An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch Pasting Properties
2.3. Bread Making Procedure
2.4. Crumb Core Temperature
2.5. Technological Bread Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Starch Pasting Properties
3.2. Crumb Core Temperatures
3.3. Bread Characterteristics
3.3.1. The Influence of Composition on Par-Baked Bread
3.3.2. The Influence of Storage Time and Degree of Par-Baking on Fully Baked Bread Quality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GMI. Europe and Middle East & Africa (EMEA) Par Baked Bread Market Size, By Type (Baguette, Rolls, Loaf), By End User (Convenience Stores, Hypermarkets & Supermarkets, Artisans Bakers, Bakery Chains) & Global Forecast, 2023–2032. Available online: https://www.gminsights.com/industry-analysis/emea-par-baked-bread-market (accessed on 30 December 2023).
- Debonne, E.; De Leyn, I.; Vroman, A.; Spaepen, G.; Van Hecke, M.; Ruyssen, T.; Eeckhout, M. Technological and Microbiological Evaluation of Different Storage Conditions of Par-Baked Bread. LWT 2020, 131, 109757. [Google Scholar] [CrossRef]
- Decock, P.; Cappelle, S. Bread Technology and Sourdough Technology. Trends Food Sci. Technol. 2005, 16, 113–120. [Google Scholar] [CrossRef]
- Lambert, J.L.; Le-Bail, A.; Zuniga, R.; Van-Haesendonck, I.; Vnzeveren, E.; Petit, C.; Rosell, M.C.; Collar, C.; Curic, D.; Colic-Baric, I.; et al. The Attitudes of European Consumers Toward Innovation in Bread; Interest of the Consumers Toward Selected Quality Attributes. J. Sens. Stud. 2009, 24, 204–219. [Google Scholar] [CrossRef]
- Bárcenas, M.E.; Rosell, C.M. Effect of Frozen Storage Time on the Bread Crumb and Aging of Par-Baked Bread. Food Chem. 2006, 95, 438–445. [Google Scholar] [CrossRef]
- Bosmans, G.M.; Lagrain, B.; Fierens, E.; Delcour, J.A. The Impact of Baking Time and Bread Storage Temperature on Bread Crumb Properties. Food Chem. 2013, 141, 3301–3308. [Google Scholar] [CrossRef]
- Almeida, E.L.; Chang, Y.K. Structural Changes in the Dough During the Pre-Baking and Re-Baking of French Bread Made with Whole Wheat Flour. Food Bioproc. Technol. 2013, 6, 2808–2819. [Google Scholar] [CrossRef]
- Fik, M.; Surwka, K. Effect of Prebaking and Frozen Storage on the Sensory Quality and Instrumental Texture of Bread. J. Sci. Food Agric. 2002, 82, 1268–1275. [Google Scholar] [CrossRef]
- Almeida, E.; Steel, C.; Chang, Y. Par-Baked Bread Technology: Formulation and Process Studies to Improve Quality. Crit. Rev. Food Sci. Nutr. 2015, 56, 70–81. [Google Scholar] [CrossRef]
