Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Physicochemical Properties
2.3. Determination of Bioactive Compounds
2.3.1. Quantification of Carotenoids
2.3.2. Quantification of Phenolic Compounds
2.3.3. Quantification of Vitamin C
2.3.4. Quantification of Organic Acid
2.4. Determination of Antioxidant Activity
2.4.1. Antioxidant Activity by ABTS•+ Radical
2.4.2. Antioxidant Activity by DPPH• Radical
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.2. Quantification of Bioactive Compounds
3.3. Quantification of Antioxidant Activity
3.4. Statistical Analysis
4. Discussion
4.1. Physicochemical Properties
4.2. Quantification of Bioactive Compounds
4.3. Quantification of Antioxidant Activity
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coyago-Cruz, E.; Corell, M.; Meléndez-Martínez, A. Estudio Sobre El Contenido En Carotenoides y Compuestos Fenólicos de Tomates y Flores En El Contexto de La Alimentación Funcional; Punto Rojo Libros, S.L.: Sevilla, Spain, 2017; ISBN 9788417148096. [Google Scholar]
- Santos, S.; Silveira, M.; Salas-Mellado, M. Bioactive Compounds as Ingredients of Functional Foods: Polyphenols, Carotenoids, Peptides from Animal and Plant Sources New. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 129–142. ISBN 9780128147740. [Google Scholar]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Lam, W. Bioavailability of Bioactive Compounds; University of Nevada: Las Vegas, NV, USA, 2015. [Google Scholar]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Stinco, C.; Meléndez-Martínez, A. Effect of the Fruit Position on the Cluster on Fruit Quality, Carotenoids, Phenolics and Sugars in Cherry Tomatoes (Solanum lycopersicum L.). Food Res. Int. 2017, 100, 804–813. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, A.; Tijjani, H.; Ishola, A.; Egbuna, C.; Hassan, S.; Akram, M. Carotenoids as Functional Bioactive Compounds. In Functional Foods and Nutraceuticals; Springer: Cham, Switzerland, 2020; pp. 415–444. ISBN 9783030423193. [Google Scholar]
- Walker, R.P.; Famiani, F. Organic Acids in Fruits: Metabolism, Functions and Contents. In Horticultural Reviews; Wiley: Hoboken: NJ, USA, 2018; Volume 45, pp. 371–430. ISBN 9781119431077. [Google Scholar]
- Valgimigli, L.; Baschieri, A.; Amorati, R. Review. Antioxidant Activity of Nanomaterials. J. Mater. Chem. B 2018, 6, 2036–2051. [Google Scholar] [CrossRef] [PubMed]
- Batista-Silva, W.; Nascimento, V.; Medeiros, D.; Nunes-Nesi, A.; Ribeiro, D.; Zsögön, A.; Araújo, W. Modifications in Organic Acid Profiles during Fruit Development and Ripening: Correlation or Causation? Front. Plant Sci. 2018, 9, 1689. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo-Vega, J.; Arteaga-Badillo, D.; Sánchez-Gutiérrez, M.; Morales-González, J.; Vargas-Mendoza, N.; Gómez-Aldapa, C.; Castro-Rosas, J.; Delgado-Olivares, L.; Madrigal-Bujaidar, E.; Madrigal-Santillán, E. Review. Organic Acids from Roselle (Hibiscus sabdariffa L.)-A Brief Review of Its Pharmacological Effects. Biomedicines 2020, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.; Benítez, A.; Corell, M.; Hernanz, D.; Mapelli-Brahm, P.; Stinco, C.; Coyago-Cruz, E. Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers. Foods 2021, 10, 2625. [Google Scholar] [CrossRef] [PubMed]
- Coyago-Cruz, E.; Corell, M.; Alfonso, M.; Dolores, H.; Stinco, C.; Beltrán-Sinchiguano, E.; Guachamin, A.; Meléndez-Martínez, A. Efecto Del Riego Deficitario Controlado Sobre Los Parámetros de Calidad y Contenido de Carotenoides, Compuestos Fenólicos y Azúcares de Tomate Negro (Solanum lycopersicum L.) Sunchola. In IV CIBB 2018: “Innovación y Tecnología, Para el Agro-Ecuatoriano”; CIBE: Guayaquil, Ecuador, 2018; Volume 1, pp. 1–200. ISBN 978-9942-922-16-8. [Google Scholar]
- Matteo, R.; Luis, B.; Manuel, P.; Cerda, J.; Andrea, T.; Andrea, R.; Matteo, C. Determinación de Polifenoles En Cinco Especies Amazónicas Con Potencial Antioxidante. Rev. Amaz. Cienc. y Tecnol. 2017, 6, 55–64. [Google Scholar]
- Sayago-Ayerdi, S.; García-Martínez, D.; Ramírez-Castillo, A.; Ramírez-Concepción, H.; Viuda-Martos, M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021, 10, 1952. [Google Scholar] [CrossRef]
- Smith, N. Palms and People in the Amazon Preface; Springer: Lakeland, FL, USA, 2015; ISBN 978-3-319-05509-1. [Google Scholar]
- MAE Guía Para La Identificación de 24 Especies No Maderables. Available online: https://www.proamazonia.org/wp-content/uploads/2021/05/GUIA_ESPECIES_NO_MADERABLES_compressed.pdf (accessed on 14 June 2024).
