Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Solid-State Fermentation
2.3. Electronic Sensory Analysis
2.3.1. Chromatic Analysis of Tea Infusion
2.3.2. E-Tongue Measurement
2.4. Determination of Volatile Organic Compounds
2.4.1. Extraction of Volatile Organic Compounds
2.4.2. GC×GC Analysis
2.4.3. Mass Spectrum Conditions
2.5. Data Statistics and Analysis
3. Results and Discussion
3.1. Effects of Fermentation on the Color and Taste Qualities of MT and FMT
3.2. Variation of VOC Profile of MT and FMT
3.3. Effects of Fermentation on the Composition of Aroma-Active Compounds in MT and FMT
3.4. Key Aroma-Active Compounds Forming Different Flavor Characteristics of MT and FMT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Zhang, Q.; Zhu, S.; Liu, B.; Liu, F.; Xu, Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol. Res. 2022, 175, 106029. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Hernández, F.; Martínez, J.J. (Poly) phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. J. Funct. Foods 2015, 18, 1039–1046. [Google Scholar] [CrossRef]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef]
- Panyatip, P.; Padumanonda, T.; Yongram, C.; Kasikorn, T.; Sungthong, B.; Puthongking, P. Impact of Tea Processing on Tryptophan, Melatonin, Phenolic and Flavonoid Contents in Mulberry (Morus alba L.) Leaves: Quantitative Analysis by LC-MS/MS. Molecules 2022, 27, 4979. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.; Zhu, Y.W.; Jiang, Y.W.; Li, H.K.; Liu, Z.M.; Wang, W.; Shan, C.-H.; Fu, Y.-J. Improvement of flavonoid aglycone and biological activity of mulberry leaves by solid-state fermentation. Ind. Crops Prod. 2020, 148, 112287. [Google Scholar] [CrossRef]
- Chuah, H.Q.; Tang, P.L.; Ang, N.J.; Tan, H.Y. Submerged fermentation improves bioactivity of mulberry fruits and leaves. Chin. Herb. Med. 2021, 13, 565–572. [Google Scholar] [CrossRef]
- Li, Q.; Huang, J.; Li, Y.; Zhang, Y.; Luo, Y.; Chen, Y.; Lin, H.; Wang, K.; Liu, Z. Fungal community succession and major components change during manufacturing process of Fu brick tea. Sci. Rep. 2017, 7, 6947. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhong, K.; Bai, J.R.; Wu, Y.P.; Gao, H. Insight into effects of isolated Eurotium cristatum from Pingwu Fuzhuan brick tea on the fermentation process and quality characteristics of Fuzhuan brick tea. J. Sci. Food Agric. 2020, 100, 3598–3607. [Google Scholar] [CrossRef]
- Li, Q.; Li, Y.; Luo, Y.; Xiao, L.; Wang, K.; Huang, J.; Liu, Z. Characterization of the key aroma compounds and microorganisms during the manufacturing process of Fu brick tea. LWT-Food Sci. Technol. 2020, 127, 109355. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, X.; Yao, X.; Chen, Y.; Ho, C.-T.; He, C.; Li, Z.; Wang, Y. Metabolite profiling, antioxidant and α-glucosidase inhibitory activities of buckwheat processed by solid-state fermentation with Eurotium cristatum YL-1. Food Res. Int. 2021, 143, 110262. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Chen, J.; Tang, H.; Wang, C.; Li, Z.; Xiao, Y. Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC Adv. 2020, 10, 16928–16941. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Shi, J.; Yuan, Y.; Yue, T. Changes in the metabolite composition and enzyme activity of fermented tea during processing. Food Res. Int. 2022, 158, 111428. [Google Scholar] [CrossRef] [PubMed]
- Shen, S.; Zhang, J.; Sun, H.; Zu, Z.; Fu, J.; Fan, R.; Chen, Q.; Wang, Y.; Yue, P.; Ning, J.; et al. Sensomics-Assisted Characterization of Fungal-Flowery Aroma Components in Fermented Tea Using Eurotium cristatum. J. Agric. Food Chem. 2023, 71, 18963–18972. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yan, X.; Yue, Y.; Yue, T.; Yuan, Y. Improved flavonoid content in mulberry leaves by solid-state fermentation: Metabolic profile, activity, and mechanism. Innov. Food Sci. Emerg. Technol. 2023, 84, 103308. [Google Scholar] [CrossRef]
