Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Reagents
2.2. Quiona Polysaccharide Preparation
2.3. Measurement of Anti-Proliferation Activity
2.4. Effect of Quinoa Polysaccharides on Transcriptional Level of 3T3-L1 Preadipocytes
2.5. Quantitative RT-PCR (qPCR)
2.6. Data Statistics
3. Results and Discussion
3.1. Anti-Proliferation Effect of Quinoa Polysaccharides on 3T3-L1 Preadipocytes
3.2. Analysis of Transcriptome Sequencing Results
3.3. Differential Expression Analysis
3.4. GO Analysis of DEGs
3.5. KEGG Pathway Analysis of DEGs
3.6. Structural Analysis
3.7. Transcription Factor Analysis
3.8. Quantitative RT-PCR (qPCR) Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, G.; Teng, C.; Fan, X.; Guo, S.; Zhao, G.; Zhang, L.; Zou, L. Nutrient composition, functional activity and industrial applications of quinoa (Chenopodium quinoa Willd.). Food. Chem. 2023, 410, 135290. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Qin, P.; Shi, Z.; Zhang, W.; Yang, X.; Yao, Y.; Ren, G. Structural characterization and antioxidant activity of alkali-extracted polysaccharides from quinoa. Food. Hydrocoll. 2020, 113, 106392. [Google Scholar] [CrossRef]
- Tan, M.; Zhao, Q.; Zhao, B. Physicochemical properties, structural characterization and biological activities of polysaccharides from quinoa (Chenopodium quinoa willd.) seeds. Int. J. Biol. Macromol. 2021, 193, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Vilcacundo, R.; Miralles, B.; Carrillo, W.; Hernandez-Ledesma, B. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa willd.) protein under simulated gastrointestinal digestion. Food Res. Int. 2018, 105, 403–411. [Google Scholar] [CrossRef]
- Tang, C.; Wang, Y.; Chen, D.; Zhang, M.; Xu, J.; Xu, C.; Liu, J.; Kan, J.; Jin, C. Natural polysaccharides protect against diet-induced obesity by improving lipid metabolism and regulating the immune system. Food Res. Int. 2023, 127, 113192. [Google Scholar] [CrossRef]
- Zhu, F. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr. Polym. 2020, 248, 116819. [Google Scholar] [CrossRef]
- Verboven, K.; Wouters, K.; Gaens, K.; Hansen, D.; Bijnen, M.; Wetzels, S.; Stehouwer, C.D.; Goossens, G.H.; Schalkwijk, C.G.; Blaak, E.E. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 2018, 8, 4677. [Google Scholar] [CrossRef]
- Dodd, G.T.; Xirouchaki, C.E.; Eramo, M.; Mitchell, C.A.; Andrews, Z.B.; Henry, B.A. Intranasal targeting of hypothalamic ptp1b and tcptp reinstates leptin and insulin sensitivity and promotes weight loss in obesity. Cell. Rep. 2019, 28, 2905–2922. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Rai, S.N. Factors affecting obesity and its treatment. Obes. Med. 2019, 16, 100140. [Google Scholar] [CrossRef]
- Xu, Y.; Du, J.; Zhang, P.; Zhao, X.; Zhu, L. Microrna-125a-5p mediates 3T3-L1 preadipocyte proliferation and differentiation. Molecules 2018, 23, 317. [Google Scholar] [CrossRef]
- Hao, Y.; Qin, S.; Yang, L.; Jiang, J.; Zhu, W. Marmin from the blossoms of citrus maxima (burm.) merr. exerts lipid-lowering effect via inducing 3T3-L1 preadipocyte apoptosis. J. Funct. Foods. 2021, 82, 104513. [Google Scholar] [CrossRef]
- Teng, C.; Shi, Z.; Yao, Y.; Ren, G. Structural Characterization of Quinoa Polysaccharide and Its Inhibitory Effects on 3T3-L1 Adipocyte Differentiation. Foods 2020, 9, 1511. [Google Scholar] [CrossRef]
