Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone (Haliotis discus hannai) Viscera Enzyme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Abalone Viscera Enzyme
2.3. Determination of Abalone Viscera Enzyme Activity
2.4. Substrate Property of Abalone Viscera Enzyme
2.5. Thermal and pH Profiles of Abalone Viscera Enzyme
2.6. Preparation of Degraded KGM
2.7. Viscosity of Native and Degraded KGMs
2.8. Molecular Weight of Native and Degraded KGMs
2.9. Particle Size Distribution of Native and Degraded KGMs
2.10. Rheological Properties of Native and Degraded KGMs
2.10.1. Steady Shear Behavior
2.10.2. Frequency Sweep Measurement
2.10.3. Temperature Ramp Test
2.11. Fourier-Transform Infrared Spectroscopy of Native and Degraded KGMs
2.12. Field Emission Scanning Electron Microscopy of Native and Degraded KGMs
2.13. Statistical Analysis
3. Results
3.1. Enzymatic Properties of Abalone Viscera Enzyme
3.2. Molecular Properties of Native and Degraded KGMs
3.3. Rheological Properties of Native and Degraded KGMs
3.3.1. Steady Shear Behavior
3.3.2. Dynamic Shear Behavior
3.3.3. Temperature Ramp Test
3.4. Structural Properties of Native and Degraded KGMs
3.4.1. Fourier-Transform Infrared Spectroscopy (FT-IR)
3.4.2. Field Emission Scanning Electron Microscopy (FESEM)
3.5. Partial Correlation Analysis
3.6. Schematic Diagram of Degraded KGM by Enzymatic Hydrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Behera, S.S.; Ray, R.C. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int. J. Biol. Macromol. 2016, 92, 942–956. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 3, 426–428. [Google Scholar] [CrossRef]
- Tester, R.; Al-Ghazzewi, F. Glucomannans and nutrition. Food Hydrocoll. 2017, 68, 246–254. [Google Scholar] [CrossRef]
- Jiang, M.; Li, H.; Shi, J.; Xu, Z. Depolymerized konjac glucomannan: Preparation and application in health care. J. Zhejiang Univ. Sci. B 2018, 19, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Peng, S.; Xu, Z.; Xiong, B.; Wen, C.; Yao, M.; Pang, J. Synergetic degradation of konjac glucomannan by γ-ray irradiation and hydrogen peroxide. Carbohydr. Polym. 2013, 93, 761–767. [Google Scholar] [CrossRef]
- Long, X.Y.; Luo, X.G.; Bai, J.; Zhu, J.F. Effect of Environmental Factors of Mannanase on Konjac Glucomannan Molecular Dimension. In Materials Modeling, Simulation, and Characterization; Han, E., Lu, G.H., Shu, X.L., Eds.; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2011; Volume 689, pp. 308–314. [Google Scholar]
- Li, G.J.; Qi, L.; Li, A.P.; Ding, R.; Zong, M.H. Study on the kinetics for enzymatic degradation of a natural polysaccharide, Konjac glucomannan. Macromol. Symp. 2004, 216, 165–178. [Google Scholar] [CrossRef]
- Song, Q.Y.; Li, T.; Xue, W.; Li, N.; Chen, L.T.; Dai, S.H.; Zhu, Z.Y. Preparation, structure analysis and ACE inhibitory activity of konjac oligosaccharide. Ind. Crops Prod. 2018, 124, 812–821. [Google Scholar] [CrossRef]
- Song, A.X.; Mao, Y.H.; Siu, K.C.; Wu, J.Y. Bifidogenic effects of Cordyceps sinensis fungal exopolysaccharide and konjac glucomannan after ultrasound and acid degradation. Int. J. Biol. Macromol. 2018, 111, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.R.; Li, W.F.; Liang, S.; Zhang, H.; Yang, H.; Li, M.; Zhang, Y. Effects of ultrasonic treatment on the molecular weight and anti-inflammatory activity of oxidized konjac glucomannan. CyTA-J. Food 2019, 17, 1–10. [Google Scholar] [CrossRef]
- Jin, W.P.; Xu, W.; Li, Z.S.; Li, J.; Zhou, B.; Zhang, C.L.; Li, B. Degraded konjac glucomannan by γ-ray irradiation assisted with ethanol: Preparation and characterization. Food Hydrocoll. 2014, 36, 85–92. [Google Scholar] [CrossRef]
- Yin, J.Y.; Ma, L.Y.; Xie, M.Y.; Nie, S.P.; Wu, J.Y. Molecular properties and gut health benefits of enzyme-hydrolyzed konjac glucomannans. Carbohydr. Polym. 2020, 237, 116117. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.B.; Xie, Y.; Shabani, K.I.; Liu, X. Preparation, characterization and physicochemical properties of Konjac glucomannan depolymerized by ozone assisted with microwave treatment. Food Hydrocoll. 2021, 119, 106878. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, G.; Peng, Y.; Wu, W.; Li, X.; Wang, J.; Qiao, Y.; Liao, L.; Ding, A. The cryoprotective effect of different konjac glucomannan (KGM) hydrolysates on the glass carp (Ctenopharyngodon idella) myofibrillar during frozen storage. Food Bioprocess Technol. 2014, 7, 3398–3406. [Google Scholar] [CrossRef]
