Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Analysis
2.2. The Identifications of the Isolated Yeasts
2.3. Physicochemical Determination
2.4. Volatile Compound Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Identification of the Strains
- (a)
- After 3 days of growth on 5% MA at 25 °C, the cells were spherical to ellipsoidal, 3.3–5 × 3.9–9.5 μm and occurred singly, in pairs or in small clusters.
- (b)
- The colonies were butyrous and white in color.
- (c)
- Under a light microscope, careful examination revealed rarely long, slender crystals among the cells.
- (d)
- In malt broth (MB, Oxoid, Milan, Italy), the strains produced thin, smooth and waxy pellicols.
- (e)
- When MA was covered with glass, the strains produced abundant and highly branched pseudohyphae after 7 days at 25 °C.
- (f)
- All the strains also produced real mycelia with true hyphae.
- (g)
- In MA, the colonies appeared white, faintly glistening to dull and butyrous, with lobed and fringed margins, due to pseudohyphae.
- (h)
- An ester-like odor was often present.
3.2. Physicochemical Parameters of Gluten Bread
3.3. Identification of Volatile Compounds in Spoilage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Secure Connection Failed and Firefox Did Not Connect. Available online: https://support.mozilla.org/en-US/kb/secure-connection-failed-firefox-did-not-connect?as=u&utm_source=inproduct (accessed on 25 February 2024).
- Available online: https://www.assocamerestero.it/notizie/panificazione-italia-germania-due-mercati-confronto (accessed on 25 February 2024).
- DECRETO MINISTERIALE 27 Febbraio 1996, n. 209—Regolamento Concernente La Disciplina Degli Additivi Alimentari Consentiti Nella Preparazione e per La Conservazione Delle Sostanze Alimentari in Attuazione Delle Direttive n. 94/34/CE, n. 94/35/CE, n. 94. GU Serie Generale n. 96 del 24-04-1996—Suppl. Ordinario n. 69. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=1996-04-24&atto.codiceRedazionale=096G0218&elenco30giorni=false (accessed on 25 February 2024).
- 2023. Available online: https://www.Ilsole24ore.Com/Art/Pane-Fresco-Consumi-Tengono-Priorita-e-Ridurre-Sprechi-AEyd1RzC (accessed on 25 February 2024).
- do Nascimento, A.B.; Fiates, G.M.R.; Teixeira, E. We Want to Be Normal! Perceptions of a Group of Brazilian Consumers with Coeliac Disease on Gluten-Free Bread Buns. Int. J. Gastron. Food Sci. 2017, 7, 27–31. [Google Scholar] [CrossRef]
- Xhakollari, V.; Canavari, M.; Osman, M. Factors Affecting Consumers’ Adherence to Gluten-Free Diet, a Systematic Review. Trends Food Sci. Technol. 2019, 85, 23–33. [Google Scholar] [CrossRef]
- Available online: https://www.Industryarc.Com/Research/Gluten-Free-Flour-Market-Research-507330 (accessed on 25 February 2024).
- Šmídová, Z.; Rysová, J. Gluten-Free Bread and Bakery Products Technology. Foods 2022, 11, 480. [Google Scholar] [CrossRef]
- William, D.A.; Armel, A.A.J.; Fabien, D.D.F.; Inocent, G. Effect of Bleaching and Fermentation on the Physico-Chemical, Pasting Properties and Bread Baking Performance of Various Gluten Free Flour. Meas. Food 2023, 9, 100073. [Google Scholar] [CrossRef]
