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds. J. Agric. Food Chem. 2012, 60, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Tiemann, K.; Wittkampf, U.; Bless, W.; Hinderer, W.; Barz, W. Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer Arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei: I. Investigations of enzyme activities involved in isoflavone and pterocarpan phytoalexin Biosynthesis. Planta 1990, 182, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Arman, M. LC-ESI-MS characterisation of phytoalexins induced in chickpea and pea tissues in response to a biotic elicitor of Hypnea musciformis (red algae). Nat. Prod. Res. 2011, 25, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci. 2012, 17, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Kovinich, N. Regulation of phytoalexin biosynthesis for agriculture and human health. Phytochem. Rev. 2021, 20, 483–505. [Google Scholar] [CrossRef]
- Cruickshank, I.A.M.; Perrin, D.R. Isolation of a phytoalexin from Pisum sativum L. Nature 1960, 187, 799–800. [Google Scholar] [CrossRef]
- Celoy, R.M.; VanEtten, H.D. (+)-Pisatin biosynthesis: From (−) enantiomeric intermediates via an achiral 7,2′-dihydroxy-4′,5′-methylenedioxyisoflav-3-ene. Phytochemistry 2014, 98, 120–127. [Google Scholar] [CrossRef]
- Sharma, K.R.; Giri, G. Quantification of phenolic and flavonoid content, antioxidant activity, and proximate composition of some legume seeds grown in Nepal. Int. J. Food Sci. 2022, 29, 4629290. [Google Scholar] [CrossRef]
- Elhamid, M.A.A.; Mandour, A.E.S.; Ismail, T.A.; Al-Zohairy, A.M.; Almowallad, S.; Alqahtani, L.S.; Osman, A. Powerful antioxidants and cytotoxic activities of the methanol extracts from eight soybean cultivars. Molecules 2022, 27, 2895. [Google Scholar] [CrossRef]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Cui, S.W.; Li, Y.; Xu, S.; Wu, Y.; Wang, J.; Bai, Z.; et al. Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food Chem. Toxicol. 2017, 108 Pt B, 467–477. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Zhang, X.; Chen, G.-L.; Yu, J.; Yang, L.-Q.; Gao, Y.-Q. Antioxidant property and their free, soluble conjugate and insoluble-bound phenolic contents in selected beans. J. Funct. Foods 2016, 24, 359–372. [Google Scholar] [CrossRef]
- Okubo, K.; Iijima, M.; Kobayashi, Y.; Yoshikoshi, M.; Uchida, T.; Kudou, S. Components responsible for the undesirable taste of soybean seeds. Biosci. Biotechnol. Biochem. 1992, 56, 99–103. [Google Scholar] [CrossRef]
- Chung, I.-M.; Seo, S.-H.; Ahn, J.-K.; Kim, S.-H. Effect of processing, fermentation, and aging treatment to content and profile of phenolic compounds in soybean seed, soy curd and soy paste. Food Chem. 2011, 127, 960–967. [Google Scholar] [CrossRef] [PubMed]