- Debonne, E.; Van Bockstaele, F.; Philips, E.; De Leyn, I.; Eeckhout, M. Impact of Par-Baking and Storage Conditions on the Quality of Par-Baked and Fully Baked Bread. LWT 2017, 78, 16–22. [Google Scholar] [CrossRef]
- Murat Karaoğlu, M.; Gürbüz Kotancilar, H. Effect of Partial Baking, Storage and Rebaking Process on the Quality of White Pan Bread. Int. J. Food Sci. Technol. 2006, 41, 108–114. [Google Scholar] [CrossRef]
- Nivelle, M.A.; Remmerie, E.; Bosmans, G.M.; Vrinten, P.; Nakamura, T.; Delcour, J.A. Amylose and Amylopectin Functionality during Baking and Cooling of Bread Prepared from Flour of Wheat Containing Unusual Starches: A Temperature-Controlled Time Domain 1H NMR Study. Food Chem. 2019, 295, 110–119. [Google Scholar] [CrossRef]
- Purlis, E. Simple Methods to Predict the Minimum Baking Time of Bread. Food Control 2019, 104, 217–223. [Google Scholar] [CrossRef]
- Purlis, E. Simple Modelling of Time-Temperature Profiles in Food during Baking. Appl. Food Res. 2023, 3, 100271. [Google Scholar] [CrossRef]
- Kinner, M.; Rüegg, R.; Weber, C.A.; Buchli, J.; Durrer, L.; Müller, N. Impact of Selected Baking and Vacuum Cooling Parameters on the Quality of Toast Bread. J. Food Sci. Technol. 2021, 58, 4578–4586. [Google Scholar] [CrossRef]
- Debonne, E.; Thys, M.; Eeckhout, M.; Devlieghere, F. The Potential of UVC Decontamination to Prolong Shelf-Life of Par-Baked Bread. Food Sci. Technol. Int. 2023. [Google Scholar] [CrossRef]
- Purlis, E. Baking Process Design Based on Modelling and Simulation: Towards Optimization of Bread Baking. Food Control 2012, 27, 45–52. [Google Scholar] [CrossRef]
- Dymchenko, A.; Geršl, M.; Gregor, T. Trends in Bread Waste Utilisation. Trends Food Sci. Technol. 2023, 132, 93–102. [Google Scholar] [CrossRef]
- Sarlee, W.; Van Cuyk, J.; Geusens, M.; Janssens, G.; Auriel, C.; Roels, K.; De Schampelaire, L.; Verwilghen, G. Food Loss and Packaging; OVAM: Mechelen, Belgium, 2015. [Google Scholar]
- Jung, J.M.; Kim, J.Y.; Kim, J.H.; Kim, S.M.; Jung, S.; Song, H.; Kwon, E.E.; Choi, Y.E. Zero-Waste Strategy by Means of Valorization of Bread Waste. J. Clean. Prod. 2022, 365, 132795. [Google Scholar] [CrossRef]
- Cereal & Grains Association. AACC International Method 76-21.02. General Pasting Method for Wheat or Rye Flour of Starch Using the Rapid Visco Analyser. In AACC Approved Methods of Analysis; American Association of Cereal Chemists International: St. Paul, MN, USA, 1999. [Google Scholar] [CrossRef]
- De Bock, P.; Daelemans, L.; Selis, L.; Raes, K.; Vermeir, P.; Eeckhout, M.; Van Bockstaele, F. Comparison of the Chemical and Technological Characteristics of Wholemeal Flours Obtained from Amaranth (Amaranthus sp.), Quinoa (Chenopodium Quinoa) and Buckwheat (Fagopyrum sp.) Seeds. Foods 2021, 10, 651. [Google Scholar] [CrossRef] [PubMed]
