Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals, Reagents, and Solvents
2.3. Isolation of Rosemary Essential Oil
2.4. Preparation of Post-Distillation Rosemary Residues
2.5. Green Extraction using Aqueous Solutions of β-Cyclodextrin
2.6. Determination of Total Phenolic Content (TPC) in Aqueous Extracts
2.7. LC-MS Analysis of Aqueous Extracts
2.8. Preparation and Storage of O/W Emulsion Alginate Beads
2.8.1. Preparation of O/W Emulsions with Alginate
2.8.2. Preparation and Storage of Alginate Beads
2.9. Oxidative Stability Study
2.9.1. Extraction of Rapeseed Oil from the Alginate Beads
2.9.2. Peroxide Value (PV) Determination
2.9.3. p-Anisidine Value (p-AnV) Determination
2.9.4. TOTOX (Total Oxidation) Value (TV) Determination
2.9.5. Free Fatty Acids (FFA) determination
2.9.6. Determination of the Total Extractable Phenolic Content (TEPC)
2.9.7. Fatty Acid Profile/Composition Analyses
2.10. Statistical Analysis
3. Results
3.1. Total Phenolic Content (TPC) in Aqueous Extracts
3.2. LC-MS Analysis
3.3. Protection of Oil against Oxidation
3.3.1. Peroxide Values
3.3.2. p-Anisidine Values
3.3.3. TOTOX Values
3.3.4. Free Fatty Acids Content
3.3.5. Total Extractable Phenolic Content after Storage
3.3.6. Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Storage Day | Oil Sample | C16:0 (%) | C16:1 (%) | C18:0 (%) | C18:1 (%) | C18:2 (%) | C18:3α (%) | C18:3γ (%) | C20:1 (%) | C20:3 (%) | C20:5 (%) | C24:1 (%) | Total (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | AERDR | 4.56 ± 0.05 b | 0.18 ± 0.03 ab | 1.58 ± 0.03 abc | 60.92 ± 0.16 ab | 20.55 ± 0.03 ab | 9.94 ± 0.01 ab | 1.18 ± 0.01 b | 0.56 ± 0.03 a | 0.31 ± 0.03 a | 0.09 ± 0.02 a | 0.13 ± 0.02 a | 100.00 |
AERDR/EO | 4.50 ± 0.01 b | 0.16 ± 0.01 b | 1.55 ± 0.00 bc | 61.06 ± 0.02 a | 20.57 ± 0.01 a | 9.92 ± 0.01 c | 1.18 ± 0.01 b | 0.54 ± 0.01 a | 0.29 ± 0.01 a | 0.08 ± 0.00 a | 0.15 ± 0.03 a | 100.00 | |
AER | 4.52 ± 0.01 b | 0.17 ± 0.01 b | 1.55 ± 0.01 c | 61.04 ± 0.02 ab | 20.58 ± 0.01 a | 9.96 ± 0.01 a | 1.17 ± 0.01 b | 0.54 ± 0.01 a | 0.28 ± 0.00 a | 0.08 ± 0.01 a | 0.12 ± 0.01 a | 100.00 | |
H2O/EO | 4.53 ± 0.02 b | 0.17 ± 0.00 b | 1.56 ± 0.00 bc | 61.06 ± 0.02 a | 20.56 ± 0.01 ab | 9.92 ± 0.01 bc | 1.17 ± 0.01 b | 0.55 ± 0.01 a | 0.28 ± 0.01 a | 0.08 ± 0.00 a | 0.12 ± 0.00 a | 100.00 | |
Control | 4.53 ± 0.01 b | 0.21 ± 0.00 a | 1.61 ± 0.01 a | 60.86 ± 0.04 b | 20.51 ± 0.03 b | 9.92 ± 0.01 c | 1.20 ± 0.01 a | 0.57 ± 0.01 a | 0.25 ± 0.16 a | 0.19 ± 0.12 a | 0.14 ± 0.05 a | 100.00 | |
Rapeseed | 4.64 ± 0.03 a | 0.16 ± 0.01 b | 1.60 ± 0.01 ab | 61.04 ± 0.02 ab | 20.43 ± 0.01 c | 9.87 ± 0.00 d | 1.18 ± 0.01 b | 0.55 ± 0.01 a | 0.30 ± 0.01 a | 0.09 ± 0.01 a | 0.13 ± 0.01 a | 100.00 | |
7 | AERDR | 4.52 ± 0.02 a | 0.16 ± 0.00 b | 1.56 ± 0.00 ab | 61.09 ± 0.02 a | 20.56 ± 0.02 a | 9.94 ± 0.01 a | 1.17 ± 0.01 a | 0.53 ± 0.01 a | 0.27 ± 0.00 c | 0.08 ± 0.01 b | 0.12 ± 0.00 a | 100.00 |
