Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants
Abstract
:1. Introduction
2. Effects of Ultrasound-Assisted Extraction on Safety and Toxicity of Food Materials
2.1. Positive Effects of Ultrasound-Assisted Extraction
2.2. Potential Negative Effects of Ultrasound-Assisted Extraction
3. Mechanism of Ultrasound-Assisted Extraction
4. Typical Organic Compounds in Plant-Based Ingredients
5. Ultrasound-Assisted Extraction Applications
6. Reaction Intensification in Ultrasound-Assisted Organic Synthesis and Chemical Reactions
Reaction Type | Starting Materials | Reaction Conditions | US-Effect | Reference |
---|---|---|---|---|
Mannich-type reactions | Aldehydes, ketones, and amine | Alkaline EtOH-water/methyl sulfonate, 20 °C, nominal US power of 600 W, lab-scale | 18 h for high-speed stirring to achieve 88% yield; US-assisted process achieved 95% yield in only 1.5 h | Zeng et al. [55] |
Aza- Michael reactions | Amine (imidazole) + carbene | Water, +20 °C | 30 min for 92% yield with conventional stirring; US method reduced time to 5 min and increased yield to 98% | Yao and Pan [56]; Bandyopadhyay et al. [57] |
Stille coupling reactions | Organotin + halide | Palladium-catalyst | Reaction time reduced from 20 h to 30 min; US significantly enhanced reaction rate, achieving 97% yield | Yao and Pan [56] |
Homogeneous acid-catalyzed transesterification | Fatty acid + alcohol | Strong acid catalyst | 95.5% yield achieved in 2 h by using sulfuryl chloride as catalyst with US | Yao and Pan [56] |
Interesterification | Fatty acids migration from one position to another | Normal temperature | Fast and efficient approach for biodiesel production with significant reduction in reaction time and enzyme loading | Yao and Pan [56] |
Heterogeneous acid-catalyzed transesterification | Fatty acids | Catalysts: alumina/zirconia/Ti/ZnO | High yields of esterification of oleic acid under ultrasonic irradiation | Yao and Pan [56] |
Synthesis of glycerol carbonate catalyzed by lipase | Glycerol carbonate, DMC | US power of 0–200 W, US frequency of 25 and 40 kHz, Enzyme: Lipase (Novozym 435) | Ultrasound achieved 99.75% limiting equilibrium conversion, saving 10 h compared to stirring | Yao and Pan [56] |
Lutein disuccinate synthesis | Succinic anhydride | Reaction in DCM, with TEA as catalyst | Limiting equilibrium conversion iincreadsed from 56% in 12 h with conventional method to 80% in 2 h with US | Yao and Pan [56] |
Multi-component synthesis | Malononitrile, 3,5-dione, and aromatic aldehydes | Iodine catalyst | US-assisted synthesis achieved 95% yield in 10 min; more efficient than conventional approach | Yao and Pan [56] |
Glycine assisted multi-component reaction | Malononitrile, resorcinol, and aromatic aldehydes | Reaction in H2O and glycine as organocatalyst, at 30 °C, reaction time of 9–45 min | Product purity ranged from 88 to 96% under US conditions | Cravotto et al. [58] |
Reaction Type | Starting Materials | Reaction Conditions | US-Effect | Reference |
---|---|---|---|---|
Oxidation reactions | Water + any oxidative hydrocarbon | Water, +20 °C | Conventional heating at 90 °C gave 97% yield in 60 min; US-assisted process achieved 98% yield in 15 min | Chatel et al. [59] |
Oxidation reactions (sonication of water leads to the formation of radicals) | US 24 kHz for 120 min | Cephalexin amino acid degraded | Babu et al. [60] | |
Protein degradation | Soybean protein isolate and egg white protein | Water, <35 °C | Formation of sulfhydryl groups in processing times of 20–40 min and 5–30 min, 20 kHz, high-power ultrasound (60 W/cm²) | Ren et al. [61] |
Maillard reaction | Glucose + lysine | Water, +60 °C | Slight increase in lactulose after 15 min during lactose isomerization compared with conventional heating | Corzo-Martinez et al. [62] |
Glycine + maltose | Water, +50 °C | Greater processing times (>20 min) promoted pyrazines production (harmful but not toxic) | Guan et al. [35] | |
Enzymatic hydrolysis reactions | Lard hydrolysis | 5 min US in water, with lipase enzyme | Nearly 100% hydrolysis achieved under US conditions | Cordova et al. [63] |
Starch hydrolysis | Glucoamylase, high US power density of 2–14 kW/L, 35–75 °C, 10–50 min | Significant improvement in starch hydrolysis under US field | Cordova et al. [63] |
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sullivan, P.; Agardy, F.J.; Clark, J.J. The Environmental Science of Drinking Water; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food Safety and Quality, Scientific Advice. Available online: https://www.fao.org/food-safety/scientific-advice/en/ (accessed on 9 September 2024).