- WFO The World Flora Online. Available online: https://wfoplantlist.org/plant-list (accessed on 14 June 2024).
- IIAP Cultivo de Las Plantas Medicinales. Available online: https://www.ecured.cu/Sacha_Mango (accessed on 16 May 2024).
- Salazar, L.; Vallejo, M.; Grijalva, M.; Castillo, L.; Maldonado, A. Biological Effect of Organically Coated Grias Neuberthii and Persea Americana Silver Nanoparticles on HeLa and MCF-7 Cancer Cell Lines. J. Nanotechnol. 2018, 2018, 11. [Google Scholar] [CrossRef]
- Armijos, C.; Ramírez, J.; Salinas, M.; Vidari, G.; Suárez, A. Pharmacology and Phytochemistry of Ecuadorian Medicinal Plants: An Update and Perspectives. Pharmaceuticals 2021, 14, 1145. [Google Scholar] [CrossRef]
- Ribeiro, H.; Da-Cruz, D.; Lafourcade, A.; Keita, H.; Rodríguez, J.; Tavares, J. Euterpe Oleracea Mart. (Aai): An Old Known Plant with a New Perspective. Afr. J. Pharm. Pharmacol. 2016, 10, 995–1006. [Google Scholar] [CrossRef]
- Fan, J.; Zhu, W.; Kang, H.; Ma, H.; Tao, G. Flavonoid Constituents and Antioxidant Capacity in Flowers of Different Zhongyuan Tree Penoy Cultivars. J. Funct. Foods 2012, 4, 147–157. [Google Scholar] [CrossRef]
- Carvalho, E.; Freire, K.; Troncoso, V.; De-Oliveira, N.; Rezende, L.; Labanca, R. Effect of in Vitro Gastrointestinal Digestion on the Mineral Content, Phenolic Compounds, and Antioxidant Capacity of Commercial Pulps of Purple and White Açaí (Euterpe Oleracea Mart.). J. Food Sci. Technol. 2020, 57, 1740–1752. [Google Scholar] [CrossRef]
- Kang, J.; Xie, C.; Li, Z.; Nagarajan, S.; Schauss, A.; Wu, T.; Wu, X. Flavonoids from Acai (Euterpe Oleracea Mart.) Pulp and Their Antioxidant and Anti-Inflammatory Activities. Food Chem. 2011, 128, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Castillo, Y.; Hernández, M.; Lares, M. Componentes Bioactivos Del Asai (Euterpe Oleracea Mart. y Euterpe Precatoria Mart.) y Su Efecto Sobre La Salud. Arch. Venez. Farmacol. y Ter. 2017, 36, 58–66. [Google Scholar]
- Almeida, T.; Oliveira, P.; Converti, A.; Neves, Á. Review. The Use of Euterpe Oleracea Mart. As a New Perspective for Disease Treatment and Prevention. Biomolecules 2020, 10, 813. [Google Scholar] [CrossRef]
- Bataglion, G.; Pinheiro, W.; Xavier, A.; Da-Rocha, J.; Araújo, F.; Neri, I.; Figueiredo, C.; Pastore, G.; Ferreira, H. Bioactive Compounds of Buriti Fruit (Mauritia Flexuosa L.F.). In Bioactive Compounds in Underutilized Fruits and Nuts; Publisher: Cham, Switzerland, 2020; pp. 411–436. ISBN 9783030301828. [Google Scholar]
- Navarro-Cruz, A.; Lazcano-Hernández, M.; Vera-López, O.; Kammar-García, A.; Segura-Badilla, O.; Aguilar-Alonso, P.; Pérez-Fernández, M. Mauritia Flexuosa L. f. In Fruits of the Brazilian Cerrado; Springer: Cham, Switzerland, 2021; pp. 79–98. ISBN 9783030629496. [Google Scholar]