AERDR/EO | 4.54 ± 0.01 a | 0.16 ± 0.01 ab | 1.56 ± 0.01 ab | 61.09 ± 0.02 a | 20.56 ± 0.00 a | 9.91 ± 0.01 a | 1.17 ± 0.01 a | 0.53 ± 0.01 a | 0.27 ± 0.01 bc | 0.08 ± 0.01 ab | 0.12 ± 0.01 a | 100.00 | |
AER | 4.52 ± 0.03 a | 0.17 ± 0.01 ab | 1.57 ± 0.01 ab | 61.05 ± 0.05 a | 20.57 ± 0.01 a | 9.91 ± 0.00 a | 1.18 ± 0.01 a | 0.54 ± 0.01 a | 0.28 ± 0.00 b | 0.08 ± 0.01 ab | 0.13 ± 0.01 a | 100.00 | |
H2O/EO | 4.54 ± 0.01 a | 0.17 ± 0.00 ab | 1.57 ± 0.01 a | 61.07 ± 0.01 a | 20.56 ± 0.01 a | 9.88 ± 0.01 a | 1.17 ± 0.01 a | 0.54 ± 0.01 a | 0.27 ± 0.01 c | 0.09 ± 0.01 ab | 0.13 ± 0.01 a | 100.00 | |
Control | 4.55 ± 0.00 a | 0.17 ± 0.01 a | 1.57 ± 0.01 ab | 61.06 ± 0.01 a | 20.57 ± 0.01 a | 9.89 ± 0.01 a | 1.17 ± 0.00 a | 0.54 ± 0.01 a | 0.28 ± 0.00 bc | 0.09 ± 0.01 ab | 0.13 ± 0.00 a | 100.00 | |
Rapeseed | 4.48 ± 0.06 a | 0.17 ± 0.01 ab | 1.54 ± 0.01 b | 60.64 ± 0.61 a | 20.48 ± 0.21 a | 10.47 ± 0.89 a | 1.17 ± 0.01 a | 0.54 ± 0.01 a | 0.30 ± 0.01 a | 0.09 ± 0.01 a | 0.13 ± 0.00 a | 99.99 | |
15 | AERDR | 4.54 ± 0.03 c | 0.19 ± 0.01 ab | 1.55 ± 0.00 c | 60.47 ± 0.78 a | 20.53 ± 0.08 b | 9.91 ± 0.04 a | 1.19 ± 0.01 ab | 0.55 ± 0.01 a | 0.32 ± 0.02 a | 0.10 ± 0.01 a | 0.63 ± 0.83 a | 100.00 |
AERDR/EO | 4.58 ± 0.01 abc | 0.18 ± 0.00 bc | 1.56 ± 0.00 abc | 60.93 ± 0.03 a | 20.59 ± 0.01 ab | 9.91 ± 0.01 a | 1.18 ± 0.01 bc | 0.55 ± 0.01 a | 0.29 ± 0.00 b | 0.10 ± 0.01 a | 0.15 ± 0.01 a | 100.00 | |
AER | 4.56 ± 0.01 bc | 0.18 ± 0.00 bc | 1.56 ± 0.00 bc | 60.90 ± 0.01 a | 20.60 ± 0.01 ab | 9.91 ± 0.01 a | 1.18 ± 0.01 abc | 0.55 ± 0.01 a | 0.30 ± 0.01 ab | 0.10 ± 0.00 a | 0.15 ± 0.01 a | 100.00 | |
H2O/EO | 4.61 ± 0.03 ab | 0.19 ± 0.01 a | 1.57 ± 0.01 ab | 60.29 ± 0.43 a | 20.68 ± 0.12 ab | 9.91 ± 0.06 a | 1.21 ± 0.01 a | 0.55 ± 0.01 a | 0.31 ± 0.01 a | 0.42 ± 0.55 a | 0.15 ± 0.01 a | 99.90 | |
Control | 4.64 ± 0.04 a | 0.20 ± 0.01 a | 1.58 ± 0.00 a | 60.38 ± 0.44 a | 20.86 ± 0.22 a | 9.96 ± 0.11 a | 1.20 ± 0.02 a | 0.55 ± 0.01 a | 0.31 ± 0.02 ab | 0.09 ± 0.02 a | 0.16 ± 0.02 a | 99.93 | |
Rapeseed | 4.48 ± 0.01 d | 0.17 ± 0.00 c | 1.54 ± 0.01 d | 60.98 ± 0.01 a | 20.69 ± 0.01 ab | 9.97 ± 0.00 a | 1.17 ± 0.01 c | 0.53 ± 0.00 b | 0.29 ± 0.00 b | 0.08 ± 0.01 a | 0.13 ± 0.01 a | 100.00 | |
28 | AERDR | 4.59 ± 0.04 ab | 0.18 ± 0.01 a | 1.56 ± 0.00 ab | 61.42 ± 0.02 a | 20.38 ± 0.02 c | 9.67 ± 0.01 d | 1.17 ± 0.01 b | 0.54 ± 0.01 bc | 0.28 ± 0.01 ab | 0.08 ± 0.01 b | 0.13 ± 0.01 b | 100.00 |
AERDR/EO | 4.51 ± 0.04 bc | 0.66 ± 0.85 a | 1.56 ± 0.01 bc | 60.84 ± 0.49 b | 20.43 ± 0.18 bc | 9.80 ± 0.09 bc | 1.17 ± 0.02 b | 0.55 ± 0.01 ab | 0.27 ± 0.01 b | 0.09 ± 0.01 b | 0.13 ± 0.01 b | 100.00 | |
AER | 4.55 ± 0.01 abc | 0.18 ± 0.00 a | 1.56 ± 0.00 bc | 61.06 ± 0.02 ab | 20.59 ± 0.01 ab | 9.85 ± 0.01 b | 1.16 ± 0.01 b | 0.54 ± 0.01 abc | 0.28 ± 0.00 ab | 0.09 ± 0.01 ab | 0.13 ± 0.00 b | 100.00 | |
H2O/EO | 4.61 ± 0.00 a | 0.18 ± 0.01 a | 1.59 ± 0.01 a | 61.01 ± 0.02 ab | 20.51 ± 0.01 bc | 9.75 ± 0.01 cd | 1.19 ± 0.00 a | 0.56 ± 0.01 a | 0.29 ± 0.01 ab | 0.10 ± 0.00 a | 0.15 ± 0.00 a | 99.94 | |