- Yang, S.; Fan, L.; Tan, P.; Lei, W.; Liang, J.; Gao, Z. Effects of Eurotium cristatum on chemical constituents and α-glucosidase activity of mulberry leaf tea. Food Biosci. 2023, 53, 102557. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, T.; Xie, H.; Ou, X.; Huang, J.; Wang, C.; Liu, Z.; Li, Q. Characterization of the key odor-active compounds in different aroma types of Fu brick tea using HS-SPME/GC-MSO combined with sensory-directed flavor analysis. Food Chem. 2023, 426, 136527. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Jiang, R.; An, R.; Ouyang, J.; Liu, C.; Wang, Z.; Chen, H.; Ou, X.; Zeng, H.; Chen, J.; et al. Effects of pile-fermentation on the aroma quality of dark tea from a single large-leaf tea variety by GC×GC-QTOFMS and electronic nose. Food Res. Int. 2023, 174, 113643. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.P.; Zhang, Y.j.; Lin, Z.; Liang, Y.R. Processing and chemical constituents of Pu-erh tea: A review. Food Res. Int. 2013, 53, 608–618. [Google Scholar] [CrossRef]
- Pang, X.; Yu, W.; Cao, C.; Yuan, X.; Qiu, J.; Kong, F.; Wu, J. Comparison of Potent Odorants in Raw and Ripened Pu-Erh Tea Infusions Based on Odor Activity Value Calculation and Multivariate Analysis: Understanding the Role of Pile Fermentation. J. Agric. Food Chem. 2019, 67, 13139–13149. [Google Scholar] [CrossRef]
- Deng, X.; Huang, G.; Tu, Q.; Zhou, H.; Li, Y.; Shi, H.; Wu, X.; Ren, H.; Huang, K.; He, X.; et al. Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea. Food Chem. 2021, 357, 129783. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, Y.; Zhang, J.; Xu, L.; Zhou, H.; Wei, K.; Peng, L.; Zhang, J.; Liu, Z.; Wei, X. Integration of non-targeted metabolomics and E-tongue evaluation reveals the chemical variation and taste characteristics of five typical dark teas. LWT-Food Sci. Technol. 2021, 150, 111875. [Google Scholar] [CrossRef]
- Qi, H.; Ding, S.; Pan, Z.; Li, X.; Fu, F. Characteristic Volatile Fingerprints and Odor Activity Values in Different Citrus-Tea by HS-GC-IMS and HS-SPME-GC-MS. Molecules 2020, 25, 6027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cui, J.; Jiang, Z.; Zhao, X. GC×GC-ToF-MS combined with multivariate statistical methods to explore the effects of L. paracasei fermentation on bread flavor characteristics. Food Chem. 2024, 435, 137643. [Google Scholar] [CrossRef] [PubMed]
- Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Sethupathy, A.; Tuwani, R.; Nk, R.; Dokania, S.; Iyer, A.; Gupta, A.; Agrawal, S.; Singh, N.; Shukla, S.; et al. FlavorDB: A database of flavor molecules. Nucleic Acids Res. 2018, 46, D1210–D1216. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.; Liu, B.; Chen, R.; Qiao, Y.; Zhang, Q.; Li, Q.; Wang, X.; Wang, Z. Analysis for different flavor compounds in mature milk from human and livestock animals by GC×GC-TOFMS. Food Chem. X 2023, 19, 100760. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Yin, J.F.; Chen, J.X.; Wang, F.; Du, Q.Z.; Jiang, Y.W.; Xu, Y.Q. Improving the sweet aftertaste of green tea infusion with tannase. Food Chem. 2016, 192, 470–476. [Google Scholar] [CrossRef]
