Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles (Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Reagents
2.3. Kombucha Elaboration with SCOBYs
2.4. Physicochemical Measurements
2.5. Biochemical Measurements
2.6. Volatile Organic Compound (VOC) Analysis by SPME-GC-MS
2.7. Statistical Analyses
3. Results and Discussion
3.1. Evolution of pH and Viscosity in Truffle Kombuchas during Fermentation
3.2. Evolution of Chemical Composition in Truffle Kombuchas during Fermentation
3.2.1. Evolution of Total Carbohydrate Content (TCC)
3.2.2. Evolution of Alcohol Content
3.2.3. Evolution of Soluble Protein Content
3.2.4. Evolution of Total Phenolics Content (TPC)
3.3. Evolution of VOCs in Truffle Kombuchas during Fermentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nations, U. UNECE STANDARD FFV-53 2017 EDITION. 2017. Available online: https://unece.org/fileadmin/DAM/trade/agr/standard/standard/fresh/FFV-Std/English/53_Truffles.pdf (accessed on 6 June 2024).
- Tejedor-Calvo, E.; García-Barreda, S.; Sánchez, S.; Morales, D.; Soler-Rivas, C.; Ruiz-Rodriguez, A.; Sanz, M.Á.; Garcia, A.P.; Morte, A.; Marco, P. Supercritical CO2 Extraction Method of Aromatic Compounds from Truffles. LWT 2021, 150, 111954. [Google Scholar] [CrossRef]
- Ferreira, I.; Correa, A.; Cruz, C. Sustainable production of ectomycorrhizal fungi in the Mediterranean region to support the European Green Deal. Plants People Planet 2022, 5, 14–26. [Google Scholar] [CrossRef]
- Zhang, T.; Jayachandran, M.; Ganesan, K.; Xu, B. The black truffle, Tuber melanosporum (Ascomycetes), ameliorates hyperglycemia and regulates insulin signaling pathway in STZ-induced diabetic rays. Int. J. Med. Mushrooms 2020, 22, 1057–1066. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, X.H.; Li, H.M.; Wang, S.H.; Chen, T.; Yuan, Z.P.; Tang, Y.J. Isolation and characterization of polysaccharides with the antitumor activity from Tuber fruiting bodies and fermentation system. Appl. Microbiol. Biotechnol. 2014, 98, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Diez-Ozaeta, I.; Astiazaran, O.J. Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int. J. Food Microbiol. 2022, 377, 109783. [Google Scholar] [CrossRef]
- da Silva Júnior, J.C.; Mafaldo, Í.M.; de Lima Brito, I.; de Magalhães Cordeiro, A.M.T. Kombucha: Formulation, Chemical Composition, and Therapeutic Potentialities. Curr. Res. Food Sci. 2022, 5, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Andreson, M.; Kazantseva, J.; Kuldjärv, R.; Malv, E.; Vaikma, H.; Kaleda, A.; Kütt, M.L.; Vilu, R. Characterisation of Chemical, Microbial and Sensory Profiles of Commercial Kombuchas. Int. J. Food Microbiol. 2022, 373, 109715. [Google Scholar] [CrossRef] [PubMed]
- May, A.; Narayanan, S.; Alcock, J.; Varsani, A.; Maley, C.; Aktipis, A. Kombucha: A Novel Model System for Cooperation and Conflict in a Complex Multi-Species Microbial Ecosystem. PeerJ 2019, 7, e7565. [Google Scholar] [CrossRef]
- Freitas, A.; Sousa, P.; Wurlitzer, N. Alternative Raw Materials in Kombucha Production. Int. J. Gastron. Food Sci. 2022, 30, 100594. [Google Scholar] [CrossRef]
- Sknepnek, A.; Tomić, S.; Miletić, D.; Lević, S.; Čolić, M.; Nedović, V.; Nikšić, M. Fermentation Characteristics of Novel Coriolus Versicolor and Lentinus Edodes Kombucha Beverages and Immunomodulatory Potential of Their Polysaccharide Extracts. Food Chem. 2021, 342, 128344. [Google Scholar] [CrossRef] [PubMed]
