Chloropropanols and Their Esters in Food: An Updated Review
Abstract
1. Introduction
2. Definitions, Properties, and Chemical Structures
3. Toxicological Effects
4. Formation
5. Occurrence in Foods
5.1. Vegetable Oils
5.2. Foods Other than Vegetable Oils
6. Analytical Method
7. Mitigation
- Removing precursor compounds from the raw material;
- Removing chloropropanols from the final product;
- Preventing chloropropanol synthesis by optimizing process parameters.
8. Legal Regulations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA (European Food Safety Authority). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 14, 4426. [Google Scholar]
- Velisek, J.; Davidek, J.; Hajšlová, J.; Kubelka, V.; Janíček, G.; Mánková, B. Chlorohydrins in protein hydrolysates chlorhydrinein. Z. Lebensm. Unters. Forsch 1978, 167, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Davidek, J.; Velíšek, J.; Kubelka, V.; Janíček, G.; Šimicová, Z. Glycerol chlorohydrins and their esters as products of the hydrolysis of tripalmitin, tristearin and triolein with hydrochloric acid. Z. Lebensm. Unters. Forsch 1980, 171, 14–17. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Svejkovska, B.; Velisek, J.; Dolezal, M. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit. Contam. 2006, 23, 1290–1298. [Google Scholar] [CrossRef]
- CVUA (Chemisches- und Veterinäruntersuchungsamt Stuttgart Sitz Fellbach). 3-MCPD ester in Raffinierten Speisefetten und ölen—Ein neu Erkanntes Weltweits Problem. 2007. Available online: http://www.cvuas.de/pub/beitrag.asp?ID=717&subid=1 (accessed on 11 March 2024).
- Zelinková, Z.; Novotný, O.; Schůrek, J.; Velíšek, J.; Hajšlová, J.; Doležal, M. Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Addit. Contam. 2008, 25, 669–676. [Google Scholar] [CrossRef]
- Casado, N.; Berenguer, C.V.; Câmara, J.S.; Pereira, J.A.M. What are we eating? surveying the presence of toxic molecules in the food supply chain using chromatographic approaches. Molecules 2024, 29, 579. [Google Scholar] [CrossRef]
- SGS (Société Générale de Surveillance). Available online: https://www.sgs.com/en-hk/news/2022/03/20220310-sgs-risk-of-chloropropanols-in-fcm-paper-products (accessed on 10 May 2024).
- Andres, S.; Appel, K.E.; Lampen, A. Toxicology, occurrence and risk characterisation of the chloropropanols in food: 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. Food Chem. Toxicol. 2013, 58, 467–478. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Summary of the Fifty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Rome, Italy, 5–14 June 2004; pp. 20–24. Available online: http://www.leffingwell.com/Summary%20and%20Conclusions%20of%20the%20Fifty-seventh%20meeting.pdf (accessed on 11 May 2024).
- Crews, C.; Hasnip, S.; Chapman, S.; Hough, P.; Potter, N.; Todd, J.; Brereton, P.; Matthews, W. Survey of chloropropanols in soy sauces and related products purchased in the UK in 2000 and 2002. Food Addit. Contam. 2003, 20, 916–922. [Google Scholar] [CrossRef]
- EC (European Commission). Collection and Collation of Data on Levels of 3-Monochloropropanediol (3-MCPD) and Related Substances in Foodstuffs, Reports on Tasks for Scientific Cooperation. 2004. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_mcpd_scoop_3-2-9_final_report_chloropropanols_en.pdf (accessed on 11 March 2024).
- Chung, S.W.C.; Kwong, K.P.; Yau, J.C.W.; Wong, A.M.C.; Xiao, Y. Chloropropanols levels in foodstuffs marketed in Hong Kong. J. Food Compos. Anal. 2008, 21, 569–573. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr. Eval. Carcinog. Risks Hum. 2013, 101, 349–374. [Google Scholar]
- NTP (National Toxicology Program). NTP Toxicology and Carcinogenesis Studies of Glycidol (CAS No. 556-52-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies); Technical Report Series No. 374; National Institutes of Health Publication No. 90-2829; NIH Publication: Chapel Hill, NC, USA, 1990.
- Seefelder, W.; Scholz, G.; Schilter, B. Structural diversity of dietary fatty esters of chloropropanols and related substances. Eur. J. Lipid Sci. Technol. 2011, 113, 319–322. [Google Scholar] [CrossRef]
- Tanguler, H.; Kabak, B. Chemical hazards in foods. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, Swizterland, 2019; pp. 349–402. [Google Scholar]
- Lee, B.Q.; Khor, S.M. 3-chloropropane-1,2-diol (3-MCPD) in soy sauce: A review on the formation, reduction, and detection of this potential carcinogen. Compr. Rev. Food Sci. Food Saf. 2015, 14, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Velisek, J.; Doležal, M.; Crews, C.; Dvořák, T. Optical isomers of chloropropanediols: Mechanisms of their formation and decomposition in protein hydrolysates. Czech J. Food Sci. 2002, 20, 161–170. [Google Scholar] [CrossRef]
- NCBI (National Center for Biotechnology Information). PubChem Compound Summary for CID 7289, 1,3-Dichloro-2-propanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_3-Dichloro-2-propanol (accessed on 7 March 2024).
- NCBI (National Center for Biotechnology Information). PubChem Compound Summary for CID 12018, 2,3-Dichloro-1-propanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_3-Dichloro-1-propanol (accessed on 7 March 2024).
- Schilter, B.; Scholz, G.; Seefelder, W. Fatty acid esters of chloropropanols and related compounds in food: Toxicological aspects. Eur. J. Lipid Sci. Technol. 2011, 113, 309–313. [Google Scholar] [CrossRef]
- Habermeyer, M.; Guth, S.; Eisenbrand, G. Identification of gaps in knowledge concerning toxicology of 3-MCPD and glycidol esters. Eur. J. Lipid Sci. Technol. 2011, 113, 314–318. [Google Scholar] [CrossRef]
- NCBI (National Center for Biotechnology Information). PubChem Compound Summary for CID 11164, Glycidol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glycidol (accessed on 7 March 2024).