- Ying, J.; Wang, J.; Ji, H.; Lin, C.; Pan, R.; Zhou, L. Transcriptome analysis of phycocyanin inhibitory effects on skov-3 cell proliferation. Gene 2016, 585, 58–64. [Google Scholar] [CrossRef]
- Tu, J.; Deng, L.; Ling, Y.; Zhu, K.; Cai, Z. Transcriptome profiling reveals multiple pathways responsible for the beneficial metabolic effects of Smilax glabra flavonoids in mouse 3T3-L1 adipocytes. Biomed. Pharmacother. 2020, 125, 110011. [Google Scholar] [CrossRef]
- Huang, J.; Qu, Q.; Guo, Y.; Xiang, Y.; Feng, D. Tankyrases/β-catenin signaling pathway as an anti-proliferation and anti-metastatic target in hepatocarcinoma cell lines. J. Cancer 2020, 11, 432–440. [Google Scholar] [CrossRef]
- Quick, J.; Ashton, P.; Calus, S.; Chatt, C.; Gossain, S.; Hawker, J. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of salmonella. Genome Biol. 2015, 16, 114. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Zou, L.; Fu, C. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int. J. Biol. Macromol. 2017, 99, 622–629. [Google Scholar] [CrossRef]
- Wu, J.; Ye, J.; Kong, W.; Zhang, S.; Zheng, Y. Programmed cell death pathways in hearing loss: A review of apoptosis, autophagy and programmed necrosis. Cell. Prolif. 2020, 53, e12915. [Google Scholar] [CrossRef]
- Xu, J.; Tan, Z.C.; Shen, Z.Y.; Shen, X.J.; Tang, S.M. Cordyceps cicadae polysaccharides inhibit human cervical cancer hela cells proliferation via apoptosis and cell cycle arrest. Food Chem. Toxicol. 2021, 148, 111971. [Google Scholar] [CrossRef]
- Kanagasabapathy, G.; Chua, K.H.; Malek, S.; Vikineswary, S.; Kuppusamy, U.R. Amp-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), singer mushroom, in 3T3-L1 cells. Food Chem. 2014, 145, 198–204. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Liu, M.; Zhao, H.; Yaqoob, S.; Zheng, M.; Cai, D.; Liu, J. Antiobesity Effects of Ginsenoside Rg1 on 3T3-L1 Preadipocytes and High Fat Diet-Induced Obese Mice Mediated by AMPK. Nutrients 2018, 10, 830. [Google Scholar] [CrossRef]
- Darby, A.C.; Armstrong, S.D.; Bah, G.S.; Kaur, G.; Hughes, M.A.; Kay, S.M. Analysis of gene expression from the wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res. 2012, 22, 2467–2477. [Google Scholar] [CrossRef]
- Stoecker, K.; Sass, S.; Theis, F.J.; Hans, H.; Michael, W.P. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data. BDQ 2017, 11, 31–44. [Google Scholar] [CrossRef]
- Elisa, B.; Eleonora, D.G.; Elga, F.B. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity. Am. J. Med. Genet. Part B 2015, 171, 290–299. [Google Scholar] [CrossRef]
- Hult, A.K.; Eoin, M.S.; Mattias, M.; Olsson, M.L. Gbgt1 is allelically diverse but dispensable in humans and naturally occurring anti-fors1 shows an abo-restricted pattern. Transfusion 2018, 8, 2036–2045. [Google Scholar] [CrossRef]
- Osaki, M.; Oshimura, M.; Ito, H. Pi3k-akt pathway: Its functions and alterations in human cancer. Apoptosis 2004, 9, 667–676. [Google Scholar] [CrossRef]
- Liu, P.; Lu, Z.; Liu, L.; Li, R.; Liang, Z.; Shen, M. Nod-like receptor signaling in inflammation-associated cancers: From functions to targeted therapies. Phytomedicine 2019, 64, 152925. [Google Scholar] [CrossRef]
- Wu, A.C.K.; Patel, H.; Chia, M.; Moretto, F.; Frith, D.; Snijders, A.P. Repression of divergent noncoding transcription by a sequence-specific transcription factor. Mol. Cell. 2018, 72, 942–954. [Google Scholar] [CrossRef]