Control | 4.51 ± 0.03 bc | 0.17 ± 0.01 a | 1.55 ± 0.00 bc | 61.19 ± 0.03 ab | 20.58 ± 0.02 abc | 9.80 ± 0.01 bc | 1.17 ± 0.01 b | 0.54 ± 0.01 bc | 0.29 ± 0.01 a | 0.08 ± 0.01 b | 0.12 ± 0.01 b | 100.00 | |
Rapeseed | 4.51 ± 0.02 c | 0.17 ± 0.01 a | 1.54 ± 0.00 c | 60.92 ± 0.01 ab | 20.72 ± 0.01 a | 9.96 ± 0.00 a | 1.16 ± 0.00 b | 0.52 ± 0.01 c | 0.28 ± 0.01 ab | 0.08 ± 0.01 b | 0.12 ± 0.01 b | 100.00 |
Appendix C
References
- Ganesan, B.; Brothersen, C.; McMahon, D.J. Fortification of foods with omega-3 polyunsaturated fatty acids. Crit. Rev. Food Sci. Nutr. 2014, 54, 98–114. [Google Scholar] [CrossRef] [PubMed]
- Tsitlakidou, P.; Tasopoulos, N.; Chatzopoulou, P.; Mourtzinos, I. Current status, technology, regulation and future perspectives of essential oils’ usage in food and drink industry. J. Sci. Food Agric. 2023, 103, 6727–6751. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.W.; Aeschbach, R.; Prior, E. Antioxidant activity of a rosemary extract and its constituents, carnosic acid, carnosol, and rosmarinic acid, in bulk oil and oil-in-water emulsion. J. Agric. Food Chem. 1996, 44, 131–135. [Google Scholar] [CrossRef]
- Richheimer, S.L.; Bernart, M.W.; King, G.A.; Kent, M.C.; Beiley, D.T. Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. J. Am. Oil Chem. Soc. 1996, 73, 507–514. [Google Scholar] [CrossRef]
- Skendi, A.; Irakli, M.; Chatzopoulou, P.; Bouloumpasi, E.; Biliaderis, C.G. Phenolic extracts from solid wastes of the aromatic plant essential oil industry: Potential uses in food applications. Food Chem. Adv. 2022, 1, 100065. [Google Scholar] [CrossRef]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction kinetics of phenolic antioxidants from the hydro distillation residues of rosemary and effect of pretreatment and extraction parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Basak, B.B. Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind. Crops Prod. 2020, 145, 111979. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Bizzo, H.R.; Vieira, R.F.; Bringel, J.B., Jr.; Azevedo, D.A.; Uekane, T.M.; Rezende, C.M. Characterization of volatile and odor-active compounds of the essential oil from Bidens graveolens Mart. (Asteraceae). Flavour Fragr. J. 2020, 35, 79–87. [Google Scholar] [CrossRef]
- Lahlou, M.; Berrada, R. Composition and niticidal activity of essential oils of three chemotypes of Rosmarinus officinalis L. acclimatized in Morocco. Flavour Fragr. J. 2003, 18, 124–127. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS Identification and Quantification of Phenolic Compounds in Solid Residues from the Essential Oil Industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef] [PubMed]
- Christaki, S.; Bouloumpasi, E.; Lalidou, E.; Chatzopoulou, P.; Irakli, M. Bioactive Profile of Distilled Solid By-Products of Rosemary, Greek Sage and Spearmint as Affected by Distillation Methods. Molecules 2022, 27, 9058. [Google Scholar] [CrossRef] [PubMed]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 19 January 2024).