- Kobets, T.; Smith, B.P.C.; Williams, G.M. Food-borne chemical carcinogens and the evidence for human cancer risk. Foods 2022, 11, 2828. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some industrial chemicals. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 2000, 77, 469–487. [Google Scholar]
- Barocelli, E.; Corradi, A.; Mutti, A.; Petronini, P.G. Comparison between 3-MCPD and its palmitic esters in a 90-day toxicological study. EFSA Support. Publ. 2011, 8, 1–131. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Wang, M.; Shi, W.; Du, X.; Sun, C. The toxicity of 3-chloropropane-1,2-dipalmitate in Wistar rats and a metabonomics analysis of rat urine by ultra-performance liquid chromatography-mass spectrometry. Chem. Biol. Interact. 2013, 206, 337–345. [Google Scholar] [CrossRef]
- Onami, S.; Cho, Y.; Toyoda, T.; Mizuta, Y.; Yoshida, M.; Nishikawa, A.; Ogawa, K. A 13-week repeated dose study of three 3-monochloropropane-1,2-diol fatty acid esters in F344 rats. Arch. Toxicol. 2014, 88, 871–880. [Google Scholar] [CrossRef]
- Lynch, B.S.; Bryant, D.W.; Hook, G.J.; Earle, N.R.; Ian, C.M. Carcinogenicity of monochloro-1,2-propanediol (α-chlorohydrin, 3-MCPD). Int. J. Toxicol. 1998, 17, 47–76. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Safety Evaluation of Certain Food Additives and Contaminants—3-Chloro-1,2-propanediol; WHO Food Additives Series; World Health Organization: Geneva, Switzerland, 2007; Volume 58. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://apps.who.int/food-additives-contaminants-jecfa-database/Document/Index/9008&ved=2ahUKEwj39LKf_LWIAxUkSvEDHcvjAicQFnoECBQQAQ&usg=AOvVaw2YlbF3xXrl76Pnx0-qxzN5 (accessed on 15 March 2024).
- Cho, W.S.; Han, B.S.; Lee, H.; Kim, C.; Nam, K.T.; Park, K.; Choi, M.; Kim, S.J.; Kim, S.H.; Jeong, J.; et al. Subchronic toxicity study of 3-monochloropropane-1,2-diol administered by drinking water to B6C3F1 mice. Food Chem. Toxicol. 2008, 46, 1666–1673. [Google Scholar] [CrossRef]
- Jones, A.R. Antifertility actions of alpha-chlorohydrin in the male. Int. J. Biol. Sci. 1983, 36, 333–350. [Google Scholar]
- El Ramy, R.; Ould Elhkim, M.; Lezmi, S.; Poul, J.M. Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and beta-chlorolactic acid, using the single cell gel/comet assay. Food Chem. Toxicol. 2007, 45, 41–48. [Google Scholar] [CrossRef]
- Lee, J.K.; Byun, J.A.; Park, S.H.; Kim, H.S.; Park, J.H.; Eom, J.H.; Oh, H.Y. Evaluation of the potential immunotoxicity of 3-monochloro-1, 2-propanediol in Balb/c mice: I. Effect on antibody forming cell, mitogen-stimulated lymphocyte proliferation, splenic subset, and natural killer cell activity. Toxicology 2004, 204, 1–11. [Google Scholar] [CrossRef]
- Hamlet, C.G.; Sadd, P.A.; Crews, C.; Velíšek, J.; Baxter, D.E. Occurrence of 3-chloro-propane-1,2-diol (3-MCPD) and related compounds in foods: A review. Food Addit. Contam. 2002, 19, 619–631. [Google Scholar] [CrossRef]
- Jones, A.R.; Fakhouri, G. Epoxides as obligatory intermediates in the metabolism of a-halohydrins. Xenobiotica 1979, 9, 595–599. [Google Scholar] [CrossRef]
- Qian, G.; Zhang, H.; Zhang, G.; Yin, L. Study on acute toxicity of R, S and (R,S)-3-monchloropropane-1, 2-diol. J. Hyg. Res. 2007, 36, 137–140. [Google Scholar]
- Kluwe, W.M.; Gupta, B.N.; Lamb, J.C. The comparative effects of 1,2-dibromo-3-chloropropane (DBCP) and metabolites, 3-chloro 1,2-propaneoxide (epichlorohydrin), 3-chloro-1,2-propanediol (alphachlorohydrin), and oxalic acid, on the urogenital system of male rats. Toxicol. Appl. Pharmacol. 1983, 70, 67–86. [Google Scholar] [CrossRef]
- Lewis, R.J. Sax’s Dangerous Properties of Industrial Materials, 9th ed.; Van Nostrand Reinhold: New York, NY, USA, 1996; Volume 1–3, p. 1124. [Google Scholar]
- Lewis, R.J., Sr. (Ed.) Sax’s Dangerous Properties of Industrial Materials, 11th ed.; Wiley-Interscience, Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; p. 1869. [Google Scholar]
- Kawashima, M.; Watanabe, Y.; Nakajima, K.; Murayama, H.; Nagahara, R.; Jin, M.; Yoshida, T.; Shibutani, M. Late effect of developmental exposure to glycidol on hippocampal neurogenesis in mice: Loss of parvalbumin-expressing interneurons. Exp. Toxicol. Pathol. 2017, 69, 517–526. [Google Scholar] [CrossRef]
- Akane, H.; Shiraki, A.; Imatanaka, N.; Akahori, Y.; Itahashi, M.; Abe, H.; Shibutani, M. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol. Lett. 2014, 224, 424–432. [Google Scholar] [CrossRef]
- Bakhiya, N.; Abraham, K.; Gürtler, R.; Appel, K.E.; Lampen, A. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol. Nutr. Food Res. 2011, 55, 509–521. [Google Scholar] [CrossRef]
- Rae, J.M.C.; Craig, L.; Slone, T.W.; Frame, S.R.; Buxton, L.W.; Kennedy, G.L. Evaluation of chronic toxicity and carcinogenicity of ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in Sprague-Dawley rats. Toxicol. Rep. 2015, 2, 939–949. [Google Scholar]
- Aasa, J.; Granath, F.; Törnqvist, M. Cancer risk estimation of glycidol based on rodent carcinogenicity studies, a multiplicative risk model and in vivo dosimetry. Food Chem. Toxicol. 2019, 128, 54–60. [Google Scholar] [CrossRef]
- Mihalache, O.A.; Dall’Asta, C. Food processing contaminants: Dietary exposure to 3-MCPD and glycidol and associated burden of disease for Italian consumers. Environ. Res. 2023, 234, 116559. [Google Scholar] [CrossRef]
- FSCJ (Food Safety Commission of Japan). Considerations on glycidol and its fatty acid esters in foods. Exec. Summ. 2015, 3, 67–69. Available online: https://www.jstage.jst.go.jp/article/foodsafetyfscj/3/2/3_2015010e/_pdf/-char/en (accessed on 20 March 2024).
- Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment. Annual Report. 2004. Available online: https://cot.food.gov.uk/sites/default/files/cot/comsection.pdf (accessed on 5 March 2024).