- Sknepnek, A.; Pantić, M.; Matijašević, D.; Miletić, D.; Lević, S.; Nedović, V.; Nikšić, M. Novel Kombucha Beverage from Lingzhi or Reishi Medicinal Mushroom, Ganoderma Lucidum, with Antibacterial and Antioxidant Effects. Int. J. Med. Mushrooms 2018, 20, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Montecchi, A.; Sarasini, M. Funghi Ipogei d’Europa; Associazione Micologica Bresadola: Trento, Italy, 2000. [Google Scholar]
- Riousset, L.; Riousset, G.; Chevalier, G.; Bardet, M.-C. Truffes d’Europe et de Chine, 1st ed.; Éditions Quae: Versailles Cedex, France, 2001; ISBN 2738009328. [Google Scholar]
- Rivera, C.S.; Venturini, M.E.; Marco, P.; Oria, R.; Blanco, D. Effects of Electron-Beam and Gamma Irradiation Treatments on the Microbial Populations, Respiratory Activity and Sensory Characteristics of Tuber Melanosporum Truffles Packaged under Modified Atmospheres. Food Microbiol. 2011, 28, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Calvo, E.; Morales, D. Chemical and Aromatic Changes during Fermentation of Kombucha Beverages Produced Using Strawberry Tree (Arbutus unedo) Fruits. Fermentation 2023, 9, 326. [Google Scholar] [CrossRef]
- Morales, D.; Gutiérrez-Pensado, R.; Bravo, F.I.; Muguerza, B. Novel Kombucha Beverages with Antioxidant Activity Based on Fruits as Alternative Substrates. LWT 2023, 189, 115482. [Google Scholar] [CrossRef]
- Ramírez-Anguiano, A.C.; Santoyo, S.; Reglero, G.; Soler-Rivas, C. Radical Scavenging Activities, Endogenous Oxidative Enzymes and Total Phenols in Edible Mushrooms Commonly Consumed in Europe. J. Sci. Food Agric. 2007, 87, 2272–2278. [Google Scholar] [CrossRef]
- Gómez, I.; Lavega-gonzález, R.; Tejedor-calvo, E.; Pérez-Clavijo, M.; Carrasco, J. Odor Profile of Four Cultivated and Freeze-Dried Edible Mushrooms by Using Sensory Panel, Electronic Nose. J. Fungi 2022, 8, 953. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cardoso, R.R.; Neto, R.O.; dos Santos D’Almeida, C.T.; do Nascimento, T.P.; Pressete, C.G.; Azevedo, L.; Martino, H.S.D.; Cameron, L.C.; Ferreira, M.S.L.; de Barros, F.A.R. Kombuchas from Green and Black Teas Have Different Phenolic Profile, Which Impacts Their Antioxidant Capacities, Antibacterial and Antiproliferative Activities. Food Res. Int. 2020, 128, 108782. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Diguță, C.F.; Nițoi, G.D.; Matei, F.; Luță, G.; Cornea, C.P. The Biotechnological Potential of Pediococcus Spp. Isolated from Kombucha Microbial Consortium. Foods 2020, 9, 1780. [Google Scholar] [CrossRef]
- Nguyen, N.K.; Dong, N.T.N.; Nguyen, H.T.; Le, P.H. Lactic Acid Bacteria: Promising Supplements for Enhancing the Biological Activities of Kombucha. Springerplus 2015, 4, 91. [Google Scholar] [CrossRef]
- Li, R.; Xu, Y.; Chen, J.; Wang, F.; Zou, C.; Yin, J. Enhancing the Proportion of Gluconic Acid with a Microbial Community Reconstruction Method to Improve the Taste Quality of Kombucha. LWT 2022, 155, 112937. [Google Scholar] [CrossRef]
- De Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different Temperatures Select Distinctive Acetic Acid Bacteria Species and Promotes Organic Acids Production during Kombucha Tea Fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Tomar, O. Determination of Some Quality Properties and Antimicrobial Activities of Kombucha Tea Prepared with Different Berries. Turk. J. Agric. For. 2023, 47, 252–262. [Google Scholar] [CrossRef]