- Cereal & Grains Association. AACC International Method 44-15.02. Moisture—Air-Oven Methods. In AACC Approved Methods of Analysis; American Association of Cereal Chemists International: St. Paul, MN, USA, 1999. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 9783319242774. [Google Scholar]
- Bae, W.; Lee, B.; Hou, G.G.; Lee, S. Physicochemical Characterization of Whole-Grain Wheat Flour in a Frozen Dough System for Bake off Technology. J. Cereal Sci. 2014, 60, 520–525. [Google Scholar] [CrossRef]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Deleu, L.J.; Lemmens, E.; Redant, L.; Delcour, J.A. The Major Constituents of Rye (Secale Cereale L.) Flour and Their Role in the Production of Rye Bread, a Food Product to Which a Multitude of Health Aspects Are Ascribed. Cereal Chem. 2020, 97, 739–754. [Google Scholar] [CrossRef]
- Ponomareva, M.L.; Ponomarev, S.N.; Mannapova, G.S.; Gilmullina, L.F. Research Techniques for the Quality of Wholemeal Rye Flour. Russ. Agric. Sci. 2022, 48, 334–343. [Google Scholar] [CrossRef]
- Giovanelli, G.; Peri, C.; Borri, V. Effects of Baking Temperature on Crumb-Staling Kinetics. Cereal Chem. 1997, 74, 710–714. [Google Scholar] [CrossRef]
- Tuta Şimşek, S. Vacuum Modification of Partial-Baked Wheat Bread: Evaluation of the Physicochemical, Microstructural Properties and Acrylamide Content. J. Cereal Sci. 2022, 105, 103467. [Google Scholar] [CrossRef]
- Corrado, M.; Zafeiriou, P.; Ahn-Jarvis, J.H.; Savva, G.M.; Edwards, C.H.; Hazard, B.A. Impact of Storage on Starch Digestibility and Texture of a High-Amylose Wheat Bread. Food Hydrocoll. 2023, 135, 108139. [Google Scholar] [CrossRef]
- Dessev, T.; Lalanne, V.; Keramat, J.; Jury, V.; Prost, C.; Le-Bail, A. Influence of Baking Conditions on Bread Characteristics and Acrylamide Concentration. J. Food Sci. Nutr. Res. 2020, 3, 291–310. [Google Scholar] [CrossRef]
- Patel, B.K.; Waniska, R.D.; Seetharaman, K. Impact of Different Baking Processes on Bread Firmness and Starch Properties in Breadcrumb. J. Cereal Sci. 2005, 42, 173–184. [Google Scholar] [CrossRef]
- Bou Orm, R.; Jury, V.; Falourd, X.; Boillereaux, L.; Guihard, L.; LE-Bail, A. Impacts of the Baking Heating Rate on the Water Mobility, Starch Microstructure and Mechanical Properties of Degassed Crumb during Staling. J. Cereal Sci. 2021, 100, 103228. [Google Scholar] [CrossRef]
- Besbes, E.; Jury, V.; Monteau, J.Y.; Le Bail, A. Effect of Baking Conditions and Storage with Crust on the Moisture Profile, Local Textural Properties and Staling Kinetics of Pan Bread. LWT 2014, 58, 658–666. [Google Scholar] [CrossRef]