- Carrillo, M. Measuring Progress towards Sustainability in the European Union within the 2030 Agenda Framework. Mathematics 2022, 10, 2095. [Google Scholar] [CrossRef]
- Calvo, T.R.A.; Perullini, M.; Santagapita, P.R. Encapsulation of betacyanins and polyphenols extracted from leaves and stems of beetroot in Ca (II)-alginate beads: A structural study. J. Food Eng. 2018, 235, 32–40. [Google Scholar] [CrossRef]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydr. Polym. 2020, 242, 116388. [Google Scholar] [CrossRef] [PubMed]
- Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 1998, 31, 8382–8395. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Lee, W.; Han, E.J.; Ahn, G. Alginate-based nanomaterials: Fabrication techniques, properties, and applications. J. Chem. Eng. 2020, 391, 123823. [Google Scholar] [CrossRef]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate gel particles—A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef]
- Strobel, S.A.; Knowles, L.; Nitin, N.; Scher, H.B.; Jeoh, T. Comparative technoeconomic process analysis of industrial-scale microencapsulation of bioactives in cross-linked alginate. J. Food Eng. 2020, 266, 109695. [Google Scholar] [CrossRef]
- Li, D.; Wei, Z.; Xue, C. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5345–5369. [Google Scholar] [CrossRef]
- Saji, S.; Hebden, A.; Goswami, P.; Du, C. A brief review on the development of alginate extraction process and its sustainability. Sustainability 2022, 14, 5181. [Google Scholar] [CrossRef]
- Paglarini, C.D.S.; Vidal, V.A.S.; Martini, S.; Cunha, R.L.; Pollonio, M.A.R. Protein-based hydrogelled emulsions and their application as fat replacers in meat products: A review. Crit. Rev. Food Sci. Nutr. 2022, 62, 640–655. [Google Scholar] [CrossRef]
- Robert, P.; Zamorano, M.; González, E.; Silva-Weiss, A.; Cofrades, S.; Giménez, B. Double emulsions with olive leaves extract as fat replacers in meat systems with high oxidative stability. Food Res. Int. 2019, 120, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.; Cofrades, S.; Pérez-Jiménez, J.; Gómez-Estaca, J.; Jiménez-Colmenero, F.; Bou, R. Emulsion gels containing n-3 fatty acids and condensed tannins designed as functional fat replacers. Food Res. Int. 2018, 113, 465–473. [Google Scholar] [CrossRef]
- Carpenter, J.; George, S.; Saharan, V.K. A comparative study of batch and recirculating flow ultrasonication system for preparation of multilayer olive oil in water emulsion stabilized with whey protein isolate and sodium alginate. Chem. Eng. Process Process Intensif. 2018, 125, 139–149. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Zhou, J.; Miskelly, G.M.; Wibisono, R.; Wadhwa, S.S. Stability of encapsulated olive oil in the presence of caffeic acid. Food Chem. 2011, 126, 1049–1056. [Google Scholar] [CrossRef]
- Atencio, S.; Maestro, A.; Santamaria, E.; Gutiérrez, J.M.; Gonzalez, C. Encapsulation of ginger oil in alginate-based shell materials. Food Biosci. 2020, 37, 100714. [Google Scholar] [CrossRef]
- Mania, S.; Tylingo, R.; Michałowska, A. The drop-in-drop encapsulation in chitosan and sodium alginate as a method of prolonging the quality of linseed oil. Polymers 2018, 10, 1355. [Google Scholar] [CrossRef]
- Martins, E.; Renard, D.; Davy, J.; Marquis, M.; Poncelet, D. Oil core microcapsules by inverse gelation technique. J. Microencapsul. 2015, 32, 86–95. [Google Scholar] [CrossRef]
- Wang, M.; Doi, T.; McClements, D.J. Encapsulation and controlled release of hydrophobic flavors using biopolymer-based microgel delivery systems: Sustained release of garlic flavor during simulated cooking. Food Res. Int. 2019, 119, 6–14. [Google Scholar] [CrossRef]
- Petzold, G.; Gianelli, M.P.; Bugueño, G.; Celan, R.; Pavez, C.; Orellana, P. Encapsulation of liquid smoke flavoring in ca-alginate and ca-alginate-chitosan beads. J. Food Sci. Technol. 2014, 51, 183–190. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Healthcare of the Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; Volume I, ISBN 978-92-871-8912-7. [Google Scholar]
- Mourtzinos, I.; Makris, D.P.; Yannakopoulou, K.; Kalogeropoulos, N.; Michali, I.; Karathanos, V.T. Thermal stability of anthocyanin extract of Hibiscus sabdariffa L. in the presence of β-cyclodextrin. J. Agric. Food Chem. 2008, 56, 10303–10310. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Flamminii, F.; Di Mattia, C.D.; Nardella, M.; Chiarini, M.; Valbonetti, L.; Neri, L.; Difonzo, G.; Pittia, P. Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocoll. 2020, 108, 105849. [Google Scholar] [CrossRef]