- Watawana, M.I.; Jayawardena, N.; Gunawardhana, C.B.; Waisundara, V.Y. Enhancement of the Antioxidant and Starch Hydrolase Inhibitory Activities of King Coconut Water (Cocos nucifera var. Aurantiaca) by Fermentation with Kombucha “Tea Fungus”. Int. J. Food Sci. Technol. 2016, 51, 490–498. [Google Scholar] [CrossRef]
- Wu, J.; Li, L.; Ma, S. Effects of Kombucha Bacterial Cellulose on Wheat Dough Properties. Int. J. Food Sci. Technol. 2024, 59, 1876–1884. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; Marco, P.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C. Effects of Combining Electron-Beam or Gamma Irradiation Treatments with Further Storage under Modified Atmospheres on the Bioactive Compounds of Tuber Melanosporum Truffles. Postharvest Biol. Technol. 2019, 155, 149–155. [Google Scholar] [CrossRef]
- Tejedor-Calvo, E.; Morales, D.; García-Barreda, S.; Sánchez, S.; Venturini, M.E.; Blanco, D.; Soler-Rivas, C.; Marco, P. Effects of Gamma Irradiation on the Shelf-Life and Bioactive Compounds of Tuber Aestivum Truffles Packaged in Passive Modified Atmosphere. Int. J. Food Microbiol. 2020, 332, 108774. [Google Scholar] [CrossRef]
- Vetter, J. The Mushroom Glucans: Molecules of High Biological and Medicinal Importance. Foods 2023, 12, 1009. [Google Scholar] [CrossRef]
- Mas, P.; Tran, T.; Verdier, F.; Martin, A.; Alexandre, H.; Grandvalet, C.; Tourdot-Maréchal, R. Evolution in Composition of Kombucha Consortia over Three Consecutive Years in Production Context. Foods 2022, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Rutherfurd-Markwick, K.; Zhang, X.X.; Mutukumira, A.N. Kombucha: Production and Microbiological Research. Foods 2022, 11, 3456. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.F.; Xu, Y.Q.; Yuan, H.B.; Luo, L.X.; Qian, X.J. Cream Formation and Main Chemical Components of Green Tea Infusions Processed from Different Parts of New Shoots. Food Chem. 2009, 114, 665–670. [Google Scholar] [CrossRef]
- Lin, L.; Li, C.; Jin, C.; Peng, Y.; Hashem, K.M.; Macgregor, G.A.; He, F.J.; Wang, H. Sugar and Energy Content of Carbonated Sugar-Sweetened Beverages in Haidian District, Beijing: A Cross-Sectional Study. BMJ Open 2018, 8, e022048. [Google Scholar] [CrossRef]
- European Parliament. Council of the European Union Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. Eur. Parliam. Counc. Eur. Union, 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:304:0018:0063:en:PDF(accessed on 6 June 2024).
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Renard, T.; Rollan, S.; Taillandier, P. Impact of Fermentation Conditions on the Production of Bioactive Compounds with Anticancer, Anti-Inflammatory and Antioxidant Properties in Kombucha Tea Extracts. Process Biochem. 2019, 83, 44–54. [Google Scholar] [CrossRef]
- Kaashyap, M.; Cohen, M.; Mantri, N. Microbial Diversity and Characteristics of Kombucha as Revealed by Metagenomic and Physicochemical Analysis. Nutrients 2021, 13, 4446. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in Content of Organic Acids and Tea Polyphenols during Kombucha Tea Fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Ayed, L.; Ben Abid, S.; Hamdi, M. Development of a Beverage from Red Grape Juice Fermented with the Kombucha Consortium. Ann. Microbiol. 2017, 67, 111–121. [Google Scholar] [CrossRef]
- Boban, A.; Milanović, V.; Veršić Bratinčević, M.; Botta, C.; Ferrocino, I.; Cardinali, F.; Ivić, S.; Rampanti, G.; Budić-Leto, I. Spontaneous Fermentation of Maraština Wines: The Correlation between Autochthonous Mycobiota and Phenolic Compounds. Food Res. Int. 2024, 180, 114072. [Google Scholar] [CrossRef] [PubMed]