- Campo, E.; del Arco, L.; Urtasun, L.; Oria, R.; Ferrer-Mairal, A. Impact of Sourdough on Sensory Properties and Consumers’ Preference of Gluten-Free Breads Enriched with Teff Flour. J. Cereal Sci. 2016, 67, 75–82. [Google Scholar] [CrossRef]
- Carini, E.; Scazzina, F.; Curti, E.; Fattori, F.; Mazzeo, T.; Vittadini, E. Physicochemical, Sensory Properties and Starch in Vitro Digestion of Gluten-Free Breads. Int. J. Food Sci. Nutr. 2015, 66, 867–872. [Google Scholar] [CrossRef]
- Debonne, E.; Meuninck, V.; Vroman, A.; Eeckhout, M. Influence of Environmental Growth Conditions on Chalk Yeasts Causing Bread Spoilage. LWT 2021, 148, 111756. [Google Scholar] [CrossRef]
- Smith, J.P.; Daifas, D.P.; El-Khoury, W.; Koukoutsis, J.; El-Khoury, A. Shelf Life and Safety Concerns of Bakery Products—A Review. Crit. Rev. Food Sci. Nutr. 2004, 44, 19–55. [Google Scholar] [CrossRef]
- Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Córdoba, M.G. Spoilage Yeasts: What Are the Sources of Contamination of Foods and Beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Aquilanti, L.; Polverigiani, S.; Clementi, F. Indoor Air Quality in Mass Catering Plants: Occurrence of Airborne Eumycetes in a University Canteen. Int. J. Hosp. Manag. 2016, 59, 1–10. [Google Scholar] [CrossRef]
- Legan, J.D. Mould Spoilage of Bread: The Problem and Some Solutions. Int. Biodeterior. Biodegrad. 1993, 32, 33–53. [Google Scholar] [CrossRef]
- Deschuyffeleer, N.; Audenaert, K.; Samapundo, S.; Ameye, S.; Eeckhout, M.; Devlieghere, F. Identification and Characterization of Yeasts Causing Chalk Mould Defects on Par-Baked Bread. Food Microbiol. 2011, 28, 1019–1027. [Google Scholar] [CrossRef]
- Nikolajeva, V.; Kļava, D.; Kunkulberga, D. Evaluation of Spoilage Yeasts Causing Chalk Mould Defects on Rye Bread. In Proceedings of the Abstract of the 73rd Scientific Conference of the University of Latvia, Riga, Latvia, 6–7 February 2015; Environmental and Experimental Biology. p. 50. [Google Scholar]
- Burgain, A.; Bensoussan, M.; Dantigny, P. Validation of a Predictive Model for the Growth of Chalk Yeasts on Bread. Int. J. Food Microbiol. 2015, 204, 47–54. [Google Scholar] [CrossRef]
- Giannone, V.; Pitino, I.; Pecorino, B.; Todaro, A.; Spina, A.; Lauro, M.R.; Tomaselli, F.; Restuccia, C. Effects of Innovative and Conventional Sanitizing Treatments on the Reduction of Saccharomycopsis fibuligera Defects on Industrial Durum Wheat Bread. Int. J. Food Microbiol. 2016, 235, 71–76. [Google Scholar] [CrossRef]
- Filtenborg, O.; Frisvad, J.C.; Thrane, U. Moulds in Food Spoilage. Int. J. Food Microbiol. 1996, 33, 85–102. [Google Scholar] [CrossRef]
- Berni, E.; Scaramuzza, N. Effect of ethanol on growth of Chrysonilia sitophila (‘the red bread mould’) and Hyphopichia burtonii (‘the chalky mould’) in sliced bread. Lett. Appl. Microbiol. 2013, 57, 344–349. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeasts, a Taxonomic Study, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Kurtzman, C.P. Phylogeny of the Ascomycetous Yeasts and the Renaming of Pichia anomala to Wickerhamomyces anomalus. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2011, 99, 13–23. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. Fasttree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Available online: http://tree.bio.ed.ac.uk/groups/influenza/ (accessed on 24 February 2024).