- AOCS (American Oil Chemists’ Society). AOCS Official method Cd 8-53. Peroxide Value (acetic acid-chloroform method). In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; Firestone, D., Ed.; AOCS: Champaign, IL, USA, 1998. [Google Scholar]
- Crowe, T.D.; White, P.J. Adaptation of the AOCS official method for measuring hydroperoxides from small-scale oil samples. J. Am. Oil Chem. Soc. 2001, 78, 1267–1269. [Google Scholar] [CrossRef]
- AOCS (American Oil Chemists’ Society). AOCS Official method Cd 18-90. p-Anisidine value method Cd 18-90. In Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; Firestone, D., Ed.; AOCS: Champaign, IL, USA, 1998. [Google Scholar]
- O’Connor, C.J.; Lal, S.N.D.; Eyres, L. Handbook of Australasian Edible Oils. Oils and Fats, 1st ed.; Specialist Group of NZIC: Auckland, New Zealand, 2007; pp. 5–6. [Google Scholar]
- Firestone, D. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; AOCS: Champaign, IL, USA, 1998. [Google Scholar]
- Alvanou, M.V.; Kyriakoudi, A.; Makri, V.; Lattos, A.; Feidantsis, K.; Papadopoulos, D.K.; Georgoulis, I.; Apostolidis, A.P.; Michaelidis, B.; Mourtzinos, I.; et al. Effects of dietary substitution of fishmeal by black soldier fly (Hermetia illucens) meal on growth performance, whole-body chemical composition, and fatty acid profile of Pontastacus leptodactylus juveniles. Front. Physiol. 2023, 14, 1156394. [Google Scholar] [CrossRef]
- Celano, R.; Piccinelli, A.L.; Pagano, I.; Roscigno, G.; Campone, L.; De Falco, E.; Russo, M.; Rastrelli, L. Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Res. Int. 2017, 99, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Alice, G.; Corina, B.; Lucia, P.; Sultana, N.; Bazdoaca, C.; Nicoleta, D. Polyphenol content dynamics in hydrodistillation water residues of lamiaceae species. J. Essent. Oil-Bear. Plants 2019, 22, 858–864. [Google Scholar] [CrossRef]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chem. 2011, 126, 339–346. [Google Scholar] [CrossRef]
- Nieto, G.; Huvaere, K.; Skibsted, L.H. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. Eur. Food Res. Technol. 2011, 233, 11–18. [Google Scholar] [CrossRef]
- Peixoto, J.A.B.; Álvarez-Rivera, G.; Alves, R.C.; Costa, A.S.G.; Machado, S.; Cifuentes, A.; Ibáñez, E.; Oliveira, M.B.P.P. Comprehensive Phenolic and Free Amino Acid Analysis of Rosemary Infusions: Influence on the Antioxidant Potential. Antioxidants 2021, 10, 500. [Google Scholar] [CrossRef]
- Napoli, E.; Siracusa, L.; Ruberto, G. New tricks for old guys: Recent developments in the chemistry, biochemistry, applications and exploitation of selected species from the Lamiaceae Family. Chem. Biodivers. 2020, 17, e1900677. [Google Scholar] [CrossRef] [PubMed]
- Wollinger, A.; Perrin, É.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kunz, W. Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. CR Chim. 2016, 19, 754–765. [Google Scholar] [CrossRef]
- Zhang, Y.; Smuts, J.P.; Dodbiba, E.; Rangarajan, R.; Lang, J.C.; Armstrong, D.W. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC. J. Agric. Food Chem. 2012, 60, 9305–9314. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.J.; Wang, M.; Rosen, R.T.; Ho, C.T. Identification of thermal decomposition products of carnosol, an antioxidant in rosemary and sage. J. Food Lipds 1999, 6, 173–179. [Google Scholar] [CrossRef]
- Xie, J.; VanAlstyne, P.; Uhlir, A.; Yang, X. A review on rosemary as a natural antioxidation solution. Eur. J. Lipid Sci. Technol. 2017, 119, 1600439. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Papavassilopoulou, E.; Bardouki, H.; Vamvakias, M.; Bimpilas, A.; Oreopoulou, V. Antioxidant recovery from hydrodistillation residues of selected Lamiaceae species by alkaline extraction. J. Appl. Res. Med. Aromat. Plants 2018, 8, 83–89. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F.; Liu, F. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem. 2010, 118, 656–662. [Google Scholar] [CrossRef]
- Medronho, B.; JMValente, A.; Costa, P.; Romano, A. Inclusion complexes of rosmarinic acid and cyclodextrins: Stoichiometry, association constants, and antioxidant potential. Colloid Polym. Sci. 2014, 292, 885–894. [Google Scholar] [CrossRef]
- Korompokis, K.; Igoumenidis, P.E.; Mourtzinos, I.; Karathanos, V.T. Green extraction and simultaneous inclusion complex formation of Sideritis scardica polyphenols. Int. Food Res. J. 2017, 24, 1233–1238. Available online: https://food-science.agro.auth.gr/wp-content/uploads/sites/81/2018/11/2017-18-Green-extraction-and-simultaneous-inclusion-complex-formation-of-Sideritis-scardica-polyphenols.pdf (accessed on 19 August 2023).