- Le-Bail, A.; Boumali, K.; Jury, V.; Ben-Aissa, F.; Zuniga, R. Impact of the Baking Kinetics on Staling Rate and Mechanical Properties of Bread Crumb and Degassed Bread Crumb. J. Cereal Sci. 2009, 50, 235–240. [Google Scholar] [CrossRef]
- Gómez, M.; Gutkoski, L.C.; Bravo-Núñez, Á. Understanding Whole-Wheat Flour and Its Effect in Breads: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3241–3265. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Bechtel, D.B. Morphology and Chemistry of the Rye Grain. In Rye: Production, Chemistry, and Technology; Bushuk, W., Ed.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 2001. [Google Scholar]
- Buksa, K.; Nowotna, A.; Praznik, W.; Gambuś, H.; Ziobro, R.; Krawontka, J. The Role of Pentosans and Starch in Baking of Wholemeal Rye Bread. Food Res. Int. 2010, 43, 2045–2051. [Google Scholar] [CrossRef]
- Bosmans, G.M.; Lagrain, B.; Ooms, N.; Fierens, E.; Delcour, J.A. Storage of Parbaked Bread Affects Shelf Life of Fully Baked End Product: A 1H NMR Study. Food Chem. 2014, 165, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Ribotta, P.D.; Le Bail, A. Thermo-Physical Assessment of Bread during Staling. LWT 2007, 40, 879–884. [Google Scholar] [CrossRef]
- Karaoglu, M.M. Effect of Initial Baking and Storage Time on Pasting Properties and Aging of Par-Baked and Rebaked Rye Bread. Int. J. Food Prop. 2006, 9, 583–596. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Attabi, Z.H.; Al-Habsi, N.; Al-Khusaibi, M. Measurement of Instrumental Texture Profile Analysis (TPA) of Foods. In Techniques to Measure Food Safety and Quality; Khan, M.S., Rahman, M.S., Eds.; Springer: Cham, Switzerland, 2021; pp. 427–465. [Google Scholar] [CrossRef]
- Hemdane, S.; Jacobs, P.J.; Bosmans, G.M.; Verspreet, J.; Delcour, J.A.; Courtin, C.M. Study of Biopolymer Mobility and Water Dynamics in Wheat Bran Using Time-Domain 1H NMR Relaxometry. Food Chem. 2017, 236, 68–75. [Google Scholar] [CrossRef]
- Curti, E.; Carini, E.; Bonacini, G.; Tribuzio, G.; Vittadini, E. Effect of the Addition of Bran Fractions on Bread Properties. J. Cereal Sci. 2013, 57, 325–332. [Google Scholar] [CrossRef]
- Bucsella, B.; Molnár, D.; Harasztos, A.H.; Tömösközi, S. Comparison of the Rheological and End-Product Properties of an Industrial Aleurone-Rich Wheat Flour, Whole Grain Wheat and Rye Flour. J. Cereal Sci. 2016, 69, 40–48. [Google Scholar] [CrossRef]
- Nivelle, M.A.; Bosmans, G.M.; Delcour, J.A. The Impact of Parbaking on the Crumb Firming Mechanism of Fully Baked Tin Wheat Bread. J. Agric. Food Chem. 2017, 65, 10074–10083. [Google Scholar] [CrossRef] [PubMed]