- AOAC. Official Methods of Analysis, 16th ed.; AOAC: Alington, TX, USA, 1995. [Google Scholar]
- Chiesa, L.; Duchini, M.; Iacumin, L.; Boscolo, D.; Comi, G.; Cantoni, C. Caratteristiche Chimiche e Batteriologiche Di Salami Della Lomellina. Arch. Vet. Ital. 2006, 57, 209–224. [Google Scholar]
- Arastehfar, A.; Fang, W.; Al-Hatmi, A.M.S.; Afsarian, M.H.; Daneshnia, F.; Bakhtiari, M.; Sadati, S.K.; Badali, H.; Khodavaisy, S.; Hagen, F.; et al. Unequivocal Identification of an Underestimated Opportunistic Yeast Species, Cyberlindnera fabianii, and Its Close Relatives Using a Dual-Function PCR and Literature Review of Published Cases. Med. Mycol. 2019, 57, 833–840. [Google Scholar] [CrossRef]
- Hof, H.; Amann, V.; Tauber, C.; Paulun, A. Peritonitis in a Neonate Due to Cyberlindnera fabianii, an Ascomycetic Yeast. Infection 2017, 45, 921–924. [Google Scholar] [CrossRef]
- Valenza, G.; Valenza, R.; Brederlau, J.; Frosch, M.; Kurzai, O. Identification of Candida fabianii as a Cause of Lethal Septicaemia. Mycoses 2006, 49, 331–334. [Google Scholar] [CrossRef]
- Freel, K.C.; Sarilar, V.; Neuvéglise, C.; Devillers, H.; Friedrich, A.; Schacherer, J. Genome Sequence of the Yeast Cyberlindnera fabianii (Hansenula fabianii). Genome Announc. 2014, 2, 4–5. [Google Scholar] [CrossRef]
- Bahafid, W.; Tahri Joutey, N.; Sayel, H.; Asri, M.; Laachari, F.; El Ghachtouli, N. Soil Bioaugmentation with Cyberlindnera fabianii Diminish Phytotoxic Effects of Chromium (VI) on Phaseolus vulgaris L. J. Mater. Environ. Sci. 2017, 8, 438–443. [Google Scholar]
- Van Rijswijck, I.M.H.; Derks, M.F.L.; Abee, T.; De Ridder, D.; Smid, E.J. Genome Sequences of Cyberlindnera fabianii 65, Pichia kudriavzevii 129, and Saccharomyces cerevisiae 131 Isolated from Fermented Masau Fruits in Zimbabwe. Genome Announc. 2017, 5, e00064-17. [Google Scholar] [CrossRef]
- Vicente, J.; Ruiz, J.; Tomasi, S.; de Celis, M.; Ruiz-de-Villa, C.; Gombau, J.; Rozès, N.; Zamora, F.; Santos, A.; Marquina, D.; et al. Impact of Rare Yeasts in Saccharomyces cerevisiae Wine Fermentation Performance: Population Prevalence and Growth Phenotype of Cyberlindnera fabianii, Kazachstania unispora, and Naganishia globosa. Food Microbiol. 2023, 110, 104189. [Google Scholar] [CrossRef]
- Rayu, S.; Karpouzas, D.G.; Singh, B.K. Emerging Technologies in Bioremediation: Constraints and Opportunities. Biodegradation 2012, 23, 917–926. [Google Scholar] [CrossRef]
- Adams, G.O.; -Fufeyin, P.T.; Igelenyah, E.; Odukoya, E. Assessment of Heavy Metals Bioremediation Potential of Microbial Consortia from Poultry Litter and Spent Oil Contaminated Site. Int. J. Environ. Bioremediation Biodegrad. 2014, 2, 84–92. [Google Scholar] [CrossRef]
- Akcil, A.; Erust, C.; Ozdemiroglu, S.; Fonti, V.; Beolchini, F. A Review of Approaches and Techniques Used in Aquatic Contaminated Sediments: Metal Removal and Stabilization by Chemical and Biotechnological Processes. J. Clean. Prod. 2015, 86, 24–36. [Google Scholar] [CrossRef]
- Suthersan, S.S.; Horst, J. Advances in In Situ Knowledge—Not Technology—Drives Remediation Success a Case Study: Advancement. Ground Water Monit. Remediat. 2007, 27, 133–137. [Google Scholar] [CrossRef]