- Fateminasab, F.; Bordbar, A.K.; Asadi, B.; Shityakov, S.; Karizak, A.Z.; Mohammadpoor-Baltork, I.; Saboury, A.A. Modified β-cyclodextrins: Rosmarinic acid inclusion complexes as functional food ingredients show improved operations (solubility, stability and antioxidant activity). Food Hydrocoll. 2022, 131, 107731. [Google Scholar] [CrossRef]
- Roman, O.; Heyd, B.; Broyart, B.; Castillo, R.; Maillard, M.N. Oxidative reactivity of unsaturated fatty acids from sunflower, high oleic sunflower and rapeseed oils subjected to heat treatment, under controlled conditions. LWT-Food Sci. Technol. 2013, 52, 49–59. [Google Scholar] [CrossRef]
- Irwin, J.W.; Hedges, N. Measuring lipid oxidation. In Understanding and Measuring the Shelf-Life of Food; Woodhead Publishing: Sawston, UK, 2004; pp. 289–316. [Google Scholar] [CrossRef]
- Kowalski, R.; Kowalska, G.; Pankiewicz, U.; Mazurek, A.; Włodarczyk-Stasiak, M.; Sujka, M.; Wyrostek, J. The effect of an addition of marjoram oil on stabilization fatty acids profile of rapeseed oil. LWT-Food Sci. Technol. 2019, 109, 225–232. [Google Scholar] [CrossRef]
- Choe, E. Effects and mechanism of minor compounds in oil on lipid oxidation. In Food lipids: Chemistry, Nutrition and Biotechnology, 3rd ed.; Akoh, C.C., Min, D.B., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 449–467. [Google Scholar]
- Loussouarn, M.; Krieger-Liszkay, A.; Svilar, L.; Bily, A.; Birtić, S.; Havaux, M. Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol. 2017, 175, 1381–1394. [Google Scholar] [CrossRef] [PubMed]
- Leong, M.H.; Tan, C.P.; Nyam, K.L. Effects of accelerated storage on the quality of kenaf seed oil in chitosan-coated high methoxyl pectin-alginate microcapsules. J. Food Sci. 2016, 81, C2367–C2372. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Penin-Peyta, L.; Wadhwa, S.S.; Waterhouse, G.I. Storage stability of phenolic-fortified avocado oil encapsulated using different polymer formulations and co-extrusion technology. Food Bioprocess Technol. 2012, 5, 3090–3102. [Google Scholar] [CrossRef]
- Waraho, T.; McClements, D.J.; Decker, E.A. Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food Chem. 2011, 129, 854–859. [Google Scholar] [CrossRef]
- CXS 210-1999; Standard for Named Vegetable Oils. Codex Alimentarius Commission: Rome, Italy, 2019.
- Wang, W.; Waterhouse, G.I.; Sun-Waterhouse, D. Co-extrusion encapsulation of canola oil with alginate: Effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Res. Int. 2013, 54, 837–851. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Saura-Calixto, F. Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Res. Int. 2006, 39, 791–800. [Google Scholar] [CrossRef]
- Richards, M.P.; Chaiyasit, W.; McClements, D.J.; Decker, E.A. Ability of surfactant micelles to alter the partitioning of phenolic antioxidants in oil-in-water emulsions. J. Agric. Food Chem. 2002, 50, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Alamed, J.; Weiss, J.; Villeneuve, P.; Giraldo, L.J.L.; Lecomte, J.; Figueroa-Espinoza, M.-C.; Decker, E.A. Relationship between the physical properties of chlorogenic acid esters and their ability to inhibit lipid oxidation in oil-in-water emulsions. Food Chem. 2010, 118, 830–835. [Google Scholar] [CrossRef]
- Decker, E.A.; McClements, D.J.; Bourlieu-Lacanal, C.; Durand, E.; Figueroa-Espinoza, M.C.; Lecomte, J.; Villeneuve, P. Hurdles in predicting antioxidant efficacy in oil-in-water emulsions. Trends Food Sci. Technol. 2017, 67, 183–194. [Google Scholar] [CrossRef]