- Committee on the Carcinogenicity of Chemicals in Food, Consumer Products and the Environment. Annual Report. 2004. Available online: https://cot.food.gov.uk/sites/default/files/cot/cocsection.pdf (accessed on 5 March 2024).
- Hamlet, C.G.; Asuncion, L.; Velíšek, J.; Doležal, M.; Zelinková, Z.; Crews, C. Formation and occurrence of esters of 3-chloropropane-1, 2-diol (3-CPD) in foods: What we know and what we assume. Eur. J. Lipid Sci. Technol. 2011, 113, 279–303. [Google Scholar] [CrossRef]
- Craft, B.D.; Nagy, K.; Sandoz, L.; Destaillats, F. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production. Food Addit. Contam. Part A 2012, 29, 354–361. [Google Scholar] [CrossRef]
- Seefelder, W.; Varga, N.; Studer, A.; Williamson, G.; Scanlan, F.P.; Stadler, R.H. Esters of 3-chloro-1,2-propanediol (3-MCPD) in vegetable oils: Significance in the formation of 3-MCPD. Food Addit. Contam. 2008, 25, 391–400. [Google Scholar] [CrossRef]
- Jędrkiewicz, R.; Kupska, M.; Głowacz, A.; Gromadzka, J.; Namieśnik, J. 3-MCPD: A worldwide problem of food chemistry. Crit. Rev. Food Sci. Nutr. 2016, 56, 2268–2277. [Google Scholar] [CrossRef]
- Baer, I.; Calle, B.; Taylor, P. 3-MCPD in food other than soy sauce or hydrolyzed vegetable protein (HVP). Anal. Bioanal. Chem. 2010, 396, 443–456. [Google Scholar] [CrossRef]
- Hori, K.; Hori-Koriyama, N.; Tsumura, K.; Fukusaki, E.; Bamba, T. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions. J. Biosci. Bioeng. 2016, 122, 246–251. [Google Scholar] [CrossRef]
- Matthäus, B.; Pudel, F.; Fehling, P.; Vosmann, K.; Freudenstein, A. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur. J. Lipid Sci. Technol. 2011, 113, 380–386. [Google Scholar] [CrossRef]
- Destaillats, F.; Craft, B.D.; Sandoz, L.; Nagy, K. Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit. Contam. Part A 2012, 29, 29–37. [Google Scholar] [CrossRef]
- Arris, F.A.; Thai, V.T.S.; Manan, W.N.; Sajab, M.S. A revisit to the formation and mitigation of 3-chloropropane-1,2-diol in palm oil production. Foods 2020, 9, 1769. [Google Scholar] [CrossRef]
- Tivanello, R.; Capristo, M.; Vicente, E.; Ferrari, R.; Sampaio, K.; Arisseto, A. Effects of deodorization temperature and time on the formation of 3-MCPD, 2-MCPD, and glycidyl esters and physicochemical changes of palm oil. J. Food Sci. 2020, 85, 2255–2260. [Google Scholar] [CrossRef]
- Ji, Y.; Lan, D.; Wang, W.; Goh, K.M.; Tan, C.P.; Wang, Y. The formation of 3-monochloropropanediol esters and glycidyl esters during heat-induced processing using an olive-based edible oil. Foods 2022, 11, 4073. [Google Scholar] [CrossRef]
- Sun, C.; Wu, N.; Kou, S.; Wu, H.; Liu, Y.; Pei, A. Occurrence, formation mechanism, detection methods, and removal approaches for chloropropanols and their esters in food: An updated systematic review. Food Chem. X 2023, 17, 100529. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. 1,3-Dichloro-2-propanol. 2012. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://publications.iarc.fr/_publications/media/download/5695/5a8db1ef7524cce85ad21b3836bea40ab9082535.pdf&ved=2ahUKEwjitZCv8LeIAxWPR_EDHc2sJ4YQFnoECBUQAQ&usg=AOvVaw0cu25qbzNOoJSfM5u3j6O4 (accessed on 3 March 2024).
- RASFF (Rapid Alarm System for Food and Feed Portal). Available online: https://ec.europa.eu/food/safety/rasff_en (accessed on 4 March 2024).
- Pudel, F.; Benecke, P.; Fehling, P.; Freudenstein, A.; Matthaus, B.; Schwaf, A. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur. J. Lipid Sci. Technol. 2011, 113, 368–373. [Google Scholar] [CrossRef]
- MacMahon, S.; Begley, T.H.; Diachenko, G.W. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit. Contam. A. 2013, 30, 2081–2092. [Google Scholar] [CrossRef] [PubMed]
- Razak, R.A.A.; Tarmizi, A.H.A.; Hammid, A.N.A.; Kuntom, A.; Ismail, I.S.; Sanny, M. Verification and evaluation of monochloropropanediol (MCPD) esters and glycidyl esters in palm oil products of different regions in Malaysia. Food Addit. Contam. Part A 2019, 36, 1626–1636. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, T.G.; Costa, H.S.; Silva, M.A.; Oliveira, M.B.P.P. Are chloropropanols and glycidyl fatty acid esters a matter of concern in palm oil? Trends Food Sci. Technol. 2020, 105, 494–514. [Google Scholar] [CrossRef]
- Eisenreich, A.; Monien, B.H.; Götz, M.E.; Buhrke, T.; Oberemm, A.; Schultrich, K.; Abraham, K.; Braeuning, A.; Schäfer, B. 3-MCPD as contaminant in processed foods: State of knowledge and remaining challenges. Food Chem. 2023, 403, 134332. [Google Scholar] [CrossRef]
- Shi, R.R.S.; Shen, P.; Yu, W.Z.; Cai, M.; Tay, A.J.; Lim, I.; Chin, Y.S.; Ang, W.M.; Er, J.C.; Lim, G.S. Occurrence and dietary exposure of 3-MCPD esters and glycidyl esters in domestically and commercially prepared food in Singapore. Foods 2023, 12, 4331. [Google Scholar] [CrossRef]
- Liao, Z.; Gao, Z.; Yang, Q.; Cao, D. Occurrence and exposure evaluation of 2- and 3-monochloropropanediol (MCPD) esters and glycidyl esters in refined vegetable oils marketed in Tianjin of China. J. Food Compos. Anal. 2024, 130, 106150. [Google Scholar] [CrossRef]
- Li, C.; Nie, S.P.; Zhou, Y.Q.; Xie, M.Y. Exposure assessment of 3-monochloropropane-1,2-diol esters from edible oils and fats in China. Food Chem. Toxicol. 2015, 75, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Razak, R.A.A.; Kuntom, A.; Siew, W.L.; Ibrahim, N.A.; Ramli, M.R.; Hussein, R.; Nesaretnam, K. Detection and monitoring of 3-monochloropropane-1,2-diol (3-MCPD) esters in cooking oils. Food Control 2012, 25, 355–360. [Google Scholar] [CrossRef]
- Kamikata, K.; Vicente, E.; Arisseto-Bragotto, A.P.; de Oliveira Miguel, A.M.R.; Milani, R.F.; Tfouni, S.A.V. Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control 2019, 95, 135–141. [Google Scholar] [CrossRef]
- Jedrkiewicz, R.; Głowacz, A.; Gromadzka, J.; Namie, J. Determination of 3-MCPD and 2-MCPD esters in edible oils, fish oils and lipid fractions of margarines available on Polish market. Food Control 2016, 59, 487–492. [Google Scholar] [CrossRef]
- Kuhlmann, J. Determination of bound 2, 3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur. J. Lipid Sci. Technol. 2011, 113, 335–344. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation: Measurement methods. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; pp. 357–385. [Google Scholar]
- Weisshaar, R. 3-MCPD-esters in edible fats and oils–a new and worldwide problem. Eur. J. Lipid Sci. Technol. 2008, 110, 671–672. [Google Scholar] [CrossRef]
- CAC (Codex Alimentarius Commission). Proposed Draft Code of Practice for the Reduction of 3-Monochloropropane-1,2-diol Esters (3-MCPDE) and Glycidyl Esters (GE) in Refined Oils and Products Made with Refined Oils, Especially Infant Formula. Joint FAO/WHO Food Standards Programme. 2018. Available online: http://www.fao.org/fao-who-codexalimentarius/resources/circular-letters/en/?y=2018 (accessed on 1 February 2024).