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Méndez, G.; Moya, M.; Viera, W.; Heredia-Moya, J.; Beltrán, E.; Vera, E.; Villacís, M. Functional and Antioxidant Evaluation of Two Ecotypes of Control and Grafted Tree Tomato (Solanum Betaceum) at Different Altitudes. Foods 2023, 12, 30. [Google Scholar] [CrossRef]
- De-Oliveira, M.; Schwartz, G. Açaí—Euterpe Oleracea. Exot. Fruits Ref. Guid. 2018, 1–5. [Google Scholar] [CrossRef]
- Scalisi, A.; O’Connell, M.G. Relationships between Soluble Solids Anddry Matter in the Flesh of Stone Fruit at Harvest. Analytica 2021, 2, 14–24. [Google Scholar] [CrossRef]
- García, D. Caracterização Química e Avaliação Da Atividade Antioxidante de Frutos Da Amazônia: Chopé (Gustavia Augusta L.), Sacha Mangua (Grias Neuberthii Macbr.) e Macambo (Theobroma Bicolor); Universidad de Sao Paulo: Sao Paulo, Brazil, 2002. [Google Scholar]
- Bensaada, H.; Soto-Garcia, M.; Carmona-Hernandez, J. Antioxidant Activity of Polyphenols, from Mauritia Flexuosa (Aguaje), Based on Controlled Dehydration. Molecules 2022, 27, 3065. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mogollon, C.; Alvis-Bermudez, A.; Dussán-Sarria, S. Validación Del Método de Microondas Para Determinar Humedad En Ñame Espino (Dioscorea Rotundata Poir). Inf. Tecnol. 2017, 28, 87–94. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Benítez-González, A.M.; Stinco, C.M.; Meléndez-Martínez, A.J. Antioxidants (Carotenoids and Phenolics) Profile of Cherry Tomatoes as Influenced by Deficit Irrigation, Ripening and Cluster. Food Chem. 2018, 240, 870–884. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Thakali, K.; Xie, C.; Kondo, M.; Tong, Y.; Ou, B.; Jensen, G.; Medina, M.; Schauss, A.; Wu, X. Bioactivities of Açaí (Euterpe Precatoria Mart.) Fruit Pulp, Superior Antioxidant and Anti-Inflammatory Properties to Euterpe Oleracea Mart. Food Chem. 2012, 133, 671–677. [Google Scholar] [CrossRef]
- Soni, K.; Loonker, S. An Approach to Leading Antioxidant Activity of Different Plants and Food Material: A Review. Orient. J. Chem. 2022, 38, 663–670. [Google Scholar] [CrossRef]
- Hanna, J.; Bojaxa, A.; Ani, B.; Jancy, R.; Catherine, S.; Blessy, R. Determination on Antioxidant Activity of Sansevieria Cylindrica Bojer Ex Hook. Leaf Extract. Int. J. Res. Pharm. Sci. 2022, 13, 86–91. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Lescano, C.; Pires, I.; Freitas, F.; Da-Silva, D.; Justi, P.; Lima, C.; Raposo, J.; Sanjinez, E. Nutritional and Chemical Characterizations of Fruits Obtained from Syagrus Romanzoffiana, Attalea Dubia, Attalea Phalerata and Mauritia Flexuosa. J. Food Meas. Charact. 2018, 12, 1284–1294. [Google Scholar] [CrossRef]