- Anonymous. China Fisheries Yearbook; China Agricultural Press: Beijing, China, 2023. [Google Scholar]
- Nam, B.H.; Jang, J.; Caetano-Anolles, K.; Kim, Y.O.; Park, J.Y.; Sohn, H.; Yoon, S.H.; Kim, H.; Kwak, W. Microbial community and functions associated with digestion of algal polysaccharides in the visceral tract of Haliotis discus hannai: Insights from metagenome and metatranscriptome analysis. PLoS ONE 2018, 13, e0205594. [Google Scholar] [CrossRef]
- Guzman, J.M.; Viana, M.T. Growth of abalone Haliotis fulgens fed diets with and without fish meal, compared to a commercial diet. Aquaculture 1998, 165, 321–331. [Google Scholar] [CrossRef]
- Tao, Z.P.; Sun, L.C.; Qiu, X.J.; Cai, Q.F.; Liu, G.M.; Su, W.J.; Cao, M.J. Preparation, characterisation and use for antioxidant oligosaccharides of a cellulase from abalone (Haliotis discus hannai) viscera. J. Sci. Food Agric. 2016, 96, 3088–3097. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.P.; Yokoyama, W.; Chen, L.; Liu, F.; Chen, M.S.; Zhong, F. Characterization and physicochemical properties analysis of konjac glucomannan: Implications for structure-properties relationships. Food Hydrocoll. 2021, 120, 106818. [Google Scholar] [CrossRef]
- Ma, S.P.; Zhu, P.L.; Wang, M.C.; Wang, F.T.; Wang, N.F. Effect of konjac glucomannan with different molecular weights on physicochemical properties of corn starch. Food Hydrocoll. 2019, 96, 663–670. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, P.; Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Fagioli, L.; Pavoni, L.; Logrippo, S.; Pelucchini, C.; Rampoldi, L.; Cespi, M.; Bonacucina, G.; Casettari, L. Linear viscoelastic properties of selected polysaccharide gums as function of concentration, pH, and temperature. J. Food Sci. 2019, 84, 65–72. [Google Scholar] [CrossRef]
- Jian, W.J.; Wu, H.Y.; Wu, L.L.; Wu, Y.H.; Jia, L.N.; Pang, J.; Sun, Y.M. Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein. Carbohydr. Polym. 2016, 150, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.D.; Yin, J.Y.; Zhang, L.J.; Huang, X.J.; Nie, S.P. Studies on O-acetyl-glucomannans from Amorphophallus species: Comparison of physicochemical properties and primary structures. Food Hydrocoll. 2019, 89, 503–511. [Google Scholar] [CrossRef]
- Lin, W.M.; Ni, Y.S.; Wang, L.; Liu, D.Y.; Wu, C.H.; Pang, J. Physicochemical properties of degraded konjac glucomannan prepared by laser assisted with hydrogen peroxide. Int. J. Biol. Macromol. 2019, 129, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, B.; Geng, P.; Song, A.X.; Wu, J.Y. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll. 2017, 70, 14–19. [Google Scholar] [CrossRef]
- Li, K.K.; Jiang, C.F.; Tan, H.D.; Li, J.Y.; Xu, Y.L.; Tang, D.J.; Zhao, X.M.; Liu, Q.S.; Li, J.G.; Yin, H. Identification and characterization of a novel glucomannanase from Paenibacillus polymyxa. 3 Biotech 2021, 11, 129. [Google Scholar] [CrossRef]
- Abbastabar, B.; Azizi, M.; Adnani, A.; Abbasi, S. Determining and modeling rheological characteristics of quince seed gum. Food Hydrocoll. 2015, 43, 259–264. [Google Scholar] [CrossRef]
- Zhu, B.; Xin, C.; Li, J.; Li, B. Ultrasonic degradation of Konjac glucomannan and the effect of freezing combined with Alkali treatment on their rheological profiles. Molecules 2019, 24, 1860. [Google Scholar] [CrossRef]
- Chen, Z.J.; Wang, S.S.; Shang, L.C.; Zhou, P.Y.; Li, J.; Li, B. An efficient and simple approach for the controlled preparation of partially degraded konjac glucomannan. Food Hydrocoll. 2020, 108, 106017. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Barthélemy, J.P.; Paquot, M.; Blecker, C.; Attia, H. Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocoll. 2014, 40, 53–63. [Google Scholar] [CrossRef]
- Barbucci, R.; Pasqui, D.; Favaloro, R.; Panariello, G. A thixotropic hydrogel from chemically cross-linked guar gum: Synthesis, characterization and rheological behaviour. Carbohydr. Res. 2008, 343, 3058–3065. [Google Scholar] [CrossRef]