- European Food Safety Authority. Available online: www.efsa.europa.eu (accessed on 9 September 2024).
- The, U.S. Food and Drug Administration. Available online: www.fda.gov (accessed on 9 September 2024).
- Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods. Available online: https://faolex.fao.org/docs/pdf/eur151053.pdf (accessed on 9 September 2024).
- Singla, M.; Sit, N. Application of ultrasound in combination with other technologies in food processing: A review. Ultrason. Sonochem. 2021, 73, 105506. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandille, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound-assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Salazar, J.; Chávez, J.A.; Turó, A.; García-Hernández, M.J. Effect of Ultrasound on Food Processing. In Novel Food Processing: Effects on Rheological and Functional Properties; Ahmed, J., Ramaswamy, H.S., Kasapis, S., Boye, J.I., Eds.; CRC Press: Boca Raton, FL, USA, 2010; p. 77. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols, and applications: A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Önür, İ.; Misra, N.; Barba, F.J.; Putnik, P.; Lorenzo, J.M.; Gökmen, V.; Alpas, H. Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types. J. Food Eng. 2018, 219, 129–136. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic-assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Aslam, R.; Alam, M.S.; Kaur, J.; Panayampadan, A.S.; Dar, O.I.; Kothakota, A.; Pandiselvam, R. Understanding the effects of ultrasound processing on texture and rheological properties of food. J. Texture Stud. 2022, 53, 775–799. [Google Scholar] [CrossRef]
- Dzah, C.S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound-assisted extraction on yield, antioxidant, anticancer, and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V.; Savva, A.G. Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 109–128. [Google Scholar] [CrossRef]
- Azam, S.M.R.; Ma, H.; Xu, B.; Devi, S.; Siddique, M.A.B.; Stanley, S.L. Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: A review. Trends Food Sci. Technol. 2020, 97, 417–432. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound-assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound-assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. 2007, 9, 161–169. [Google Scholar] [CrossRef]
- Rodríguez Garcia, S.L.; Raghavan, V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6446–6466. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Bekhit, A.E.D.; Tang, Y.; Huang, Y.; Huang, L.; He, Y.; Li, X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrason. Sonochem. 2021, 73, 105538. [Google Scholar] [CrossRef]
- Sridhar, A.; Vaishampayan, V.; Kumar, P.S.; Ponnuchamy, M.; Kapoor, A. Extraction techniques in food industry: Insights into process parameters and their optimization. Food Chem. Toxicol. 2022, 166, 113207. [Google Scholar] [CrossRef]
- Ahmadi, A.; Shahidi, S.-A.; Safari, R.; Motamedzadegan, A.; Ghorbani-HasanSaraei, A. Evaluation of stability and antibacterial properties of extracted chlorophyll from alfalfa (Medicago sativa L.). Food Chem. Toxicol. 2022, 163, 112980. [Google Scholar] [CrossRef]
- De Souza Carvalho, L.M.; Lemos, M.C.M.; Sanches, E.A.; da Silva, L.S.; de Araújo Bezerra, J.; Aguiar, J.P.L.; Das Chagas do Amaral Souza, F.; Filho, E.G.A.; Campelo, P.H. Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrason. Sonochem. 2020, 67, 105148. [Google Scholar] [CrossRef]
- Rahman, M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Suárez Valles, B. Analysis of cyanogenic compounds derived from mandelonitrile by ultrasound-assisted extraction and high-performance liquid chromatography in Rosaceae and Sambucus families. Molecules 2021, 26, 7563. [Google Scholar] [CrossRef]
- Apel, C.; Lyng, J.G.; Papoutsis, K.; Harrison, S.M.; Brunton, N.P. Screening the effect of different extraction methods (ultrasound-assisted extraction and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimization of the extraction conditions using chemometric tools. Food Bioprod. Process. 2020, 119, 277–286. [Google Scholar] [CrossRef]