- Zhang, J.; Zhang, W.; Zhang, Y.; Huang, M.; Sun, B. Effects of food types, frying frequency, and frying temperature on 3-monochloropropane-1,2-diol esters and glycidyl esters content in palm oil during frying. Foods 2021, 10, 2266. [Google Scholar] [CrossRef] [PubMed]
- Weisshaar, R.; Perz, R. Fatty acid esters of glycidol in refined fats and oils. Eur. J. Lipid Sci. Technol. 2010, 112, 158–165. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Naseri, M.; Ahmadpourmir, H.; Azizi, M.; Rezaee, R.; Karimi, G. Determination of 3 monochloropropane-1,2-diol (3-MCPD) and 1,3-dichloropropan-2-ol (1,3-DCP) levels in edible vegetable oils: A health risk assessment for Iranian consumers. Microchem. J. 2023, 192, 108946. [Google Scholar] [CrossRef]
- Yamazaki, K.; Ogiso, M.; Isagawa, S.; Urushiyama, T.; Ukena, T.; Kibune, N. A new, direct analytical method using LC-MS/MS for fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) in edible oils. Food Addit. Contam. Part A 2013, 30, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Aniołowska, M.; Kita, A. The effect of frying on glycidyl esters content in palm oil. Food Chem. 2016, 203, 95–103. [Google Scholar] [CrossRef]
- Hammouda, I.B.; Zribi, A.; Ben Mansour, A.; Matthäus, B.; Bouaziz, M. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil. Eur. Food Res. Technol. 2017, 243, 1219–1227. [Google Scholar] [CrossRef]
- Hamlet, A.; Sadd, P.A.; Gray, D.A. Generation of monochloropropanediols (MCPDs) in model dough systems. 1. Leavened doughs. J. Agric. Food Chem. 2004, 52, 2059–2066. [Google Scholar] [CrossRef]
- Dolezal, M.; Chaloupská, M.; Divinová, V.; Svejkovská, B.; Velišek, J. Occurrence of 3-chloropropane-1,2-diol and its esters in coffee. Eur. Food Res. Tech. 2005, 221, 221–225. [Google Scholar] [CrossRef]
- Stauff, A.; Schneider, E.; Heckel, F. 2-MCPD, 3-MCPD and fatty acid esters of 2-MCPD, 3-MCPD and glycidol in fine bakery wares. Eur. Food Res. Technol. 2020, 246, 1945–1953. [Google Scholar] [CrossRef]
- Mikulíková, R.; Svoboda, Z.; Benešová, K.; Běláková, S. 3-MCPD process contaminant in malt. Kvasny Prum. 2018, 64, 6–9. [Google Scholar] [CrossRef]
- Ilko, V.; Zelinkova, Z.; Doležal, M.; Velíšek, J. 3-chloropropane-1,2-diol fatty acid esters in potato products. Czech J. Food Sci. 2011, 29, 411–419. [Google Scholar] [CrossRef]
- Leigh, J.; MacMahon, S. Occurrence of 3-MCPD and glycidyl esters in commercial infant formulas in the United States. Food Addit. Contam. Part A 2017, 34, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.N.A.; Tan, T.C.; Ang, M.Y.; Leong, Y.H. Occurrence and risk assessment of 3-monochloropropanediols esters (3-MCPDE), 2-monochloropropanediol esters (2-MCPDE), and glycidyl esters (GE) in commercial infant formula samples from Malaysia. Food Addit. Contam. Part A 2023, 40, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.F.; Lee, B.Q.; Low, K.H.; Jenatabadi, H.S.; Bt Wan Mohamed Radzi, C.W.J.; Khor, S.M. Estimation of the dietary intake and risk assessment of food carcinogens (3-MCPD and 1,3-DCP) in soy sauces by Monte Carlo simulation. Food Chem. 2020, 311, 126033. [Google Scholar] [CrossRef]
- Arisseto, A.P.; Silva, W.C.; Scaranelo, G.R.; Vicente, E. 3-MCPD and glycidyl esters in infant formulas from the Brazilian market: Occurrence and risk assessment. Food Control 2017, 77, 76–81. [Google Scholar] [CrossRef]
- Beekman, J.K.; Grassi, K.; MacMahon, S. Updated occurrence of 3-monochloropropane-1,2-diol esters (3-MCPD) and glycidyl esters in infant formulas purchased in the United States between 2017 and 2019. Food Addit. Contam. Part A 2020, 37, 374–390. [Google Scholar] [CrossRef]
- Fu, W.S.; Zhao, Y.; Zhang, G.; Zhang, L.; Li, J.G.; Tang, C.D.; Miao, H.; Ma, J.B.; Zhang, Q.; Wu, Y.N. Occurrence of chloropropanols in soy sauce and other foods in China between 2002 and 2004. Food Addit. Contam. 2007, 24, 812–819. [Google Scholar] [CrossRef]