- Boasiako, T.A.; Xiong, Y.; Boateng, I.D.; Appiagyei, J.; Li, Y.; Clark, K.; Aregbe, A.Y.; Yaqoob, S.; Ma, Y. Innovative Bicultured Lactic–Acetic Acid Co-Fermentation Improves Jujube Puree’s Functionality and Volatile Compounds. Fermentation 2024, 10, 71. [Google Scholar] [CrossRef]
- Gaur, G.; Gänzle, M.G. Conversion of (Poly)Phenolic Compounds in Food Fermentations by Lactic Acid Bacteria: Novel Insights into Metabolic Pathways and Functional Metabolites. Curr. Res. Food Sci. 2023, 6, 100448. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.S.O.; Bollen, M.; Dykes, G.A.; Coorey, R. Aroma-volatile Profile and Its Changes in Australian Grown Black Périgord Truffle (Tuber melanosporum) during Storage. Int. J. Food Sci. Technol. 2021, 56, 5762–5776. [Google Scholar] [CrossRef]
- Campo, E.; Marco, P.; Oria, R.; Blanco, D.; Venturini, M.E. What Is the Best Method for Preserving the Genuine Black Truffle (Tuber Melanosporum) Aroma? An Olfactometric and Sensory Approach. LWT–Food Sci. Technol. 2017, 80, 84–91. [Google Scholar] [CrossRef]
- Xiao, Z.; Xu, P. Acetoin Metabolism in Bacteria. Crit. Rev. Microbiol. 2007, 33, 127–140. [Google Scholar] [CrossRef] [PubMed]
- de-la-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Valentin, D.; Ferreira, V. Fourteen Ethyl Esters of Wine Can Be Replaced by Simpler Ester Vectors without Compromising Quality but at the Expense of Increasing Aroma Concentration. Food Chem. 2020, 307, 125553. [Google Scholar] [CrossRef]
Alcohol Content (% v/v) | |||||||
---|---|---|---|---|---|---|---|
Day 0 | Day 3 | Day 7 | Day 10 | Day 14 | Day 17 | Day 21 | |
TMEL SC1 | n.d. A,a | 0.13 ± 0.04 A,b | 0.10 ± 0.04 A,b | 0.20 ± 0.14 A,b | 0.25 ± 0.21 A,a | n.d. A,c | n.d. A,a |
TMEL SC2 | n.d. B,a | 0.65 ± 0.21 B,ab | 1.50 ± 0.42 A,a | 0.50 ± 0.14 B,b | 0.70 ± 0.14 B,a | 0.10 ± 0.00 B,b | n.d. B,a |
TMEL SC3 | n.d. C,a | 0.90 ± 0.14 B,a | 1.60 ± 0.28 A,a | 1.50 ± 0.14 AB,a | 0.40 ± 0.28 BC,a | 0.40 ± 0.00 BC,a | n.d. C,a |
TAES SC1 | n.d. B,a | 0.10 ± 0.00 AB,a | 0.10 ± 0.00 AB,b | 0.15 ± 0.07 A,ab | n.d. B,b | n.d. B,a | n.d. B,a |
TAES SC2 | n.d. B,a | 0.10 ± 0.00 B,a | 0.70 ± 0.14 A,a | 0.50 ± 0.14 A,a | 0.10 ± 0.00 B,a | n.d. B,a | n.d. B,a |
TAES SC3 | n.d. B,a | n.d. B,b | 0.50 ± 0.14 A,ab | n.d. B,b | n.d. B,b | n.d. B,a | n.d. B,a |
Number | Name | CAS | RT | RI Exp | RI Nist | Odor Description * |
---|---|---|---|---|---|---|
1 | Acetaldehyde | 75-07-0 | 1.467 | <500 | No data | pungent, ether |
2 | Ethanol | 64-17-5 | 1.568 | <500 | 450 | sweet |
3 | 2-propanone | 67-64-1 | 1.640 | <500 | 500 | solvent |
4 | Hexane | 110-54-3 | 2.014 | Standard | Standard | alkane |
5 | Ethyl_acetate | 141-78-6 | 2.108 | <500 | 612 | pineapple |
6 | Acetic_acid | 64-19-7 | 2.231 | 609 | 660 | sour |
7 | Acetoine | 513-86-0 | 3.196 | 717 | 720 | butter, cream |
8 | 3-methyl-1-butanol | 123-51-3 | 3.470 | 730 | 730 | whiskey, malt, burnt |
9 | 2-methyl-1-butanol | 137-32-6 | 3.506 | 732 | 733 | wine, onion |
10 | Ethyl_isobutyrate | 97-62-1 | 3.989 | 755 | 755 | sweet, rubber |
11 | Isobutyruc acid | 79-31-2 | 4.342 | 771 | 758 | rancid, butter, cheese |
12 | 2,3-butanediol | 513-85-9 | 4.623 | 785 | 782 | fruit, onion |
13 | Hexanal | 66-25-1 | 5.063 | 803 | 801 | grass, tallow, fat |
14 | Ethyl butyrate | 105-54-4 | 5.142 | 805 | 801 | apple |
15 | Methoxyethane | 540-67-0 | 5.459 | 814 | No data | - |
16 | Ethyl lactate | 97-64-3 | 5.650 | 820 | 821 | fruit, onion |