- Aguilar-Acosta, L.A.; Serna-Saldivar, S.O.; Rodríguez-Rodríguez, J.; Escalante-Aburto, A.; Chuck-Hernández, C. Effect of ultrasound application on protein yield and fate of alkaloids during lupin alkaline extraction process. Biomolecules 2020, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 770–861. [Google Scholar]
- Jideani, A.I.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Hounsome, N.; Hounsome, B.; Lobo, G. Chapter 2: Biochemistry of Vegetables: Major Classes of Primary Metabolites (Carbohydrates, Amino Acids, Vitamins, Organic Acids, and Fatty Acids). In Handbook of Vegetables and Vegetable Processing, 2nd ed.; Siddiq, M., Uebersax, M.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; Volume 1, pp. 25–46. [Google Scholar]
- Xu, L.; Zang, E.; Sun, S.; Li, M. Main flavor compounds and molecular regulation mechanisms in fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2023, 63, 11859–11879. [Google Scholar] [CrossRef]
- Guan, Y.G.; Wang, J.; Yu, S.J.; Xu, X.B.; Zhu, S.M. Effects of ultrasound intensities on a glycin–maltose model system—A means of promoting Maillard reaction. Int. J. Food Sci. Technol. 2010, 45, 758–764. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Yan, X.; Duan, J.; Saint, C.P.; Beecham, S. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere 2019, 234, 204–214. [Google Scholar] [CrossRef]
- Kumar, G.; Upadhyay, S.; Yadav, D.K.; Malakar, S.; Dhurve, P.; Suri, S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio-functional properties: A review. J. Food Process Eng. 2023, 46, 14238. [Google Scholar] [CrossRef]
- Esposito, M.; Piazza, L. Ultrasound-assisted extraction of oil from hempseed (Cannabis sativa L.): Part 1. J. Sci. Food Agric. 2022, 102, 732–739. [Google Scholar] [CrossRef]
- Nardella, M.; Moscetti, R.; Chakravartula, S.S.N.; Bedini, G.; Massantini, R.A. Review on High Power Ultrasound-Assisted Extraction of Olive Oils: Effect on Oil Yield, Quality, Chemical Composition and Consumer Perception. Foods 2021, 10, 2743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-S.; Wang, L.-J.; Li, D.; Jiao, S.-S.; Chen, X.D.; Mao, Z.-H. Ultrasound-assisted extraction of oil from flaxseed. Sep. Purif. Technol. 2008, 62, 192–198. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Nayak, P.K.; Kesavan, R.K. Ultrasound assisted extraction of food colorants: Principle, mechanism, extraction technique and applications: A review on recent progress. Food Chem. Adv. 2022, 1, 100144. [Google Scholar] [CrossRef]
- Zhai, X.; Yang, M.; Zhang, J.; Zhang, L.; Tian, Y.; Chaonan, L.; Bao, L.; Ma, C.; El-Aty, A.M.A. Feasibility of Ultrasound-Assisted Extraction for Accelerated Cold Brew Coffee Processing: Characterization and Comparison with Conventional Brewing Methods. Front. Nutr. 2022, 9, 849811. [Google Scholar] [CrossRef]
- Zhang, Q.-A.; Zheng, H.; Lin, J.; Nie, G.; Fan, X.; García-Martín, J.F. The state-of-the-art research of the application of ultrasound to winemaking: A critical review. Ultrason. Sonochem. 2023, 95, 106384. [Google Scholar] [CrossRef]
- Mieles-Gómez, L.; Quintana, S.E.; García-Zapateiro, L.A. Ultrasound-Assisted Extraction of Mango (Mangifera indica) Kernel Starch: Chemical, Techno-Functional, and Pasting Properties. Gels 2023, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Omer, N.; Choo, Y.-M.; Ashokkumar, M.; Yusof, N.S.M. Ultrasound-Assisted Extraction of β-Asarone from Sweet Flag (Acorus calamus) Rhizome. Appl. Sci. 2022, 12, 11007. [Google Scholar] [CrossRef]
- Amirante, R.; Paduano, A. Ultrasound in Olive Oil Extraction. In Products from Olive Tree, 1st ed.; Boskou, D., Clodoveo, M., Eds.; InTech: London, UK, 2016; pp. 43–53. [Google Scholar]
- Hielscher Ultrasonics GmbH. Production Scale Process for Ultrasonic Extracted Olive Oil. Available online: www.hielscher.com (accessed on 27 May 2024).