Gene | Primers | Sequences (5′→3′) |
---|---|---|
Atp13A4 | Atp13A4-F | CACGTATGGGCACATTGTGTC |
Atp13A4-R | TGAGACCAAATGCGCTGTTTA | |
Gbgt1 | Gbgt1-F | TGGGTGTATCTTGAGAACTGGC |
Gbgt1-R | GTACTGTGACCATACCACGGG | |
GAPDH | GAPDH-F | GGGAGCCAAAAGGGTCATCA |
GAPDH-R | TGATGGCATGGACTGTGGTC |
Gene id | Name | CT vs. QAPLs | CT vs. QAPHs | QAPLs vs. QAPHs |
---|---|---|---|---|
ENSMUSG00000038094 | ATP13A4 | 7.231 | 574.614 | 79.74 |
ENSMUSG00000051228 | Nyx | 2.656 | 69.157 | 26.1 |
ENSMUSG00000057933 | Gsta2 | 1.478 | 37.748 | 25.636 |
ENSMUSG00000021062 | Rab15 | 1.697 | 24.484 | 24.484 |
ENSMUSG00000111709 | Gm3776 | 1.176 | 28.313 | 24.15 |
ENSMUSG00000018656 | Tcaf3 | 1.02 | 22.454 | 22.121 |
ENSMUSG00000026012 | Cd28 | 1.026 | 20.365 | 19.944 |
ENSMUSG00000063851 | Rnf183 | 12.741 | 242.082 | 19.058 |
ENSMUSG00000038963 | Slco4a1 | 1.429 | 25.326 | 17.766 |
ENSMUSG00000056457 | Prl2c3 | 1.02 | 17.553 | 17.26 |
ENSMUSG00000041559 | SLRR2E | 0.739 | 0.019 | 0.026 |
ENSMUSG00000020676 | Ccl11 | 0.86 | 0.033 | 0.038 |
ENSMUSG00000027220 | Syt13 | 0.798 | 0.036 | 0.045 |
ENSMUSG00000040170 | Fmo2 | 0.611 | 0.029 | 0.048 |
ENSMUSG00000037206 | Islr | 0.862 | 0.046 | 0.053 |
ENSMUSG00000078922 | Tgtp1 | 0.347 | 0.019 | 0.667 |
ENSMUSG00000042436 | Mfap4 | 0.813 | 0.047 | 0.058 |
ENSMUSG00000026829 | Gbgt1 | 0.92 | 0.06 | 0.06 |
ENSMUSG00000020053 | Igf1 | 0.734 | 0.045 | 0.061 |
ENSMUSG00000034009 | Rxfp1 | 0.264 | 0.016 | 0.062 |
id | Name | CT vs. QWPLs | CT vs. QWPHs | QWPLs vs. QWPHs |
---|---|---|---|---|
ENSMUSG00000059383 | Gfral | 1.733 | 75.096 | 43.574 |
ENSMUSG00000020646 | Mboat2 | 2.039 | 74.532 | 36.663 |
ENSMUSG00000038094 | Atp13A4 | 3.579 | 65.734 | 18.422 |
ENSMUSG00000039691 | Tspan10 | 3.079 | 62.112 | 20.235 |
ENSMUSG00000030827 | Fgf21 | 6.198 | 61.422 | 9.954 |
ENSMUSG00000029797 | Sspo | 2.387 | 56.769 | 23.88 |
ENSMUSG00000040026 | Saa3 | 7.253 | 44.579 | 6.188 |
ENSMUSG00000026822 | Lcn2 | 2.594 | 39.139 | 15.152 |
ENSMUSG00000009356 | Lpo | 3.028 | 37.007 | 12.247 |
ENSMUSG00000034402 | Kcnh5 | 2.638 | 33.928 | 12.916 |
ENSMUSG00000031364 | Grpr | 0.679 | 0.004 | 0.005 |
ENSMUSG00000022468 | Endou | 0.855 | 0.019 | 0.023 |
ENSMUSG00000024810 | Il33 | 0.85 | 0.024 | 0.029 |
ENSMUSG00000027238 | Frmd5 | 0.908 | 0.028 | 0.031 |
ENSMUSG00000048368 | Omd | 0.806 | 0.029 | 0.036 |
ENSMUSG00000031554 | Adam5 | 0.956 | 0.036 | 0.037 |
ENSMUSG00000085584 | Rtl9 | 0.884 | 0.033 | 0.038 |
ENSMUSG00000024059 | Clip4 | 0.889 | 0.034 | 0.038 |
ENSMUSG00000026829 | Gbgt1 | 0.604 | 0.024 | 0.04 |
ENSMUSG00000048782 | Insc | 0.538 | 0.022 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, C.; Guo, S.; Li, Y.; Ren, G. Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods 2024, 13, 2311. https://doi.org/10.3390/foods13152311
Teng C, Guo S, Li Y, Ren G. Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods. 2024; 13(15):2311. https://doi.org/10.3390/foods13152311
Chicago/Turabian StyleTeng, Cong, Shengyuan Guo, Ying Li, and Guixing Ren. 2024. "Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation" Foods 13, no. 15: 2311. https://doi.org/10.3390/foods13152311
APA StyleTeng, C., Guo, S., Li, Y., & Ren, G. (2024). Transcriptome Analysis Reveals the Mechanism of Quinoa Polysaccharides Inhibiting 3T3-L1 Preadipocyte Proliferation. Foods, 13(15), 2311. https://doi.org/10.3390/foods13152311