- Ye, S.X.; Zhu, J.S.; Shah, B.R.; Wend-Soo, Z.A.; Li, J.; Zhan, F.C.; Li, B. Preparation and characterization of konjac glucomannan (KGM) and deacetylated KGM (Da-KGM) obtained by sonication. J. Sci. Food Agric. 2022, 102, 4333–4344. [Google Scholar] [CrossRef]
- Bhaturiwala, R.E.A. Partial purification and application of β-mannanase for the preparation of low molecular weight galacto and glucomannan. Biocatal. Agric. Biotechnol. 2021, 36, 102155. [Google Scholar] [CrossRef]
- Torres, M.D.; Hallmark, B.; Wilson, D.I. Effect of concentration on shear and extensional rheology of guar gum solutions. Food Hydrocoll. 2014, 40, 85–95. [Google Scholar] [CrossRef]
- Wang, S.N.; Zhao, L.L.; Li, Q.H.; Liu, C.; Han, J.L.; Zhu, L.J.; Zhu, D.S.; He, Y.T.; Liu, H. Rheological properties and chain conformation of soy hull water-soluble polysaccharide fractions obtained by gradient alcohol precipitation. Food Hydrocoll. 2019, 91, 34–39. [Google Scholar] [CrossRef]
- Ye, S.X.; Zongo, A.; Shah, B.R.; Li, J.; Li, B. Konjac Glucomannan (KGM), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. J. Agric. Food Chem. 2021, 69, 12921–12932. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ma, L.; Siu, K.; Wu, J. Effects of Ultrasonication on the Conformational, Microstructural, and Antioxidant Properties of Konjac Glucomannan. Appl. Sci. 2019, 9, 461. [Google Scholar] [CrossRef]
- Zhuang, X.; Wang, L.; Jiang, X.; Chen, Y.; Zhou, G. Insight into the mechanism of myofibrillar protein gel influenced by konjac glucomannan: Moisture stability and phase separation behavior. Food Chem. 2021, 339, 127941. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, Y.; Li, Y.; Cao, J.; Song, F.; Zhao, D.; Zhao, Y.; Wang, Z.; Yang, Y. Effects of konjac glucomannan with different molecular weights on gut microflora with antibiotic perturbance in in vitro fecal fermentation. Carbohydr. Polym. 2021, 273, 118547. [Google Scholar] [CrossRef]
- Wardhani, D.H.; Wardana, I.N.; Tajuddin, C.A.; Abdillah, M.A. Antioxidant and Physicochemical Properties of Acid Degraded Glucomannan. In Proceedings of the 2nd International Conference on Chemical Process and Product EngineeriNG (ICCPPE), Semarang, Indonesia, 25–26 September 2019. [Google Scholar]
Samples | Weight Average Molecular Weight (Da) | Polydispersity Index (PDI) |
---|---|---|
KGM | 1.80 × 106 | 1.17 |
KGM-60 | 1.62 × 106 | 1.22 |
KGM-120 | 1.24 × 106 | 1.32 |
KGM-150 | 6.93 × 105 | 1.76 |
KGM-180 | 5.71 × 105 | 1.88 |
KGM-240 | 4.48 × 105 | 1.83 |
Samples | Up Curve | Down Curve | ||||
---|---|---|---|---|---|---|
K (Pa·sn) | n | R2 | K (Pa·sn) | n | R2 | |
KGM | 213.004 | 0.174 | 0.910 | 196.709 | 0.186 | 0.929 |
KGM-60 | 131.440 | 0.268 | 0.939 | 128.514 | 0.273 | 0.941 |
KGM-120 | 79.287 | 0.343 | 0.970 | 75.699 | 0.361 | 0.976 |
KGM-150 | 17.355 | 0.412 | 0.991 | 16.042 | 0.429 | 0.993 |
KGM-180 | 11.259 | 0.417 | 0.996 | 8.518 | 0.483 | 0.995 |
KGM-240 | 1.720 | 0.670 | 0.999 | 1.651 | 0.677 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.-M.; Wen, J.-X.; Lin, D.-Q.; Liu, K.; Chen, Y.-L.; Miao, S.; Cao, M.-J.; Sun, L.-C. Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone (Haliotis discus hannai) Viscera Enzyme. Foods 2024, 13, 2158. https://doi.org/10.3390/foods13132158
Lin Z-M, Wen J-X, Lin D-Q, Liu K, Chen Y-L, Miao S, Cao M-J, Sun L-C. Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone (Haliotis discus hannai) Viscera Enzyme. Foods. 2024; 13(13):2158. https://doi.org/10.3390/foods13132158
Chicago/Turabian StyleLin, Zhao-Ming, Jia-Xin Wen, Duan-Quan Lin, Kang Liu, Yu-Lei Chen, Song Miao, Min-Jie Cao, and Le-Chang Sun. 2024. "Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone (Haliotis discus hannai) Viscera Enzyme" Foods 13, no. 13: 2158. https://doi.org/10.3390/foods13132158
APA StyleLin, Z.-M., Wen, J.-X., Lin, D.-Q., Liu, K., Chen, Y.-L., Miao, S., Cao, M.-J., & Sun, L.-C. (2024). Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone (Haliotis discus hannai) Viscera Enzyme. Foods, 13(13), 2158. https://doi.org/10.3390/foods13132158