- Wang, H.; Feng, X.; Blank, I.; Zhu, Y.; Liu, Z.; Ni, L.; Lin, C.C.; Zhang, Y.; Liu, Y. Differences of Typical Wuyi Rock Tea in Taste and Nonvolatiles Profile Revealed by Multisensory Analysis and LC-MS-Based Metabolomics. J. Agric. Food Chem. 2024, 72, 8715–8730. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, M.Y.; Liu, Y.; Xu, S.R.; Zhong, K.; Wu, Y.P.; Gao, H. The effect of Eurotium cristatum (MF800948) fermentation on the quality of autumn green tea. Food Chem. 2021, 358, 129848. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, H.; Tang, X.; Liu, Q.; Xiao, W.; Zhang, Z.; Tian, Y. A GC×GC-MS method based on solid-state modulator for non-targeted metabolomics: Comparison with traditional GC-MS method. J. Pharm. Biomed. Anal. 2024, 243, 116068. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhao, M.; Yang, J.; Chuai, Q.; Raza, A.; Yang, P.; Yu, M.; Hu, D.; Zou, T.; Song, H. Characterization of key aroma-active compounds in Bobaizhi (Angelica dahurica) before and after boiling by sensomics approach. J. Food Compos. Anal. 2022, 105, 104247. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Li, Q.; Hong, X.; Zheng, X.; Xu, Y.; Lai, X.; Teng, C.; Wu, W.; Huang, J.; Liu, Z. Characterization of key aroma compounds and core functional microorganisms in different aroma types of Liupao tea. Food Res. Int. 2022, 152, 110925. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, J.; Wu, X.; Zhang, Y.; He, Z.; Zhang, Y.; Zhang, X.; Li, Q.; Huang, J.; Liu, Z. Pu-erh tea unique aroma: Volatile components, evaluation methods and metabolic mechanism of key odor-active compounds. Trends Food Sci. Technol. 2022, 124, 25–37. [Google Scholar] [CrossRef]
- Xi, B.N.; Zhang, J.J.; Xu, X.; Li, C.; Shu, Y.; Zhang, Y.; Shi, X.; Shen, Y. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC–MS. Food Chem. 2024, 43, 137547. [Google Scholar] [CrossRef] [PubMed]
- An, T.; Shen, S.; Zu, Z.; Chen, M.; Wen, Y.; Chen, X.; Chen, Q.; Wang, Y.; Wang, S.; Gao, X. Changes in the volatile compounds and characteristic aroma during liquid-state fermentation of instant dark tea by Eurotium cristatum. Food Chem. 2023, 410, 135462. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.; Zhu, M.; Qian, X.; Shi, L.; Huang, H.; Xiong, G.; Wang, J.; Wang, L. Effect of fatty acids on the flavor formation of fish sauce. LWT-Food Sci. Technol. 2020, 134, 110259. [Google Scholar] [CrossRef]
Compounds | Class | CAS | Range of Odor Min | Range of Odor Max | ROAV of MT | ROAV of FMT | Flavor Description | Fold Change (FMT vs. MT) | LRI |
---|---|---|---|---|---|---|---|---|---|
2-ethylhexanol | alcohols | 104-76-7 | 0.198 | - | 269.16 | 316.75 | green, rose, fresh, floral, sweet, citrus | 2.47 | 993 |
1-pentanol | alcohols | 71-41-0 | 5.5 | 305,000 | 7.31 | 1.6 | balsamic, vanilla, sweet, oil | 0.43 | 901 |
1-octanol | alcohols | 111-87-5 | 0.9 | 1690 | 1.41 | 1.13 | green, rose, mushroom, orange, aldehydic, waxy | 0.94 | 1004 |
1-octen-3-ol | alcohols | 3391-86-4 | 11 | - | - | 8.03 | green, mushroom, fungal, earthy | +∞ | 1060 |
heptanal | aldehydes | 111-71-7 | 0.003 | - | 2878.87 | 538.62 | citrus, fatty, herbal, aldehydic, green, fresh, | 0.38 | 1030 |
(E)-2-octenal | aldehydes | 2548-87-0 | 0.003 | - | 526.88 | 729.36 | herbal, green, fresh, nut, fatty, waxy | 2.81 | 1294 |
pentanal | aldehydes | 110-62-3 | 0.4 | 4970 | 86.18 | - | fruity, malt, nutty, almond, berry | 0 | 1404 |
benzeneacetaldehyde | aldehydes | 122-78-1 | 1 | - | 39.84 | 20.53 | honey, grapefruit, green, cocoa, floral, sweet, peanut, hyacinth | 1.05 | 700 |
nonanal | aldehydes | 124-19-6 | 1 | - | 19.93 | 8.81 | grapefruit, fat, rose, green, fresh, aldehydic, citrus, fatty, orange peel, waxy | 0.88 | 962 |
octanal | aldehydes | 124-13-0 | 2.5 | - | 2.64 | - | green, aldehydic, lemon, citrus, fatty, orange peel, waxy | 0.71 | 1045 |
hexanal | aldehydes | 66-25-1 | 20 | - | 1.78 | - | fruity, sweaty, grass, fatty, aldehydic, green, fresh | 0.52 | 1066 |