- Laguerre, M.; Bayrasy, C.; Panya, A.; Weiss, J.; McClements, D.J.; Lecomte, J.; Decker, E.A.; Villeneuve, P. What makes good antioxidants in lipid-based systems? The next theories beyond the polar paradox. Crit. Rev. Food Sci. Nutr. 2015, 55, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Aranda, N.; Losada-Barreiro, S.; Bravo-Díaz, C.; Romsted, L.S. Influence of Temperature on the Distribution of Catechin in Corn Oil-in-Water Emulsions and Some Relevant Thermodynamic Parameters. Food Biophys. 2014, 9, 380–388. [Google Scholar] [CrossRef]
- Biliaderis, C.G.; Eskin, N.A.M. Canola. In Encyclopedia of Food Science and Technology; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991; Volume 1, pp. 264–277. [Google Scholar]
- Fhaner, M.; Hwang, H.S.; Winkler-Moser, J.K.; Bakota, E.L.; Liu, S.X. Protection of fish oil from oxidation with sesamol. Eur. J. Lipid Sci. Technol. 2016, 118, 885–897. [Google Scholar] [CrossRef]
- Przybylski, R.; Malcolmson, L.J.; Eskin, N.A.M.; Durance-Tod, S.; Mickle, J.; Carr, R. Stability of low linolenic acid canola oil to accelerated storage at 60 C. LWT Food Sci. Technol. 1993, 26, 205–209. [Google Scholar] [CrossRef]
- Keene, K.A.; Ruddy, R.M.; Fhaner, M.J. Investigating the relationship between antioxidants and fatty acid degradation using a combination approach of GC-FID and square-wave voltammetry. ACS Omega 2019, 4, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Gramza-Michalowska, A.N.N.A.; Sidor, A.; Hes, M. Herb extract influence on the oxidative stability of selected lipids. J. Food Biochem. 2011, 35, 1723–1736. [Google Scholar] [CrossRef]
- Tohma, S.; Turan, S. Rosemary plant (Rosmarinus officinalis L.), solvent extract and essential oil can be used to extend the usage life of hazelnut oil during deep frying. Eur. J. Lipid Sci. Technol. 2015, 117, 1978–1990. [Google Scholar] [CrossRef]
- Yang, Y.; Song, X.; Sui, X.; Qi, B.; Wang, Z.; Li, Y.; Jiang, L. Rosemary extract can be used as a synthetic antioxidant to improve vegetable oil oxidative stability. Ind. Crops Prod 2016, 80, 141–147. [Google Scholar] [CrossRef]
Sample Identification * | AERDR | AERDR/EO | AER | EO | Control | RPSO |
---|---|---|---|---|---|---|
Rosemary raw plant aqueous extract | + | |||||
Post-distillation rosemary residue aqueous extract | + | + | ||||
Water | + | + | ||||
Alginate conc. (% wt) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | |
Rosemary essential oil at 0.1% w/w | + | + | ||||
Rapeseed oil | + | + | + | + | + | + |
Tween 80 | + | + | + | + | + |
Chemical Group | Compound Name | Concentration (mg/g DW) | |
---|---|---|---|
R 1 | DR 1 | ||
Phenolic acids | Quinic acid | 2.80 ± 0.07 a | 2.29 ± 0.06 b |
Neochlorogenic acid | 0.47 ± 0.02 a | 0.17 ± 0.01 b | |
Caffeic acid | 0.20 ± 0.01 b | 0.36 ± 0.01 a | |
Rosmarinic acid | 56.6 ± 0.6 a | 35.3 ± 0.5 b | |
Salvianolic acid B | 5.13 ± 0.13 a | 4.61 ± 0.15 b | |
Total Phenolic acids | 65.2 ± 0.38 | 42.73 ± 0.28 | |
Flavonoids | Vicenin-2 | 0.16 ± 0.01 a | 0.12 ± 0.01 a |
Luteolin-7-O-rutinoside | 1.73 a ± 0.09 a | 0.14 ± 0.00 b | |
Apigenin-7-O-glucoside | 0.03 ± 0.002 a | 0.01 ± 0.002 b | |
Hesperidin | 1.29 ± 0.075 a | 0.19 ± 0.01 b | |
Total Flavonoids | 3.21 ± 0.01 a | 0.47 ± 0.01 b | |
Phenolic diterpenes | Carnosol | 0.58 ± 0.02 b | 5.67 ± 0.22 a |
Carnosic acid | 2.51 ± 0.10 b | 8.22 ± 0.08 a | |
Total Phenolic diterpenes | 3.09 ± 0.08 b | 13.89 ± 0.15 a |