- Burns, R.G.; DeForest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil Enzymes in a Changing Environment: Current Knowledge and Future Directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Olajuyigbe, F.M.; Adetuyi, O.Y.; Fatokun, C.O. Characterization of Free and Immobilized Laccase from Cyberlindnera fabianii and Application in Degradation of Bisphenol A. Int. J. Biol. Macromol. 2019, 125, 856–864. [Google Scholar] [CrossRef]
- Jindal, N.; Arora, S.; Dhuria, N.; Arora, D. Cyberlindnera (Pichia) fabianii Infection in a Neutropenic Child: Importance of Molecular Identification. JMM Case Rep. 2015, 2, 3–5. [Google Scholar] [CrossRef]
- Taj-Aldeen, S.J.; Abdulwahab, A.; Kolecka, A.; Deshmukh, A.; Meis, J.F.; Boekhout, T. Uncommon Opportunistic Yeast Bloodstream Infections from Qatar. Med. Mycol. 2014, 52, 549–553. [Google Scholar] [CrossRef]
- Yun, J.W.; Park, K.S.; Ki, C.S.; Lee, N.Y. Catheter-Related Bloodstream Infection by Lindnera fabianii in a Neutropenic Patient. J. Med. Microbiol. 2013, 62, 922–925. [Google Scholar] [CrossRef]
- Bhally, H.S.; Jain, S.; Shields, C.; Halsey, N.; Cristofalo, E.; Merz, W.G. Infection in a Neonate Caused by Pichia fabianii: Importance of Molecular Identification. Med. Mycol. 2006, 44, 185–187. [Google Scholar] [CrossRef]
- Hamal, P.; Ostransky, J.; Dendis, M.; Horvath, R.; Ruzicka, F.; Buchta, V.; Vejsova, M.; Sauer, P.; Hejnar, P.; Raclavsky, V. A Case of Endocarditis Caused by the Yeast Pichia fabianii with Biofilm Production and Developed in Vitro Resistance to Azoles in the Course of Antifungal Treatment. Med. Mycol. 2008, 46, 601–605. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef]
- Tofalo, R.; Fusco, V.; Böhnlein, C.; Kabisch, J.; Logrieco, A.F.; Habermann, D.; Cho, G.S.; Benomar, N.; Abriouel, H.; Schmidt-Heydt, M.; et al. The Life and Times of Yeasts in Traditional Food Fermentations. Crit. Rev. Food Sci. Nutr. 2020, 60, 3103–3132. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and Biological Function of Volatile Esters in Saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [PubMed]
- El-Dalatony, M.M.; Saha, S.; Govindwar, S.P.; Abou-Shanab, R.A.I.; Jeon, B.H. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol. 2019, 37, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.T.; Lu, L.; Duan, C.Q.; Yan, G.L. The Contribution of Indigenous Non-Saccharomyces Wine Yeast to Improved Aromatic Quality of Cabernet Sauvignon Wines by Spontaneous Fermentation. LWT 2016, 71, 356–363. [Google Scholar] [CrossRef]
- Nordström, K. Formation of ethyl acetate in fermentation with brewer’s yeasts. III partecipation of coenzyme A. J. Inst. Brew. 1962, 68, 398–407. [Google Scholar] [CrossRef]
- Mason, A.B.; Dufour, J.P. Alcohol Acetyltransferases and the Significance of Ester Synthesis in Yeast. Yeast 2000, 16, 1287–1298. [Google Scholar] [CrossRef]
Species | Strain | Genome | BLAST Comparison with PP883704 | ||
---|---|---|---|---|---|
Length | Identities | Gaps | |||
Cyberlindnera fabianii | JOY008 | ASM2264183v1 | 571 | 568 | 2 |
Cyberlindnera veronae | NRRL Y-7818 | ASM3056306v1 | 571 | 563 | 2 |
Candida stauntonica | CBS 12241 | ASM3055833v1 | 571 | 562 | 2 |
Cyberlindnera americana | NRRL Y-2156 | ASM370879v3 | 571 | 561 | 2 |
Cyberlindnera mississippiensis | NRRL YB-1294 | ASM3058171v1 | 571 | 561 | 2 |
Cyberlindnera xishuangbannaensis | CBS 14692 | ASM3058508v1 | 571 | 560 | 2 |
Cyberlindnera amylophila | NRRL YB-1287 | ASM3055715v1 | 573 | 559 | 4 |