- Le-Bail, A.; Agrane, S.; Queveau, D. Impact of the Baking Duration on Bread Staling Kinetics. Food Bioproc. Technol. 2012, 5, 2323–2330. [Google Scholar] [CrossRef]
Farinograph Water Absorption (%) | Dough Moisture Content (%) | |
---|---|---|
W | 58.5 | 44.9 |
WW | 58.3 | 45.0 |
WR | 65.0 | 46.7 |
Final Bread Core Temperatures (°C) | |||
---|---|---|---|
50% PB | 75% PB | 95% PB | |
W | 69.3 | 99.2 | 100 |
WW | 59.5 | 97.9 | 99.8 |
WR | 57.4 | 91.3 | 98.7 |
PB | MC (%) | m (g) | L* | a* | b* | ||
---|---|---|---|---|---|---|---|
W | PB0 | 95 | 45.0 ± 0.1 ab | 346.0 ± 2.1 a | 52.9 ± 4.2 a | 16.7 ± 1.2 a | 34.2 ± 3.5 ac |
75 | 44.7 ± 0.4 a | 354.1 ± 1.7 ab | 54.4 ± 4.7 a | 16.1 ± 1.3 ac | 35.0 ± 3.2 ac | ||
50 | 44.8 ± 0.4 a | 364.5 ± 1.3 b | 59.9 ± 2.9 a | 14.2 ± 1.1 ab | 36.8 ± 1.0 a | ||
PB4 | 95 | 44.4 ± 0.4 a | 347.1 ± 1.4 a | - | - | - | |
75 | 44.3 ± 0.4 a | 354.8 ± 1.1 ab | - | - | - | ||
50 | 44.7 ± 0.3 a | 364.7 ± 1.3 b | - | - | - | ||
FB0 | 95 | 45.0 ± 0.4 a | 334.9 ± 1.2 a | 42.1 ± 3.3 bc | 14.1 ± 0.7 ab | 24.4 ± 1.9 be | |
75 | 45.0 ± 0.3 ab | 341.7 ± 1.4 a | 45.8 ± 5.5 abc | 13.9 ± 0.8 ab | 26.7 ± 4.2 bcde | ||
50 | 45.2 ± 0.4 ab | 350.3 ± 2.0 ab | 48.2 ± 3.8 abc | 14.2 ± 0.5 ab | 29.0 ± 2.6 abd | ||
FB2 | 95 | 44.7 ± 0.4 a | 334.5 ± 0.8 a | - | - | - | |
75 | 44.8 ± 0.3 a | 342.2 ± 1.2 a | - | - | - | ||
50 | 45.0 ± 0.4 ab | 350.5 ± 1.6 ab | - | - | - | ||
WW | PB0 | 95 | 45.0 ± 0.2 ab | 350.0 ± 1.2 ab | 48.4 ± 2.7 ab | 15.5 ± 0.7 ac | 29.5 ± 2.1 abd |
75 | 45.1 ± 0.2 ab | 356.8 ± 1.0 b | 50.3 ± 2.2 a | 15.3 ± 0.9 ab | 30.2 ± 2.3 abd | ||
50 | 45.3 ± 0.2 ab | 366.7 ± 0.9 b | 53.0 ± 2.4 a | 14.6 ± 1.1 ab | 31.3 ± 1.4 ad | ||
PB4 | 95 | 44.9 ± 0.2 a | 348.9 ± 1.1 a | - | - | - | |
75 | 45.0 ± 0.2 ab | 356.0 ± 1.1 b | - | - | - | ||
50 | 45.2 ± 0.2 ab | 366.4 ± 1.1 b | - | - | - | ||
FB0 | 95 | 45.3 ± 0.2 ab | 337.0 ± 1.3 a | 41.7 ± 2.6 c | 13.0 ± 0.7 b | 23.0 ± 2.0 be | |
75 | 45.5 ± 0.2 ab | 344.5 ± 1.4 a | 43.3 ± 2.4 bc | 12.9 ± 0.8 b | 23.5 ± 2.6 be | ||
50 | 45.7 ± 0.2 ab | 353.4 ± 1.3 ab | 45.1 ± 1.9 abc | 13.2 ± 0.7 b | 25.0 ± 1.8 bde | ||
FB2 | 95 | 45.0 ± 0.1 ab | 337.6 ± 1.7 a | - | - | - | |
75 | 45.3 ± 0.2 ab | 344.7 ± 1.8 a | - | - | - | ||
50 | 45.4 ± 0.1 ab | 353.3 ± 1.9 ab | - | - | - | ||
WR | PB0 | 95 | 47.1 ± 0.2 b | 350.9 ± 1.0 a | 45.0 ± 2.1 abc | 14.8 ± 1.0 ab | 27.5 ± 2.0 bde |
75 | 47.2 ± 0.2 b | 358.5 ± 1.0 b | 47.4 ± 2.1 abc | 14.6 ± 0.6 ab | 28.9 ± 1.6 abcde | ||
50 | 47.4 ± 0.2 b | 367.7 ± 0.8 b | 50.2 ± 1.8 abc | 13.6 ± 1.1 ab | 29.2 ± 1.2 abcd | ||