- Boue, S.M.; Shih, F.F.; Shih, B.Y.; Daigle, K.W.; Carter-Wientjes, C.H.; Cleveland, T.E. Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean. J. Food Sci. 2008, 73, H43–H49. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.K.; Koide, M.; Rao, T.P.; Okubo, T.; Ogasawara, Y.; Juneja, L.R. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content. Int. J. Food Sci. 2010, 61, 109–124. [Google Scholar] [CrossRef]
- Son, H.-U.; Yoon, E.-K.; Yoo, C.-Y.; Park, C.-H.; Bae, M.-A.; Kim, T.-H.; Lee, C.H.; Lee, K.W.; Seo, H.; Kim, K.-J.; et al. Effects of Synergistic Inhibition on α-glucosidase by Phytoalexins in Soybeans. Biomolecules 2019, 9, 828. [Google Scholar] [CrossRef]
- Dendup, T.; Prachyawarakorn, V.; Pansanit, A.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. α-Glucosidase inhibitory activities of isoflavanones, isoflavones, and pterocarpans from Mucuna pruriens. Planta Med. 2014, 80, 604–608. [Google Scholar] [CrossRef]
- Liu, R.; Xu, B. Inhibitory effects of phenolics and saponins from commonly consumed food legumes in China against digestive enzymes pancreatic lipase and α -glycosidase. Int. J. Food Prop. 2015, 18, 2246–2255. [Google Scholar] [CrossRef]
- Lee, S.S.; Mohd Esa, N.; Loh, S.P. Inhibitory activity of legumes against pancreatic lipase. J. Food Biochem. 2015, 39, 485–490. [Google Scholar] [CrossRef]
- Hong, J.; Choi, Y.; Lee, J.; Park, Y.J.; Lee, D.Y.; Chang, P.-S. Inhibitory characteristics of flavonoids from soybean (Glycine max [L.] Merr.) leaf against pancreatic lipase. Food Biosci. 2023, 56, 103311. [Google Scholar] [CrossRef]
Extracts | Phytoalexins | Content (µg/g DW) | Molecular Formula | Molecular Weight (g/mol) | Absorbance |
---|---|---|---|---|---|
CP-AS | Maackiain | 892.40 ± 23.98 a | C16H12O5 | 284.26 | 310 |
Medicarpin | 675.94 ± 46.64 b | C16H14O4 | 270.27 | 285 | |
GP-AS | Pisatin | 465.95 ± 17.79 c | C17H14O6 | 314.293 | 310 |
SB-AS | Glyceollin III | 93.615 ± 4.636 g | C20H18O5 | 338.4 | 285 |
Glyceollin II | 153.82 ± 8.895 f | C20H18O5 | 338.4 | 285 | |
Glyceollin I | 441.43 ± 7.589 cd | C20H18O5 | 338.4 | 285 | |
RKB-AS | Kievitone | 386.76 ± 23.08 d | C20H20O6 | 356.4 | 292 |
Phaseollin | 248.59 ± 30.52 e | C20H18O4 | 322.36 | 285 |
Phenolic Acids | Molecular Formula | RT (min) | Mode of Ionization | Molecular Weight | Target (Precursor) Ion [M − H]− (m/z) | Product Ion 1 (m/z) | Product Ion 2 (m/z) | LOQ (µg/mL) | LOD (µg/mL) | Samples |
---|---|---|---|---|---|---|---|---|---|---|
Protocatechuic Acid | C7H6O4 | 3.4 | [M − H]− | 154.02 | 153.0293 | 109.0354 | 0.005 | 0.002 | GP-CON, GP-AS, CP-CON, CP-AS, SB-CON, SB-AS, RKB-CON, RKB-AS | |
Vanillic Acid | C8H8O4 | 4.40 | [M − H]− | 168.14 | 167.0442 | 108.0284 | 123.0439 | 0.100 | 0.050 | GP-CON, GP-AS, SB-CON, SB-AS, RKB-CON, RKB-AS |
Ferulic Acid | C10H10O4 | 5.07 | [M − H]− | 194.05 | 193.0601 | 134.0442 | 178.0371 | 0.100 | 0.050 | GP-CON, GP-AS, SB-CON, SB-AS, RKB-CON, RKB-AS |
Chlorogenic Acid | C16H18O9 | 4.10 | [M − H]− | 354.09 | 353.1069 | 191.0680 | 174.9671 | 0.005 | 0.002 | SB-CON, RKB-CON, RKB-AS |
Coumaric Acid | C9H8O3 | 5.01 | [M − H]− | 164.04 | 163.0491 | 119.0572 | 0.003 | 0.002 | GP-CON, GP-AS, CP-AS, SB-CON, SB-AS, RKB-CON, RKB-AS | |