Cyberlindnera xylosilytica | NRRL YB-2097 | ASM370828v2 | 571 | 557 | 2 |
Cyberlindnera japonica | NRRL YB-2750 | ASM3055717v1 | 571 | 556 | 2 |
Cyberlindnera mycetangii | NRRL Y-6843 | ASM370829v3 | 571 | 556 | 2 |
Candida easanensis | JCM 12476 | ASM3058013v1 | 571 | 556 | 2 |
Candida taoyuanica | CBS 12242 | ASM3056705v1 | 571 | 555 | 2 |
Cyberlindnera maritima | NRRL Y-17775 | ASM3055734v1 | 571 | 552 | 2 |
Cyberlindnera subsufficiens | NG8.2 | ASM1794857v1 | 575 | 548 | 6 |
Candida hungchunana | CBS 12243 | ASM3056322v1 | 571 | 548 | 2 |
Candida adriatica | CBS 12504 | ASM3055813v1 | 571 | 547 | 2 |
Cyberlindnera euphorbiiphila | NRRL Y-12742 | ASM3055662v1 | 573 | 546 | 4 |
Cyberlindnera mrakii | NRRL Y-1364 | ASM370644v3 | 575 | 546 | 6 |
Cyberlindnera saturnus | NRRL Y-17396 | ASM370924v3 | 575 | 545 | 6 |
Cyberlindnera suaveolens | NRRL Y-17391 | ASM370822v3 | 575 | 545 | 6 |
Cyberlindnera sargentensis | SHA 17.2 | ASM2099542v1 | 576 | 544 | 7 |
Candida vartiovaarae | DDNA#1 | CvDDNA1.1 | 575 | 544 | 6 |
Candida takata | CBS 12244 | ASM3056414v1 | 575 | 543 | 6 |
Cyberlindnera misumaiensis | NRRL Y-17389 | ASM370774v2 | 577 | 530 | 10 |
Cyberlindnera samutprakarnensis | CBS 12528 | ASM3056971v1 | 585 | 530 | 16 |
Cyberlindnera rhodanensis | NRRL Y-7854 | ASM3056939v1 | 576 | 529 | 9 |
Cyberlindnera galapagoensis | CBS 13997 | ASM3056520v1 | 577 | 524 | 10 |
Cyberlindnera petersonii | NRRL YB-3808 | ASM3057413v1 | 568 | 521 | 5 |
Wickerhamomyces anomalus | NRRL Y-366-8 | Wican1 | 574 | 515 | 5 |
Parameters | Gluten Bread | |
---|---|---|
Spoiled | Unspoiled | |
pH | 5.34 ± 0.04 a | 5.30 ± 0.03 a |
Aw | 0.978 ± 0.01 a | 0.977 ± 0.02 a |
Moisture% | 50.36 ± 0.27 a | 50.38 ± 0.23 a |
Compound | Spoiled | Unspoiled |
---|---|---|
Ethanol | 35.10 ± 0.81 a | 12.44 ± 9.65 b |
1-propanol | 0.74 ± 0.73 a | 0.00 ± 0.00 b |
Isobutyl alcohol | 1.15 ± 1.12 a | 0.19 ± 0.32 b |
Isoamyl alcohol | 6.82 ± 1.69 a | 2.95 ± 1.50 b |
n-amyl alcohol | 0.24 ± 0.17 a | 0.15 ± 0.25 b |
ALCOHOLS * | 44.05 ± 4.52 a | 15.73 ± 11.72 b |
Ethylacetate | 3.63 ± 6.28 a | 0.00 ± 0.00 b |
n-propyl acetate | 0.13 ± 0.23 a | 0.00 ± 0.00 b |
Ethyl butyrate | 0.52 ± 0.28 a | 0.00 ± 0.00 b |
Isoamylacetate | 0.96 ± 1.42 a | 0.16 ± 0.28 b |
Ethylpentanoate | 0.12 ± 0.21 a | 0.00 ± 0.00 b |
ESTERS * | 5.36 ± 8.42 a | 0.16 ± 0.28 b |
Acetic acid | 1.75 ± 0.98 a | 2.31 ± 0.71 b |
Pentanoic acid | 0.38 ± 0.04 a | 0.82 ± 0.72 b |
ACIDS * | 2.13 ±1.02 a | 3.13 ± 1.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colautti, A.; Orecchia, E.; Coppola, F.; Iacumin, L.; Comi, G. Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage. Foods 2024, 13, 2381. https://doi.org/10.3390/foods13152381
Colautti A, Orecchia E, Coppola F, Iacumin L, Comi G. Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage. Foods. 2024; 13(15):2381. https://doi.org/10.3390/foods13152381
Chicago/Turabian StyleColautti, Andrea, Elisabetta Orecchia, Francesca Coppola, Lucilla Iacumin, and Giuseppe Comi. 2024. "Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage" Foods 13, no. 15: 2381. https://doi.org/10.3390/foods13152381
APA StyleColautti, A., Orecchia, E., Coppola, F., Iacumin, L., & Comi, G. (2024). Cyberlindnera fabianii, an Uncommon Yeast Responsible for Gluten Bread Spoilage. Foods, 13(15), 2381. https://doi.org/10.3390/foods13152381