17 | Ethyl-2-methylbutyrate | 7452-79-1 | 6.842 | 853 | 856 | apple |
18 | Ethyl isovalerate | 108-64-5 | 6.965 | 856 | 859 | fruit |
19 | Isoamyl acetate | 503-74-2 | 7.923 | 883 | 888 | sweat, acid, rancid |
20 | 2cyclopentene-1-4dione | 930-60-9 | 8.010 | 885 | 880 | - |
21 | Pentanoic acid | 109-52-4 | 8.557 | 900 | 906 | sweat |
22 | 2-methyl-butanoic acid | 116-53-0 | 8.997 | 912 | 881 | cheese, sweat |
23 | Ethyl-2-hydroxy-isovalerate | 2441-06-7 | 11.123 | 970 | 975 | - |
24 | Decane | 124-18-5 | 12.247 | Standard | Standard | alkane |
25 | Ethyl hexanoate | 123-66-0 | 12.311 | 1002 | 1002 | apple peel, fruit |
26 | Hexanoic acid | 142-62-1 | 12.500 | 1008 | 1013 | sweat |
27 | 2-ethyl-1-hexanol | 104-76-7 | 13.248 | 1030 | 1031 | rose, green |
28 | 4-heptanol,2,6-dimehtyl | 108-82-7 | 14.300 | 1061 | No data | - |
29 | Heptanoic acid | 111-14-8 | 15.144 | 1085 | 1085 | - |
30 | Ethyl heptanoate | 106-30-9 | 15.648 | 1100 | 1097 | fruit |
31 | Undecane | 1120-21-4 | 15.648 | Standard | Standard | alkane |
32 | 2-mehtyl-butyl-2-mehylbutyrate | 2445-78-5 | 15.778 | 1104 | 1104 | - |
33 | Benzene-ethanol | 60-12-8 | 16.131 | 1116 | 1116 | rose |
34 | Methyl octanoate | 111-11-5 | 16.462 | 1126 | 1128 | orange |
35 | Camphor | 76-22-2 | 17.010 | 1144 | 1145 | camphor |
36 | Octanoic acid | 124-07-2 | 18.285 | 1184 | 1184 | sweat, cheese |
37 | Ethyl octanoate | 106-32-1 | 18.688 | 1197 | 1195 | fruit, fat |
38 | Methyl nonanoate | 1731-84-6 | 19.467 | 1224 | 1224 | coconut |
39 | Ethyl phenylacetate | 101-97-3 | 20.144 | 1247 | 1253 | fruit, sweet |
40 | Phenethyl acetate | 103-45-7 | 20.461 | 1258 | 1256 | rose, honey, tobacco |
41 | Benzeneacetic acid | 103-82-2 | 21.254 | 1286 | 1270 | honey, flower |
42 | Ethyl nonanoate | 123-29-5 | 21.506 | 1295 | 1293 | - |
43 | Nonanoic acid | 112-05-0 | 21.621 | 1299 | 1297 | green, fat |
44 | Eicosane | 112-95-8 | 22.284 | Standard | Standard | alkane |
45 | Methyl caprate | 110-42-9 | 22.350 | 1336 | 1326 | wine |
46 | Gamma-nonalactone | 104-61-0 | 23.358 | 1368 | 1367 | coconut, peach |
47 | Decanoic acid | 334-48-5 | 23.624 | 1374 | 1387 | rancid, fat |
48 | Ethyl decanoate | 110-38-3 | 24.151 | 1394 | 1397 | grape |
49 | 3-Methylbutyl octanoate | 2035-99-6 | 25.498 | 1449 | 1444 | - |
50 | 2-4-ditert-butylphenol | 96-76-4 | 27.061 | 1513 | 1518 | phenolic |
51 | Ethyl laurate | 106-33-2 | 29.000 | 1595 | 1595 | leaf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, D.; de la Fuente-Nieto, L.; Marco, P.; Tejedor-Calvo, E. Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles (Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods 2024, 13, 2162. https://doi.org/10.3390/foods13132162
Morales D, de la Fuente-Nieto L, Marco P, Tejedor-Calvo E. Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles (Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods. 2024; 13(13):2162. https://doi.org/10.3390/foods13132162
Chicago/Turabian StyleMorales, Diego, Laura de la Fuente-Nieto, Pedro Marco, and Eva Tejedor-Calvo. 2024. "Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles (Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles" Foods 13, no. 13: 2162. https://doi.org/10.3390/foods13132162
APA StyleMorales, D., de la Fuente-Nieto, L., Marco, P., & Tejedor-Calvo, E. (2024). Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles (Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods, 13(13), 2162. https://doi.org/10.3390/foods13132162