4-Hydroxybenzoic Acid | C7H6O3 | 4.01 | [M − H]− | 138.03 | 137.0310 | 93.0400 | 0.010 | 0.005 | GP-CON, GP-AS, CP-CON, CP-AS, SB-CON, SB-AS, RKB-CON, RKB-AS | |
Caffeic Acid | C9H8O4 | 4.30 | [M − H]− | 180.04 | 179.0310 | 135.0520 | 0.002 | 0.001 | GP-CON, GP-AS, SB-CON, SB-AS, RKB-CON, RKB-AS |
Phenolic Acids (µg/g) | Green Pea | Chickpea | Soybean | Red Kidney Bean | ||||
---|---|---|---|---|---|---|---|---|
CON | AS | CON | AS | CON | AS | CON | AS | |
Protocatechuic Acid | 2.67 ± 0.26 | 0.37 ± 0.03 | 1.16 ± 0.04 | 0.10 ± 0.04 | 0.53 ± 0.20 | 0.43 ± 0.05 | 4.49 ± 0.28 | 9.44 ± 0.76 |
Vanillic Acid | 5.87 ± 0.69 | 327.26 ± 31.86 | - | - | 6.13 ± 0.82 | 20.19 ± 0.97 | 2.76 ± 0.62 | 11.78 ± 0.69 |
Ferulic Acid | 2.30 ± 0.43 | 1.40 ± 0.09 | - | - | 2.75 ± 0.30 | 0.78 ± 0.08 | 5.20 ± 1.12 | 01.31 ± 0.22 |
Chlorogenic Acid | - | - | - | - | 0.81 ± 0.05 | - | 0.62 ± 0.02 | 0.56 ± 0.01 |
Coumaric Acid | 0.58 ± 0.11 | 0.67 ± 0.07 | - | 0.10 ± 0.02 | 9.89 ± 1.23 | 0.42 ± 0.02 | 1.91 ± 0.24 | 0.40 ± 0.03 |
4-Hydroxybenzoic Acid | 8.05 ± 2.39 | 8.46 ± 0.16 | 1.69 ± 0.09 | 2.73 ± 0.57 | 5.46 ± 0.58 | 1.95 ± 0.12 | 8.71 ± 1.08 | 3.52 ± 0.12 |
Caffeic Acid | 0.04 ± 0.01 | 0.05 ± 0.01 | - | - | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.10 ± 0.03 | 0.10 ± 0.01 |
Total | 19.51 | 338.21 | 2.85 | 2.93 | 25.59 | 23.8 | 23.79 | 27.11 |
Legumes | ABTS mg (Trolox)/g | DPPH mg (Trolox)/g | |
---|---|---|---|
Green pea | CON | 0.25 ± 0.040 f | 0.15 ± 0.006 g |
AS | 3.01 ± 0.021 c | 0.39 ± 0.010 f | |
Chickpea | CON | 0.12 ± 0.07 f | 0.09 ± 0.0008 h |
AS | 2.78 ± 0.08 c | 0.51 ± 0.006 e | |
Soybean | CON | 1.87 ± 0.20 d | 0.65 ± 0.02 d |
AS | 3.76 ± 0.12 b | 0.82 ± 0.01 c | |
Red kidney bean | CON | 1.19 ± 0.29 e | 0.92 ± 0.005 b |
AS | 5.86 ± 0.06 a | 1.34 ± 0028 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, S.; Broussard, W.; Elliott, S.; Burow, M.E.; Boue, S.M. Unraveling the Impact of Aspergillus sojae—A Food-Grade Fungus—On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes. Foods 2024, 13, 3533. https://doi.org/10.3390/foods13223533
Rana S, Broussard W, Elliott S, Burow ME, Boue SM. Unraveling the Impact of Aspergillus sojae—A Food-Grade Fungus—On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes. Foods. 2024; 13(22):3533. https://doi.org/10.3390/foods13223533
Chicago/Turabian StyleRana, Shalika, William Broussard, Steven Elliott, Matthew E. Burow, and Stephen M. Boue. 2024. "Unraveling the Impact of Aspergillus sojae—A Food-Grade Fungus—On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes" Foods 13, no. 22: 3533. https://doi.org/10.3390/foods13223533
APA StyleRana, S., Broussard, W., Elliott, S., Burow, M. E., & Boue, S. M. (2024). Unraveling the Impact of Aspergillus sojae—A Food-Grade Fungus—On Phytoalexins, Phenolic Acids, and the Antioxidant and Antidiabetic Activity of Different Legumes. Foods, 13(22), 3533. https://doi.org/10.3390/foods13223533