- Breitling-Utzmann, C.M.; Köbler, H.; Harbolzheimer, D.; Maier, A. 3-MCPD: Occurrence in bread crust and various food groups as well as formation in toast. Dtsch. Lebensm. Rundsch 2003, 99, 280–285. [Google Scholar]
- Zelinkova, Z.; Doležal, M.; Velíšek, J. Occurrence of 3-chloropropane-1,2-diol fatty acid esters in infant and baby foods. Eur. Food Res. Technol. 2009, 228, 571–578. [Google Scholar] [CrossRef]
- Divinova, V.; Doležal, M.; Velíšek, J. Free and bound 3-chloropropane-1,2-diol in coffee surrogates and malts. Czech J. Food Sci. 2007, 25, 39–47. [Google Scholar] [CrossRef]
- Da Costa, D.S.; Albuquerque, T.G.; Costa, H.S.; Bragotto, A.P.A. Thermal contaminants in coffee induced by roasting: A review. Int. J. Environ. Res. Public Health 2023, 20, 5586. [Google Scholar] [CrossRef] [PubMed]
- Jira, W. 3-monochloropropane-1,2-diol (3-MCPD) in smoked meat products: Investigation of contents and estimation of the uptake by the consumption of smoked meat products. Fleischwirtschaft 2013, 90, 115–118. [Google Scholar]
- Zastrow, L.; Albert, C.; Speer, K.; Schwind, K.-H.; Jira, W. Formation of pyrolysis-affected PAHs, oxygenated PAHs, and MCPDs in home smoked meat. LWT 2023, 184, 114971. [Google Scholar] [CrossRef]
- Kuntzer, J.; Weisshaar, R. The smoking process: A potent source of 3-chloropropane-1,2-diol (3-MCPD) in meat products. Dtsch. Lebensm. Rundsch 2006, 102, 397–400. [Google Scholar]
- Ostermeyer, U.; Merkle, S.; Karl, H. Free and bound MCPD and glycidyl esters in smoked and thermally treated fishery products of the German market. Eur. Food Res. Technol. 2021, 247, 1757–1769. [Google Scholar] [CrossRef]
- Goh, K.M.; Wong, Y.H.; Tan, C.P.; Nyam, K.L. A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr. Res. Food Sci. 2021, 4, 460–469. [Google Scholar] [CrossRef]
- Schuhmacher, R.; Nurmi-Legat, J.; Oberhauser, A.; Kainz, M.; Krska, R. A rapid and sensitive GC-MS method for determination of 1,3-dichloro-2-propanol in water. Anal. Bioanal. Chem. 2005, 382, 366–371. [Google Scholar] [CrossRef]
- Gonzalez, P.; Racamonde, I.; Carro, A.M.; Lorenzo, R.A. Combined solid-phase extraction and gas chromatography–mass spectrometry used for determination of chloropropanols in water. J. Sep. Sci. 2011, 34, 2697–2704. [Google Scholar] [CrossRef]
- Crews, C.; Chiodini, A.; Granvogl, M.; Hamlet, C.; Hrnčiřík, K.; Kuhlmann, J.; Lampen, A.; Scholz, G.; Weisshaar, R.; Wenzl, T.; et al. Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: A review and future perspectives. Food Addit. Contam. Part A 2013, 30, 11–45. [Google Scholar] [CrossRef]
- Racamonde, I.; Gonzalez, P.; Lorenzo, R.A.; Carro, A.M. Determination of chloropropanols in foods by one-step extraction and derivatization using pressurized liquid extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2011, 1218, 6878–6883. [Google Scholar] [CrossRef]
- Zhong, H.-N.; Zeng, Y.; Zhu, L.; Pan, J.-J.; Wu, S.-L.; Li, D.; Dong, B.; Li, H.-K.; Wang, X.-H.; Zhang, H.; et al. The Occurrence of mono/di-chloropropanol contaminants in food contact papers and their potential health risk. Food Packag. Shelf Life 2022, 34, 101002. [Google Scholar] [CrossRef]
- Ramli, N.A.S.; Roslan, N.A.; Abdullah, F.; Ghazali, R.; Abd Razak, R.A.; Tarmizi, A.H.A.; Bilal, B. Analytical method for the determination of 2-and 3-monochloropropanediol esters and glycidyl ester in palm-based fatty acids by GC-MS. Food Control 2023, 151, 109824. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, N.; Wen, S.; Li, Q.; Gao, Y.; Yu, X. Methods, principles, challenges, and perspectives of determining chloropropanols and their esters. Crit. Rev. Food Sci. Nutr. 2024, 64, 1632–1652. [Google Scholar] [CrossRef]
- AOCS (American Oil Chemists’ Society). AOCS Official Method Cd 29a–13: 2- and 3-MCPD Fatty Acid Esters and Glycidol Fatty Acid Esters in Edible Oils and Fats by Acid Transesterification. 2013. Available online: https://myaccount.aocs.org/PersonifyEbusiness/Store/Product-Details/productId/118272 (accessed on 20 March 2024).