(E)-2-nonenal | aldehydes | 18829-56-6 | 0.0002 | - | - | 1756.96 | fatty, cucumber, green | +∞ | 1123 |
vanillin | benzenoids | 121-33-5 | 0.0002 | 92.9 | 100 | - | vanilla, creamy, chocolate, sweet | 0 | 1104 |
benzaldehyde | benzenoids | 100-52-7 | 1.5 | 783,000 | 79.1 | 27.49 | almond, bitter, sweet, cherry, fruit, vanilla | 0.7 | 891 |
naphthalene | benzenoids | 91-20-3 | 1.9 | 1020 | 2.97 | 5.04 | pungent, tar, mothballs | 3.5 | 937 |
phenol | benzenoids | 108-95-2 | 4.5 | 1950 | 2.34 | 3.1 | plastic, rubber, phenol, phenolic | 2.7 | 765 |
ethyl 2-methylbutyrate | esters | 7452-79-1 | 1.6 | - | 1.33 | - | fruity, green, apple, sweet | 0 | 703 |
methyl salicylate | esters | 119-36-8 | 40 | - | - | 4.44 | mint, wintergreen, caramel | 65.61 | 1182 |
2-pentylfuran | heterocyclic compounds | 3777-69-3 | 0.006 | - | 10,601.94 | 812.71 | fruity, green, earthy, vegetable, butter | 0.15 | 1003 |
trimethyl-pyrazine | heterocyclic compounds | 14667-55-1 | 0.023 | - | 1311.26 | 3026.34 | nutty, cocoa, hazelnut, roasted, peanut, earthy, | 4.64 | 981 |
2-ethylfuran | heterocyclic compounds | 3208-16-0 | 2.3 | - | 5.06 | - | earthy, burnt, malty, sweet, coffee-Like | 0 | 1189 |
pyridine | heterocyclic compounds | 110-86-1 | 10 | 12,000 | - | 6.02 | putrid, fishy, sour, burnt | +∞ | 801 |
2-methylpyridine | heterocyclic compounds | 109-06-8 | 2.6 | 23.6 | - | 3.34 | bitter, sweat | +∞ | 1070 |
2-undecanone | ketones | 112-12-9 | 0.0044 | - | 198.64 | 85.63 | fruity, green, fresh, orange, floral, fatty, waxy | 0.87 | 849 |
acetophenone | ketones | 98-86-2 | 0.24 | 590 | 27.23 | 299.39 | flower, must, hawthorn, almond, sweet, oranges | 22.13 | 986 |
isophorone | ketones | 78-59-1 | 0.3 | 190 | 22.51 | 118.06 | fruity, green, cedarwood, sweet, camphoraceous, woody | 9.93 | 1162 |
2-heptanone | ketones | 110-43-0 | 0.75 | 710 | 19.85 | 3.98 | herbal, fruity, sweet, mushroom, woody | 0.41 | 1273 |
6-methyl-5-hepten-2-one | ketones | 110-93-0 | 50 | - | 1.11 | - | green, nutty, hazelnut, mushroom, bitter, apple, lemongrass, citrus | 0.66 | 980 |
1-octen-3-one | ketones | 4312-99-6 | 0.005 | - | - | 3950.26 | herbal, mushroom, earthy | +∞ | 979 |
damascenone | ketones | 23696-85-7 | 0.1 | - | - | 215.69 | sweet, rose | +∞ | 0 |
a-pinene | lipids and lipid-like molecules | 80-56-8 | 0.06 | 19,000 | 8.13 | 4.54 | turpentine, fresh, minty, terpene, sweet, camphor, earthy, woody | 1.12 | 746 |
a-terpineol | lipids and lipid-like molecules | 98-55-5 | 1 | - | 2.01 | 4.47 | piney, iris, teil | 4.49 | 1192 |
citral | lipids and lipid-like molecules | 5392-40-5 | 0.024 | 32 | - | 322.33 | lemon, flowery, citrous | +∞ | 816 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liu, Z.; Zhang, Y.; Zhao, S.; Yan, S.; Zhu, L.; Zhou, Q.; Chen, L. Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea. Foods 2024, 13, 2347. https://doi.org/10.3390/foods13152347
Yang X, Liu Z, Zhang Y, Zhao S, Yan S, Zhu L, Zhou Q, Chen L. Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea. Foods. 2024; 13(15):2347. https://doi.org/10.3390/foods13152347
Chicago/Turabian StyleYang, Xiaoyu, Zijun Liu, Yanhao Zhang, Shuangzhi Zhao, Shigan Yan, Liping Zhu, Qingxin Zhou, and Leilei Chen. 2024. "Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea" Foods 13, no. 15: 2347. https://doi.org/10.3390/foods13152347
APA StyleYang, X., Liu, Z., Zhang, Y., Zhao, S., Yan, S., Zhu, L., Zhou, Q., & Chen, L. (2024). Effects of Fermentation with Eurotium cristatum on Sensory Properties and Flavor Compounds of Mulberry Leaf Tea. Foods, 13(15), 2347. https://doi.org/10.3390/foods13152347