- Pingret, D.; Fabiano-Tixier, A.-S.; Chemat, F. Ultrasound-assisted extraction. In Natural Product Extraction Principles and Applications, 1st ed.; Rostagno, M.A., Prado, J.M., Eds.; RSC Publishing: Cambridge, UK, 2013; p. 96. [Google Scholar]
- Tamminen, J.; Holappa, J.; Gradov, D.V.; Koiranen, T. Scaling up continuous ultrasound-assisted extractor for plant extracts by using spinach leaves as a test material. Ultrason. Sonochem. 2022, 90, 106171. [Google Scholar] [CrossRef]
- Kääpä Biotech. UAE in Fungal Extraction of Bioactive-Enriched Consumer Products. Available online: www.kaapabiotech.com (accessed on 27 May 2024).
- Sancheti, S.V.; Cogate, P.G. A review of engineering aspects of intensification of chemical synthesis using ultrasound. Ultrason. Sonochem. 2017, 36, 527–543. [Google Scholar] [CrossRef]
- Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443–451. [Google Scholar] [CrossRef]
- Mason, T.J. Sonochemistry. In Handbook of Green Chemistry and Technology; Blackwell: Oxford, UK, 2002; pp. 372–396. [Google Scholar]
- Zeng, H.; Li, H.; Shao, H. One-pot three-component Mannich-type reactions using sulfamic acid catalyst under ultrasound irradiation. Ultrason. Sonochem. 2009, 16, 758–762. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, Y. Power ultrasound and its applications: A state-of-the-art review. Ultrason. Sonochem. 2020, 62, 104722. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Mukherjee, S.; Turrubiartes, L.C.; Banik, B.K. Ultrasound-assisted Aza-Michael reaction in water: A green procedure. Ultrason. Sonochem. 2012, 19, 969–973. [Google Scholar] [CrossRef]
- Cravotto, G.; Borretto, E.; Oliverio, M.; Procopio, A.; Penoni, A. Organic reactions in water or biphasic aqueous systems under sonochemical conditions. A review on catalytic effects. Catal. Commun. 2015, 63, 2–9. [Google Scholar] [CrossRef]
- Chatel, G.; Monnier, C.; Kardos, N.; Voiron, C.; Andrioletti, B.; Draye, M. Green, Selective and swift oxidation of cyclic alcohols to corresponding ketones. Appl. Catal. A 2014, 478, 157–164. [Google Scholar] [CrossRef]
- Babu, S.G.; Ashokkumar, M.; Neppolian, B. The Role of Ultrasound on Advanced Oxidation Processes. Top. Curr. Chem. 2016, 75, 1–32. [Google Scholar] [CrossRef]
- Ren, X.; Li, C.; Yang, F.; Huang, Y.; Huang, C.; Zhang, K.; Yan, L. Comparison of hydrodynamic and ultrasonic cavitation effects on soy protein isolate functionality. J. Food Eng. 2020, 265, 109697. [Google Scholar] [CrossRef]
- Corzo-Martinez, M.; Montilla, A.; Megías-Pérez, R.; Olano, A.; Moreno, F.J.; Villamiel, M. Impact of high-intensity ultrasound on the formation of lactulose and Maillard reaction glycoconjugates. Food Chem. 2014, 157, 186–192. [Google Scholar] [CrossRef]
- Cordova, A.; Henríquez, P.; Nuñez, F.; Rico-Rodriguez, F.; Guerrero, C.; Astudillo-Castro, C.; Illanes, A. Recent Advances in the Application of Enzyme Processing Assisted by Ultrasound in Agri-Foods: A Review. Catalysts 2022, 12, 107. [Google Scholar] [CrossRef]
- Yu, H.; Ma, Y.; Li, J.; Li, H.; Zhang, Y.; Xie, Y.; Yang, Y.; Zhou, L. Ultrasonic-Assisted Extraction of Bioactive Compounds from Plant Materials. Ultrason. Sonochem. 2020, 68, 105229. [Google Scholar]