- Ermacora, A.; Hrncirik, K. A novel method for simultaneous monitoring of 2-MCPD, 3-MCPD and glycidyl esters in oils and fats. J. Am. Oil Chem. Soc. 2013, 90, 1–8. [Google Scholar] [CrossRef]
- Cao, X.; Song, G.; Gao, Y.; Zhao, J.; Zhang, M.; Wu, W.; Hu, Y. A Novel derivatization method coupled with GC–MS for the simultaneous determination of chloropropanols. Chromatographia 2009, 70, 661–664. [Google Scholar] [CrossRef]
- Hamlet, C.G.; Sutton, P.G. Determination of the chloropropanols, 3-chloro-1, 2-propandiol and 2-chloro-1, 3-propandiol, in hydrolysed vegetable proteins and seasonings by gas chromatography/ion trap tandem mass spectrometry. Rapid Commun. Mass Spectr. 1997, 11, 1417–1424. [Google Scholar] [CrossRef]
- Wang, L.; Ying, Y.; Hu, Z.; Wang, T.; Shen, X.; Wu, P. Simultaneous determination of 2-and 3- MCPD esters in infant formula milk powder by solid-phase extraction and GC-MS analysis. J. AOAC Int. 2016, 99, 786–791. [Google Scholar] [CrossRef]
- Oey, S.B.; van der Fels-Klerx, H.J.; Fogliano, V.; van Leeuwen, S.P. Chemical refining methods effectively mitigate 2-MCPD esters, 3-MCPD esters, and glycidyl esters formation in refined vegetable oils. Food Res. Int. 2022, 156, 111137. [Google Scholar] [CrossRef]
- Tran, S.C.; Nguyen, N.H.; Vu, T.N.; Bui, T.C.; Phung, L.C.; Tran, T.T.; Thai, T.N.H. Risk assessment of 3-MCPD esters and glycidyl esters from the formulas for infants and young children up to 36 months of age. Food Addit. Contam. Part A 2023, 40, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Zhang, X.; Karangwa, E.; Dai, Q.; Xia, S.; Yu, J.; Gao, Y. Direct determination of 3-chloro-1, 2-propanediol esters in beef flavoring products by ultra-performance liquid chromatography tandem quadrupole mass spectrometry. RSC Adv. 2016, 6, 113576–113582. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Zhang, H.; Qian, H.; Zhang, Y.; Tang, L.; Li, Z. Development and application of 3-chloro-1, 2-propandiol electrochemical sensor based on a polyaminothiophenol modified molecularly imprinted film. J. Agric. Food Chem. 2014, 62, 4552–4557. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Ni, X.; Cao, Y. A biosensor based on hemoglobin immobilized with magnetic molecularly imprinted nanoparticles and modified on a magnetic electrode for direct electrochemical determination of 3-chloro-1, 2-propandiol. J. Electroanal. Chem. 2019, 834, 233–240. [Google Scholar] [CrossRef]
- Fang, M.; Zhou, L.; Zhang, H.; Liu, L.; Gong, Z.Y. A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1,2-diol determination. Food Chem. 2019, 274, 156–161. [Google Scholar] [CrossRef]
- Silva, W.C.; Santiago, J.K.; Capristo, M.F.; Ferrari, R.A.; Vicente, E.; Sampaio, K.A.; Arisseto, A.P. Washing bleached palm oil to reduce monochloropropanediols and glycidyl esters. Food Addit. Contam. Part A 2019, 36, 244–253. [Google Scholar] [CrossRef]
- Ramli, M.R.; Siew, W.L.; Ibrahim, N.A.; Kuntom, A.; Razak, R.A.A. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes. Food Addit. Contam. Part A 2015, 32, 817–824. [Google Scholar] [CrossRef]
- CXC 79-2019; Code of Practice for the Reduction of 3-Monochloropropane-1,2-diol Esters (3-MCPDEs) and Glycidyl Esters (GEs) in Refined Oils and Food Products Made with Refined Oils. Codex Alimentarius International Food Standards: Rome, Italy, 2019.
- Strijowski, U.; Heinz, V.; Franke, K. Removal of 3-MCPD esters and related substances after refining by adsorbent material. Eur. J. Lipid Sci. Technol. 2011, 113, 387–392. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Hesseler, M. Enzymatic removal of 3-monochloro-1,2-propanediol (3-MCPD) and its esters from oils. Eur. J. Lipid Sci. Technol. 2010, 112, 552–556. [Google Scholar] [CrossRef]
- Liu, S.; Shen, M.; Xie, J.; Liu, B.; Li, C. Effects of endogenous antioxidants in camellia oil on the formation of 2-monochloropropane-1, 3-diol esters and 3-monochloropropane-1,2-diol esters during thermal processing. Foods 2024, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Tobón, J.F.O.; Meireles, M.A.A. Recent applications of pressurized fluid extraction: Curcuminoids extraction with pressurized liquids. Food Public Health 2013, 3, 289–303. [Google Scholar] [CrossRef]
- Chen, G.W.; Wang, G.; Zhu, C.J.; Jiang, X.W.; Sun, J.X.; Tian, L.M.; Bai, W. Effects of cyanidin-3-O-glucoside on 3-chloro-1,2-propanediol induced intestinal microbiota dysbiosis in rats. Food Chem. Toxicol. 2019, 133, 110767. [Google Scholar] [CrossRef]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, B. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Xie, J.; Luo, C.; Yang, X.; Ren, Y.; Zhang, X.; Chen, H.; Zhao, Y.; Wu, F. Study on wild medicinal plant resources and their applied ethnology in multiethnic areas of the Gansu-Ningxia-Inner Mongolia intersection zone. J. Ethnobiol. Ethnomed. 2023, 19, 18. [Google Scholar] [CrossRef]
- Mou, Y.; Sun, L.; Geng, Y.; Xie, Y.; Chen, F.; Xiao, J.; Hu, X.; Ji, J.; Ma, L. Chloropropanols and their esters in foods: Exposure, formation and mitigation strategies. Food Chem. Adv. 2023, 3, 100446. [Google Scholar] [CrossRef]
- Rondanelli, M.; Nichetti, M.; Martin, V.; Barrile, G.C.; Riva, A.; Petrangolini, G.; Gasparri, C.; Perna, S.; Giacosa, A. Phytoextracts for human health from raw and roasted hazelnuts and from hazelnut skin and oil: A narrative review. Nutrients 2023, 15, 2421. [Google Scholar] [CrossRef]
- ANZFA (Australia New Zealand Food Authority). Draft Assessment Proposal P243: Maximum Limit for Chloropropanols in Soy and Oyster Sauces. 2001. Available online: https://www.foodstandards.gov.au/sites/default/files/food-standards-code/proposals/Documents/P243%20DraftFAR.pdf (accessed on 3 May 2024).
- Health Canada. Health Canada’s Maximum Levels for Chemical Contaminants in Foods. 2018. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html/ (accessed on 3 May 2024).
- GB 2762-2017; National Food Safety Standard, Maximum Levels of Contaminants in Foods. CFDA (China Food and Drug Administration): Beijing, China, 2017.
- European Commission. Commission Regulation (EU) 2023/915 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. EU 2023, L 119, 103. [Google Scholar]
- Malaysia Food Regulations. Maximum Permitted Proportion of 3-Monochloropropane-1,2-diol (3-MCPD) in Specific Food. 1985. Available online: https://faolex.fao.org/docs/pdf/mal27305.pdf (accessed on 11 May 2024).
- MFDS (Ministry of Food and Drug Safety). Risk Assessment of 3-MCPD and 1,3-DCP in Foods (11-1471057-01); Technical Report; National Institute of Food and Drug Safety Evaluation: Cheongju-si, Republic of Korea, 2019; pp. 47–61.
- TFC (Turkish Food Codex). Bulaşanlar Yönetmeliği. Resmî Gazete Tarihi: 5 November 2023, Resmî Gazete Sayısı: 32360. Available online: https://www.resmigazete.gov.tr/eskiler/2023/11/20231105-1.htm (accessed on 25 March 2024).