Storage Day | Oil Sample | SFA (%) 1 | MUFA (%) 1 | PUFA (%) 1 | UFA/SFA | MUFA/SFA |
---|---|---|---|---|---|---|
Day 0 | AERDR | 6.14 ± 0.08 ab | 61.79 ± 0.09 a | 32.07 ± 0.01 b | 15.44 ± 0.04 ab | 10.07 ± 0.15 ab |
AERDR/EO | 6.05 ± 0.02 b | 61.91 ± 0.02 a | 32.03 ± 0.02 b | 15.52 ± 0.04 a | 10.23 ± 0.03 a | |
AER | 6.06 ± 0.01 b | 61.87 ± 0.02 a | 32.07 ± 0.01 b | 15.50 ± 0.03 a | 10.21 ± 0.02 a | |
EO | 6.24 ± 0.06 a | 61.18 ± 0.43 b | 32.58 ± 0.42 a | 15.04 ± 0.15 c | 9.81 ± 0.13 c | |
Control | 6.14 ± 0.01 ab | 61.79 ± 0.01 a | 32.07 ± 0.01 b | 15.28 ± 0.03 b | 10.06 ± 0.02 ab | |
RPSO | 6.24 ± 0.02 a | 61.90 ± 0.01 a | 31.87 ± 0.02 b | 15.03 ± 0.05 c | 9.92 ± 0.03 bc | |
Day 7 | AERDR | 6.08 ± 0.01 ab | 61.91 ± 0.01 a | 32.01 ± 0.02 a | 15.44 ± 0.04 ab | 10.18 ± 0.02 a |
AERDR/EO | 6.10 ± 0.02 ab | 61.91 ± 0.02 a | 31.99 ± 0.01 a | 15.39 ± 0.04 ab | 10.15 ± 0.03 a | |
AER | 6.10 ± 0.04 ab | 61.88 ± 0.03 a | 32.02 ± 0.02 a | 15.40 ± 0.10 ab | 10.15 ± 0.07 a | |
EO | 6.12 ± 0.01 a | 61.92 ± 0.00 a | 31.97 ± 0.01 a | 15.35 ± 0.03 b | 10.12 ± 0.02 a | |
Control | 6.12 ± 0.01 a | 61.90 ± 0.01 a | 31.98 ± 0.00 a | 15.35 ± 0.02 b | 10.12 ± 0.01 a | |
RPSO | 6.02 ± 0.07 b | 61.48 ± 0.61 a | 32.50 ± 0.68 a | 15.61 ± 0.19 a | 10.21 ± 0.02 a | |
Day 15 | AERDR | 6.10 ± 0.04 bc | 61.84 ± 0.13 a | 32.06 ± 0.09 a | 15.39 ± 0.10 ab | 10.14 ± 0.08 a |
AERDR/EO | 6.14 ± 0.00 ab | 61.80 ± 0.02 a | 32.06 ± 0.02 a | 15.30 ± 0.01 bc | 10.07 ± 0.01 ab | |
AER | 6.12 ± 0.00 b | 61.78 ± 0.00 a | 32.09 ± 0.01 a | 15.34 ± 0.01 b | 10.09 ± 0.01 a | |
EO | 6.24 ± 0.06 a | 61.18 ± 0.43 a | 32.58 ± 0.42 a | 15.04 ± 0.15 c | 9.81 ± 0.13 c | |
Control | 6.23 ± 0.06 a | 61.28 ± 0.42 a | 32.49 ± 0.36 a | 15.05 ± 0.15 c | 9.83 ± 0.16 bc | |
RPSO | 6.01 ± 0.01 c | 61.80 ± 0.01 a | 32.19 ± 0.01 a | 15.64 ± 0.03 a | 10.29 ± 0.02 a | |
Day 28 | AERDR | 6.15 ± 0.03 ab | 62.27 ± 0.01 a | 31.58 ± 0.03 c | 15.25 ± 0.09 bc | 10.12 ± 0.05 ab |
AERDR/EO | 6.07 ± 0.06 bc | 62.17 ± 0.35 a | 31.75 ± 0.29 bc | 15.47 ± 0.15 ab | 10.24 ± 0.15 a | |
AER | 6.11 ± 0.01 abc | 61.91 ± 0.01 ab | 31.97 ± 0.02 ab | 15.36 ± 0.03 abc | 10.13 ± 0.02 ab | |
EO | 6.20 ± 0.01 a | 61.90 ± 0.01 ab | 31.84 ± 0.02 bc | 15.13 ± 0.03 c | 9.99 ± 0.02 b | |
Control | 6.06 ± 0.03 c | 62.02 ± 0.03 ab | 31.92 ± 0.03 ab | 15.50 ± 0.08 a | 10.23 ± 0.06 a | |
RPSO | 6.05 ± 0.02 c | 61.74 ± 0.00 b | 32.21 ± 0.02 a | 15.54 ± 0.05 a | 10.21 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsitlakidou, P.; Kamplioni, D.; Kyriakoudi, A.; Irakli, M.; Biliaderis, C.G.; Mourtzinos, I. Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary. Foods 2024, 13, 2142. https://doi.org/10.3390/foods13132142
Tsitlakidou P, Kamplioni D, Kyriakoudi A, Irakli M, Biliaderis CG, Mourtzinos I. Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary. Foods. 2024; 13(13):2142. https://doi.org/10.3390/foods13132142
Chicago/Turabian StyleTsitlakidou, Petroula, Despina Kamplioni, Anastasia Kyriakoudi, Maria Irakli, Costas G. Biliaderis, and Ioannis Mourtzinos. 2024. "Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary" Foods 13, no. 13: 2142. https://doi.org/10.3390/foods13132142
APA StyleTsitlakidou, P., Kamplioni, D., Kyriakoudi, A., Irakli, M., Biliaderis, C. G., & Mourtzinos, I. (2024). Antioxidant-Enhanced Alginate Beads for Stabilizing Rapeseed Oil: Utilizing Extracts from Post-Distillation Waste Residues of Rosemary. Foods, 13(13), 2142. https://doi.org/10.3390/foods13132142