PB4 | 95 | 46.7 ± 0.0 b | 350.9 ± 0.9 a | - | - | - | |
75 | 46.8 ± 0.1 b | 358.5 ± 1.1 b | - | - | - | ||
50 | 47.0 ± 0.2 b | 367.6 ± 0.9 b | - | - | - | ||
FB0 | 95 | 46.9 ± 0.2 b | 339.7 ± 1.2 a | 39.0 ± 2.6 c | 13.2 ± 0.4 b | 21.5 ± 1.8 e | |
75 | 47.3 ± 0.4 b | 348.0 ± 1.1 a | 42.5 ± 1.4 bc | 13.5 ± 0.9 bc | 24.3 ± 1.1 bde | ||
50 | 47.5 ± 0.2 b | 355.9 ± 0.9 b | 47.0 ± 1.9 abc | 13.2 ± 0.6 b | 26.5 ± 1.2 abcde | ||
FB2 | 95 | 46.8 ± 0.2 b | 339.6 ± 1.6 a | - | - | - | |
75 | 47.0 ± 0.9 b | 348.3 ± 1.0 ab | - | - | - | ||
50 | 47.0 ± 0.3 b | 355.9 ± 1.1 b | - | - | - |
PB | Hard. (g) | Adhes. (g) | Spring. (-) | Coh. (-) | Chew. (g) | Res. (-) | ||
---|---|---|---|---|---|---|---|---|
W | PB0 | 95 | 284 ± 24 a | −4 ± 3 a | 0.94 ± 0.01 ab | 0.83 ± 0.01 a | 222 ± 18 a | 0.47 ± 0.01 a |
75 | 260 ± 29 a | −3 ± 3 a | 0.92 ± 0.01 ab | 0.82 ± 0.01 a | 205 ± 29 a | 0.46 ± 0.01 a | ||
50 | 223 ± 31 bc | −5 ± 2 a | 0.84 ± 0.03 abcd | 0.76 ± 0.04 a | 140 ± 12 a | 0.37 ± 0.04 a | ||
PB4 | 95 | 1125 ± 97 bc | −3 ± 2 a | 0.90 ± 0.02 abc | 0.51 ± 0.01 b | 523 ± 63 b | 0.21 ± 0.02 bc | |
75 | 1004 ± 67 abc | −4 ± 2 a | 0.88 ± 0.02 abcd | 0.58 ± 0.03 bc | 509 ± 47 b | 0.24 ± 0.02 bc | ||
50 | 831 ± 42 a | −11 ± 4 a | 0.81 ± 0.03 abcd | 0.57 ± 0.02 bc | 385 ± 15 ab | 0.21 ± 0.01 bc | ||
FB0 | 95 | 293 ± 50 a | −5 ± 2 a | 0.94 ± 0.01 a | 0.84 ± 0.02 a | 229 ± 34 a | 0.49 ± 0.02 a | |
75 | 260 ± 27 a | −4 ± 1 a | 0.92 ± 0.01 ab | 0.81 ± 0.02 a | 194 ± 21 a | 0.45 ± 0.02 a | ||
50 | 213 ± 17 a | −6 ± 2 a | 0.85 ± 0.03 abcd | 0.77 ± 0.03 a | 138 ± 5 a | 0.37 ± 0.04 ab | ||
FB2 | 95 | 995 ± 111 bc | −4 ± 2 a | 0.88 ± 0.02 ab | 0.58 ± 0.03 bc | 513 ± 71 b | 0.26 ± 0.02 bc | |
75 | 802 ± 76 abc | −7 ± 4 a | 0.89 ± 0.03 ab | 0.61 ± 0.02 ab | 437 ± 34 ab | 0.26 ± 0.02 abc | ||
50 | 678 ± 67 ab | −19 ± 3 a | 0.80 ± 0.03 bd | 0.63 ± 0.03 ab | 340 ± 23 ab | 0.25 ± 0.03 bc | ||
WW | PB0 | 95 | 416 ± 91 ab | −2 ± 0 a | 0.90 ± 0.02 ab | 0.79 ± 0.02 ac | 294 ± 58 a | 0.42 ± 0.02 a |
75 | 348 ± 8 ab | −2 ± 1 a | 0.88 ± 0.03 abd | 0.78 ± 0.02 ac | 237 ± 20 a | 0.41 ± 0.02 a | ||
50 | 271 ± 17 a | −5 ± 1 a | 0.78 ± 0.03 cd | 0.73 ± 0.03 a | 154 ± 14 a | 0.33 ± 0.03 ab | ||
PB4 | 95 | 1174 ± 88 bc | −5 ± 4 a | 0.84 ± 0.04 abcd | 0.51 ± 0.02 b | 501 ± 60 b | 0.20 ± 0.02 bc | |
75 | 1060 ± 124 bc | −4 ± 3 a | 0.83 ± 0.04 abcd | 0.54 ± 0.02 b | 470 ± 41 b | 0.21 ± 0.02 bc | ||
50 | 864 ± 99 abc | −9 ± 5 a | 0.77 ± 0.04 cd | 0.56 ± 0.02 bc | 370 ± 61 ab | 0.20 ± 0.01 bc | ||
FB0 | 95 | 368 ± 47 ab | −5 ± 2 a | 0.90 ± 0.02 abc | 0.79 ± 0.02 ac | 263 ± 28 a | 0.43 ± 0.02 a | |