- FDA (Food and Drug Administration). Guidance Levels for 3-MCPD (3-chloro-1,2-propanediol) in Acid-Hydrolyzed Protein and Asian-Style Sauces. 2008. Available online: https://www.fda.gov/media/71760/download (accessed on 27 March 2024).
- TFDA (Taiwan Food and Drug Administration). Regulations for 3-MCPD and GEs in Infant Formulas. 2021. Available online: https://www.fda.gov.tw/ENG/site.aspx?sid=10172#arrow-up-a (accessed on 25 March 2024).
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. EU 2006, L364, 5–24. [Google Scholar]
- European Commission. Commission Regulation (EU) 2020/1322 of 23 September 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of 3-monochloropropanediol (3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods. Off. J. EU 2020, L310, 2–5. [Google Scholar]
- AGRINFO. Maximum Levels for 3-MCPD in Infant Formulae. The Latest on EU Agri-Food Policies Impacting Low-Income & Middle-Income Countries. 2024. Available online: https://www.google.com/url?sa=i&url=https%3A%2F%2Fagrinfo.eu%2Fbook-of-reports%2Fmaximum-levels-for-3-mcpd-in-infant-formulae%2F&psig=AOvVaw3HZ2mSDqEd6H5EqOCFWH7e&ust=1715940653836000&source=images&cd=vfe&opi=89978449&ved=0CAgQr5oMahcKEwjo_raa95GGAxUAAAAAHQAAAAAQBA (accessed on 12 May 2024).
- FSANZ (Food Standards Australia New Zealand). Chloropropanols in Food. Technical Report Series No 15. 2003. Available online: https://www.foodstandards.gov.au/sites/default/files/publications/Documents/Chloropropanol%20Report%20(no%20appendices)%20-%2011%20Sep%2003b-2.pdf (accessed on 28 March 2024).
Substance | Oral Toxic Effects | LD50, mg/kg b.w. (Species) | References |
---|---|---|---|
3-MCPD | Mutagenic effects on sperm Male infertility | 191 (mouse) 152 (rat) | [38] [39] |
2-MCPD | Toxic by ingestion | 50–60 (rat) | [1] |
1,3-DCP | Fetotoxic effects on reproductivity Tumorogenic effects on liver, kidney, ureter, and bladder | 100 (mouse) 110 (rat) | [40] [40] |
2,3-DCP | NA | 90 (rat) | [40] |
Glycidol | DNA damage in ovary and sperm Effects on embryo/fetus Male infertility Tumorogenic effects on gastrointestine, liver, skin, endocrine, and brain | 431 (mouse) 420 (rat) | [41] [41] |
Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | Method | References |
---|---|---|---|---|---|---|
Camellia oil | China | 5 | NA | 988–2586 | DGF method C-VI 18 | [72] |
Camellia oil (crude) | China | 5 | NA | 250–555 | DGF method C-VI 18 | [72] |
Canola oil | Malaysia | NA | NA | 600 | BfR Method 008 | [73] |
Maize germ oil | China | 12 | NA | 219–1826 | DGF method C–VI 18 | [72] |
Maize oil | Malaysia | NA | NA | 250–300 | BfR Method 008 | [73] |
Olive oil | China | 11 | 100 | 34–1970 | ISO-18363-4 | [71] |
Olive oil | Brazil | 13 | 92 | 250–3900 | AOCS Cd 29a-13 | [74] |
Olive oil (bland) | Brazil | 17 | 35 | 250–620 | AOCS Cd 29a-13 | [74] |
Olive oil (pomace) | Malaysia | NA | NA | 1650 | BfR Method 008 | [73] |
Olive oil (virgin) | Malaysia | NA | NA | 350 | BfR Method 008 | [73] |
Olive oil (virgin) | Brazil | 46 | 17 | 250–1240 | AOCS Cd 29a-13 | [74] |
Palm oil (bleached) | Malaysia | 56 | 50 | 250–1800 | BfR Method 008 | [73] |
Palm oil (crude) | Malaysia | 105 | 20 | 250–900 | BfR Method 008 | [73] |
Palm oil (refined) | Malaysia | NA | 99 | 250–5800 | BfR Method 008 | [73] |
Palm oil | China | 18 | 100 | 270–8390 | ISO-18363-4 | [71] |
Peanut oil (refined) | China | 15 | NA | 450–1187 | DGF method C-VI 18 | [72] |
Peanut/sesame oil | Malaysia | NA | NA | 2450 | BfR Method 008 | [73] |
Peanut oil | China | 14 | 100 | 190–3720 | ISO-18363-4 | [71] |
Rapeseed oil (crude) | China | 9 | NA | 250–438 | DGF method C-VI 18 | [72] |
Rapeseed oil (refined) | China | 18 | NA | 226–1069 | DGF method C-VI 18 | [72] |
Rapeseed oil | China | 12 | 100 | 82–6400 | ISO-18363-4 | [71] |
Refined vegetable oil | Singapore | 36 | NA | 78–9592 | AOCS Cd 29a-13 | [70] |
Rice bran oil | Malaysia | NA | NA | 250–300 | BfR Method 008 | [73] |
Sesame oil (crude) | China | 6 | NA | 250–356 | DGF method C-VI 18 | [72] |
Sesame oil (refined) | China | 4 | NA | 651–1344 | DGF method C-VI 18 | [72] |
Sesame oil | China | 18 | 100 | 69–5860 | ISO-18363-4 | [71] |
Soybean oil | Malaysia | NA | NA | <250 | BfR Method 008 | [73] |
Soybean oil (crude) | China | 7 | NA | <250 | DGF method C-VI 18 | [72] |
Soybean oil (refined) | China | 18 | NA | 224–1090 | DGF method C-VI 18 | [72] |
Sunflower oil | Malaysia | NA | NA | 600 | BfR Method 008 | [73] |
Sunflower oil (crude) | China | 8 | NA | <250 | DGF method C-VI 18 | [72] |
Sunflower oil (refined) | China | 6 | NA | 504–1044 | DGF method C-VI 18 | [72] |
Sunflower oil | China | 13 | 100 | 140–2580 | ISO-18363-4 | [71] |
Vegetable oil (unrefined) | Singapore | 24 | NA | <30–1172 | AOCS Cd 29a-13 | [70] |
Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | Method | References |
---|---|---|---|---|---|---|