- Takatsuka, M.; Goto, S.; Kobayashi, K.; Otsuka, Y.; Shimada, Y. Evaluation of Pure Antioxidative Capacity of Antioxidants: ESR Spectroscopy of Stable Radicals by DPPH and ABTS Assays with Singular Value Decomposition. Food Biosci. 2022, 48, 101714. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Panchal, P.; Miller, A.; Giri, J. Organic Acids: Versatile Stress-Response Roles in Plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Ferrandino, A.; Lovisolo, C. Abiotic Stress Effects on Grapevine (Vitis vinifera L.): Focus on Abscisic Acid-Mediated Consequences on Secondary Metabolism and Berry Quality. Environ. Exp. Bot. 2014, 103, 138–147. [Google Scholar] [CrossRef]
- Mu, K.; Yao, Y.; Wang, D.; Kitts, D. Prooxidant Capacity of Phenolic Acids Defines Antioxidant Potential. Biochim. Biophys. Acta Gen. Subj. 2023, 1867, 130371. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Dewanjee, S.; Riaz, M. Carotenoids: Structure and Function in the Human Body; Springer: Cham, Switzerland, 2021; ISBN 9783030464592. [Google Scholar]
Tintiuk | Apai | Acai | Brown Moriche | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Carotenoids (mg/100 g DW) | α-Carotene | 4.4 ± 0.5 | 3.0 ± 0.3 | ||||||||||
β-Carotene | 22.4 ± 2.3 | 6.7 ± 1.8 | 63.4 ± 3.3 | ||||||||||
β-Cryptoxanthin | 7.1 ± 0.0 | 5.8 ± 0.5 | |||||||||||
Luteoxanthin | 4.9 ± 0.8 | ||||||||||||
ζ-Carotene | 6.6 ± 0.9 | ||||||||||||
Lutein | 1.4 ± 0.1 | 1.1 ± 0.1 | |||||||||||
Zeinoxanthin | 1.3 ± 0.1 | 3.2 ± 0.1 | |||||||||||
Phenolics (mg/100 g DW) | Gallic acid | 12.4 ± 0.2 | 61.7 ± 2.3 | 25.8 ± 0.6 | 6.0 ± 0.3 | ||||||||
Syringic acid | 81.6 ± 1.1 | 11.2 ± 0.6 | 12.5 ± 0.5 | ||||||||||
Chlorogenic acid | 48.6 ± 2.2 | 35.5 ± 0.5 | 15.0 ± 2.6 | 7.7 ± 0.5 | |||||||||
Caffeic acid | 179.9 ± 4.8 | 175.8 ± 20.6 | 397.7 ± 0.5 | 23.0 ± 0.3 | |||||||||
Naringenin | 28.2 ± 1.6 | ||||||||||||
p-Hydroxybenzoic acid | 398.3 ± 32.5 | 224.7 ± 13.7 | 212.8 ± 17.6 | 346.2 ± 17.0 | |||||||||
Quercetin | 944.2 ± 19.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyago-Cruz, E.; Valenzuela, D.; Guachamin, A.; Méndez, G.; Heredia-Moya, J.; Vera, E. Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits. Foods 2024, 13, 2151. https://doi.org/10.3390/foods13132151
Coyago-Cruz E, Valenzuela D, Guachamin A, Méndez G, Heredia-Moya J, Vera E. Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits. Foods. 2024; 13(13):2151. https://doi.org/10.3390/foods13132151
Chicago/Turabian StyleCoyago-Cruz, Elena, David Valenzuela, Aida Guachamin, Gabriela Méndez, Jorge Heredia-Moya, and Edwin Vera. 2024. "Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits" Foods 13, no. 13: 2151. https://doi.org/10.3390/foods13132151
APA StyleCoyago-Cruz, E., Valenzuela, D., Guachamin, A., Méndez, G., Heredia-Moya, J., & Vera, E. (2024). Bioactive Compound Profiling and Antioxidant Activity of Phytelephas tenuicaulis and Other Amazonian Fruits. Foods, 13(13), 2151. https://doi.org/10.3390/foods13132151