75 | 364 ± 25 ab | −8 ± 3 a | 0.87 ± 0.04 abcd | 0.78 ± 0.01 ac | 244 ± 14 a | 0.40 ± 0.02 a | ||
50 | 285 ± 30 a | −15 ± 5 a | 0.75 ± 0.04 d | 0.70 ± 0.04 ab | 149 ± 3 a | 0.29 ± 0.04 ab | ||
FB2 | 95 | 1064 ± 80 bc | −4 ± 1 a | 0.84 ± 0.03 abcd | 0.57 ± 0.03 bc | 510 ± 43 b | 0.24 ± 0.01 bc | |
75 | 997 ± 45 bc | −5 ± 2 a | 0.81 ± 0.03 abcd | 0.60 ± 0.02 b | 484 ± 29 b | 0.24 ± 0.02 bc | ||
50 | 724 ± 51 abc | −12 ± 4 a | 0.77 ± 0.05 cd | 0.60 ± 0.02 b | 334 ± 33 ab | 0.22 ± 0.02 bc | ||
WR | PB0 | 95 | 1102 ± 57 bc | −12 ± 4 a | 0.83 ± 0.02 abcd | 0.71 ± 0.01 a | 653 ± 52 b | 0.38 ± 0.01 ab |
75 | 925 ± 52 abc | −20 ± 4 a | 0.75 ± 0.02 d | 0.69 ± 0.02 a | 472 ± 37 b | 0.33 ± 0.02 ab | ||
50 | 683 ± 116 ab | −68 ± 16 b | 0.66 ± 0.03 d | 0.60 ± 0.03 ab | 276 ± 71 a | 0.23 ± 0.03 bc | ||
PB4 | 95 | 2406 ± 161 c | −44 ± 7 b | 0.79 ± 0.05 cde | 0.43 ± 0.01 b | 812 ± 55 b | 0.16 ± 0.01 c | |
75 | 1996 ± 186 c | −79 ± 26 b | 0.75 ± 0.04 d | 0.45 ± 0.02 b | 676 ± 92 b | 0.16 ± 0.01 c | ||
50 | 1420 ± 208 abc | −238 ± 33 c | 0.76 ± 0.04 d | 0.54 ± 0.03 b | 578 ± 109 b | 0.15 ± 0.01 c | ||
FB0 | 95 | 1159 ± 76 bc | −57 ± 28 b | 0.78 ± 0.04 cde | 0.68 ± 0.02 abc | 618 ± 60 b | 0.34 ± 0.02 ab | |
75 | 926 ± 87 abc | −51 ± 12 b | 0.74 ± 0.04 d | 0.67 ± 0.02 ac | 464 ± 61 b | 0.30 ± 0.02 abc | ||
50 | 646 ± 105 ab | −187 ± 59 bc | 0.72 ± 0.04 d | 0.61 ± 0.05 ac | 288 ± 70 a | 0.20 ± 0.03 bc | ||
FB2 | 95 | 2364 ± 262 c | −66 ± 22 b | 0.79 ± 0.03 cde | 0.46 ± 0.01 b | 872 ± 126 b | 0.18 ± 0.01 c | |
75 | 2042 ± 152 c | −98 ± 32 b | 0.75 ± 0.05 d | 0.49 ± 0.02 b | 749 ± 51 b | 0.18 ± 0.01 c | ||
50 | 1446 ± 214 bc | −302 ± 33 c | 0.73 ± 0.07 d | 0.54 ± 0.03 b | 579 ± 120 b | 0.16 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verbeke, C.; Debonne, E.; Van Leirsberghe, H.; Van Bockstaele, F.; Eeckhout, M. An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads. Foods 2024, 13, 224. https://doi.org/10.3390/foods13020224
Verbeke C, Debonne E, Van Leirsberghe H, Van Bockstaele F, Eeckhout M. An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads. Foods. 2024; 13(2):224. https://doi.org/10.3390/foods13020224
Chicago/Turabian StyleVerbeke, Celeste, Els Debonne, Hannah Van Leirsberghe, Filip Van Bockstaele, and Mia Eeckhout. 2024. "An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads" Foods 13, no. 2: 224. https://doi.org/10.3390/foods13020224
APA StyleVerbeke, C., Debonne, E., Van Leirsberghe, H., Van Bockstaele, F., & Eeckhout, M. (2024). An Impact Assessment of Par-Baking and Storage on the Quality of Wheat, Whole Wheat, and Whole Rye Breads. Foods, 13(2), 224. https://doi.org/10.3390/foods13020224