Edible oils | Poland | 27 | 11 | 180–230 | AOCS Cd 29b-13 | [75] |
Margarines | Poland | 5 | 100 | 630–1700 | AOCS Cd 29b-13 | [75] |
Palm oil | Germany | 20 | NA | 200–5900 | AOCS Cd 29b-13 | [76] |
Palm oil | China | 18 | 100 | 150–6950 | ISO-18363-4 | [71] |
Rapeseed oil | Germany | 5 | NA | <LOQ–300 | AOCS Cd 29b-13 | [76] |
Rapeseed oil | China | 12 | 100 | 71–4440 | ISO-18363-4 | [71] |
Soybean oil | Germany | 5 | NA | <LOQ–300 | AOCS Cd 29b-13 | [76] |
Soybean oil | China | 21 | 100 | 336–1200 | ISO-18363-4 | [71] |
Sunflower oil | Germany | 5 | NA | <LOQ–300 | AOCS Cd 29b-13 | [76] |
Sunflower oil | China | 13 | 100 | 28–1700 | ISO-18363-4 | [71] |
Olive oil | Brazil | 13 | 85 | 200–2010 | AOCS Cd 29a-13 | [74] |
Olive oil (bland) | Brazil | 17 | 12 | 200–280 | AOCS Cd 29a-13 | [74] |
Olive oil (virgin) | Brazil | 46 | 13 | 200–2160 | AOCS Cd 29a-13 | [74] |
Olive oil | China | 11 | 82 | 800–1010 | ISO-18363-4 | [71] |
Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | Method | References |
---|---|---|---|---|---|---|
Palm oil | Germany | 20 | NA | 300–18,000 | AOCS Cd 29b-13 | [76] |
Rapeseed oil | Germany | 5 | NA | <100–300 | AOCS Cd 29b-13 | [76] |
Olive oil | Brazil | 13 | 100 | 200–1910 | AOCS Cd 29a-13 | [74] |
Olive oil (bland) | Brazil | 17 | 100 | 200–1910 | AOCS Cd 29a-13 | [74] |
Olive oil (virgin) | Brazil | 46 | 35 | 200–2160 | AOCS Cd 29a-13 | [74] |
Soybean oil | Germany | 5 | NA | <100–600 | AOCS Cd 29b-13 | [76] |
Sunflower oil | Germany | 5 | NA | <100–400 | AOCS Cd 29b-13 | [76] |
Vegetable oil (refined) | Singapore | 36 | NA | 155–6204 | AOCS Cd 29a-13 | [70] |
Vegetable oil (refined) | Singapore | 24 | NA | <30–1325 | AOCS Cd 29a-13 | [70] |
Substance | Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | References |
---|---|---|---|---|---|---|
Free 3-MCPD | Cereal products | Czech Rep. | NA | NA | 1–477 | [86] |
Coffee | Czech Rep. | 15 | 73 | 10–19 | [87] | |
Fine bakery | Germany | 94 | 27 | 5–265 | [88] | |
Malt | Czech Rep. | 22 | 32 | 10–95 | [89] | |
Bound 3-MCPD | Cereal products | UK | NA | NA | 3–2916 | [86] |
Coffee | Czech Rep. | 15 | 80 | 6–390 | [87] | |
Fine bakery | Germany | 94 | NA | 18–1365 | [88] | |
Fried French fries | Czech Rep. | 16 | NA | 100–258 | [90] | |
Infant formula | United States | 98 | NA | 21–920 | [91] | |
Infant formula | Malaysia | 16 | 100 | 2–244 | [92] | |
Potato crisps | Czech Rep. | 56 | NA | 229–1008 | [90] | |
Total 3-MCPD | Cereal and cereal products | Hong Kong | 57 | 54 | 4–23 | [13] |
Chicken seasoning cubes | Malaysia | 6 | 100 | 90 | [93] | |
Dairy products | Hong Kong | 12 | 0 | <LOD | [13] | |
Egg and products | Hong Kong | 18 | 0 | <LOD | [13] | |
Fish and shellfish products | Hong Kong | 66 | 22 | 3–33 | [13] | |
Fruits | Hong Kong | 21 | 0 | <LOD | [13] | |
Infant formula | Brazil | 40 | 37 | <LOD–600 | [94] | |
Infant formula | United States | 222 | NA | 13–950 | [95] | |
Meat and poultry products | Hong Kong | 87 | 49 | 4–32 | [13] | |
Snacks | Hong Kong | 24 | 38 | 6–66 | [13] | |
Soy-based sauces | Malaysia | 43 | 54 | <20–122 | [93] | |
Soy sauces | China | 629 | 89 | 5–189,000 | [96] | |
Vegetable products | Hong Kong | 39 | 0 | <LOD | [13] |
Substance | Product | No. of Samples (n) | Incidence (%) | Range (µg/kg) | References |
---|---|---|---|---|---|
Bound 2-MCPD | Cereals | NA | NA | 1–853 | [86] |
Fine bakery products | 94 | NA | <3–624 | [88] | |
Infant formula | 16 | 81 | 2–22 | [86] | |
Soy sauces | 345 | 48 | 10–20300 | [96] | |
1,3-DCP | Fish products | 66 | 14 | 3–6 | [13] |
Meat and poultry products | 87 | 7 | 5–10 | [13] | |
Soy sauces | 282 | 20 | 100–1400 | [12] | |
Soy sauces | 345 | 19 | 4–8260 | [96] | |
Soy-based sauces | 43 | 54 | <LOD–25 | [93] | |
Water | >300 | <100 | [106] | ||
Water | 24 | NA | 6–122 | [107] | |
2,3-DCP | Soy sauce | 71 | 10 | 13–28 | [12] |
Soy sauces | 345 | 4 | 3–500 | [96] | |
GE | Infant formula | 42 | <LOD–750 | [94] | |
Infant formula | 98 | NA | 5–400 | [91] | |
Infant formula | 222 | NA | 19–370 | [95] | |
Infant formula | 16 | 38 | 2–69 | [92] | |
Glycidol | Fine bakery products | 94 | NA | <3–128 | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozluk, G.; González-Curbelo, M.Á.; Kabak, B. Chloropropanols and Their Esters in Food: An Updated Review. Foods 2024, 13, 2876. https://doi.org/10.3390/foods13182876
Ozluk G, González-Curbelo MÁ, Kabak B. Chloropropanols and Their Esters in Food: An Updated Review. Foods. 2024; 13(18):2876. https://doi.org/10.3390/foods13182876
Chicago/Turabian StyleOzluk, Gizem, Miguel Ángel González-Curbelo, and Bulent Kabak. 2024. "Chloropropanols and Their Esters in Food: An Updated Review" Foods 13, no. 18: 2876. https://doi.org/10.3390/foods13182876
APA StyleOzluk, G., González-Curbelo, M. Á., & Kabak, B. (2024). Chloropropanols and Their Esters in Food: An Updated Review. Foods, 13(18), 2876. https://doi.org/10.3390/foods13182876