- Tao, Y.; Sun, D.W.; Wang, Y.; Zhou, J.; Wu, Y.; Xie, Z.; Liu, Z. Mechanistic Insights into Ultrasound-Mediated, Peroxide-Driven Transformation of Chlorpyrifos: Implications for Removal and Risk Control of Chemical Contaminants. J. Agric. Food Chem. 2016, 64, 3050–3057. [Google Scholar]
- Gharibzahedi, S.M.T.; Smith, B. A Comprehensive Review of the Application of Ultrasound Treatment for the Processing of Liquid Food Products. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar]
- Muthukumarappan, K.; Wang, Y.; Gunasekaran, S. Application of ultrasound in food processing—A review. Ultrason. Sonochem. 2010, 17, 923–934. [Google Scholar]
Group | Compound | Source | Reference |
---|---|---|---|
Mono- and disaccharides | Sucrose, fructose, and glucose | Apple, watermelon, strawberry, pear, peach, and tomato | Xu et al. [34] |
Organic acids | Malic acid and citric acid | Apple, watermelon, strawberry, pear, and peach | Xu et al. [34] |
Tartaric acid | Grape, pear, and apple | Xu et al. [34]; Vilkhu et al. [19] | |
Aascorbic acid | Orange, berries, and potato | Jideani et al. [32]; Rodríguez Garcia and Raghavan [20] | |
Carotenoids | Alpha-carotene, beta-carotene, and lycopene | Apricot, carrot, mango, orange, and tomato | Jideani et al. [32]; Rodríguez Garcia and Raghavan [20]; Kumar et al. [18] |
Xanthophylls (lutein, neoxanthin, and zeaxanthin) | Broccoli, spinach, and lettuce | Jideani et al. [32]; Rodríguez Garcia and Raghavan [20]; Kumar et al. [18] | |
Chlorophyll | Chlorophyll a and b | Leafy vegetables | Kumar et al. [18] |
Betalains | Bbetacyanin and betaxanthin | Beetroot | Jideani et al. [32] |
Flavonoid polyphenols | Flavonols, flavanols, and anthocyanins | Apple, banana, carrot, grape, berries, and broccoli | Jideani et al. [32]; Vilkhu et al. [19] |
Non-flavonoid polyphenols | Phenolic acids, benzoic acids, and cinnamic acids | Apple, apricot, banana, berries, grape, and cabbage | Jideani et al. [32] |
Ttannin polyphenols | Proanthocyanidins and soluble tannins | Broccoli | Jideani et al. [32] |
Fatty acids | Stearic acid, oleic acid, linoleic acid, and linolenic acid | Olive, palm fruit, oilseeds, avocado, and herbs | Rodríguez Garcia and Raghavan [20]; Gouda et al. [21] |
Terpenes | Limonene | Carrot, orange, caraway seeds, and herbs | Jideani et al. [32]; Gouda et al. [21] |
Glucosinolates | Isothiocyanates | Broccoli, cabbage, cauliflower, and leaves | Jideani et al. [32]; Kumar et al. [18] |
Steroid alkaloids | Alpha-solanine | Potato and eggplant | Xu et al. [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demesa, A.G.; Saavala, S.; Pöysä, M.; Koiranen, T. Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods 2024, 13, 3066. https://doi.org/10.3390/foods13193066
Demesa AG, Saavala S, Pöysä M, Koiranen T. Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods. 2024; 13(19):3066. https://doi.org/10.3390/foods13193066
Chicago/Turabian StyleDemesa, Abayneh Getachew, Soila Saavala, Marjo Pöysä, and Tuomas Koiranen. 2024. "Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants" Foods 13, no. 19: 3066. https://doi.org/10.3390/foods13193066
APA StyleDemesa, A. G., Saavala, S., Pöysä, M., & Koiranen, T. (2024). Overview and Toxicity Assessment of Ultrasound-Assisted Extraction of Natural Ingredients from Plants. Foods, 13(19), 3066. https://doi.org/10.3390/foods13193066