The Potential of Co-Fermentation of Whole-Plant Cassava with Piper sarmentosum: A Comprehensive Study of Fermentation Quality, Antioxidant Activity, Bacterial Community Structure, and Microbial Ecological Networks in Novel Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Antioxidant Activity, Culture-Based Microbial, and Fermentation Index Analysis
2.3. Microbial Community and Function Profile Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Fresh Whole-Plant Cassava and PS
3.2. Nutrition Composition, Fermentation Characteristics, and Antioxidant Capacity of Co-Fermented Whole-Plant Cassava and PS
3.3. Bacterial Community Structure and Predicted Functions in Co-Fermented Whole-Plant Cassava and PS
3.4. Bacterial Co-Occurrence Network, Network Modules, and Stability in Co-Fermented Whole-Plant Cassava and PS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, A.I.; Kongsil, P.; Nguyễn, V.A.; Ou, W.; Sholihin; Srean, P.; Sheela, M.N.; Becerra López-Lavalle, L.A.; Utsumi, Y.; Lu, C.; et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed. Sci. 2020, 70, 145–166. [Google Scholar] [CrossRef]
- Anyanwu, C.N.; Ibeto, C.N.; Ezeoha, S.L.; Ogbuagu, N.J. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energy 2015, 81, 745–752. [Google Scholar] [CrossRef]
- Jampa, M.; Sutthanut, K.; Weerapreeyakul, N.; Tukummee, W.; Wattanathorn, J.; Muchimapura, S. Multiple Bioactivities of Manihot esculenta Leaves: UV Filter, Anti-Oxidation, Anti-Melanogenesis, Collagen Synthesis Enhancement, and Anti-Adipogenesis. Molecules 2022, 27, 1556. [Google Scholar] [CrossRef]
- Laya, A.; Koubala, B.B.; Negi, P.S. Antidiabetic (α-amylase and α-glucosidase) and anti-obesity (lipase) inhibitory activities of edible cassava (Manihot esculenta Crantz) as measured by in vitro gastrointestinal digestion: Effects of phenolics and harvested time. Int. J. Food Prop. 2022, 25, 492–508. [Google Scholar] [CrossRef]
- Ojo, I.; Apiamu, A.; Egbune, E.O.; Tonukari, N.J. Biochemical Characterization of Solid-State Fermented Cassava Stem (Manihot esculenta Crantz-MEC) and Its Application in Poultry Feed Formulation. Appl. Biochem. Biotechnol. 2022, 194, 2620–2631. [Google Scholar] [CrossRef]
- Fanelli, N.S.; Torres-Mendoza, L.J.; Abelilla, J.J.; Stein, H.H. Chemical composition of cassava-based feed ingredients from South-East Asia. Anim. Biosci. 2023, 36, 908–919. [Google Scholar] [CrossRef]
- Isamah, G.K.; Asagba, S.O.; Ekakitie, A.O. Lipid peroxidation, activities of superoxide dismutase and catalase during post-harvest deterioration of cassava (Manihot esculenta Crantz) root tubers. Int. Biodeterior. Biodegrad. 2003, 52, 129–133. [Google Scholar] [CrossRef]
- Kayode, B.I.; Kayode, R.M.O.; Salami, K.O.; Obilana, A.O.; George, T.T.; Dudu, O.E.; Adebo, O.A.; Njobeh, P.B.; Diarra, S.S.; Oyeyinka, S.A. Morphology and physicochemical properties of starch isolated from frozen cassava root. LWT 2021, 147, 111546. [Google Scholar] [CrossRef]
- Bogale, S.; Haile, A.; Berhanu, B.; Beshir, H.M. Cassava production practices in Ethiopia and its use as Ingredient for injera making. Future Foods 2022, 6, 100204. [Google Scholar] [CrossRef]
- Ono, L.T.; Silva, J.J.; Soto, T.S.; Doná, S.; Iamanaka, B.T.; Fungaro, M.H.P.; Taniwaki, M.H. Fungal communities in Brazilian cassava tubers and food products. Int. J. Food Microbiol. 2023, 384, 109909. [Google Scholar] [CrossRef]
- Egbune, E.O.; Ezedom, T.; Orororo, O.C.; Egbune, O.U.; Avwioroko, O.J.; Aganbi, E.; Anigboro, A.A.; Tonukari, N.J. Solid-state fermentation of cassava (Manihot esculenta Crantz): A review. World J. Microbiol. Biotechnol. 2023, 39, 259. [Google Scholar] [CrossRef]
- Zhou, W.; Ananga, A.; Ukuku, D.O.; Aryee, A.N.A. High Salt Concentration Affects the Microbial Diversity of Cassava during Fermentation, as Revealed by 16S rRNA Gene Sequencing. Fermentation 2023, 9, 727. [Google Scholar] [CrossRef]
- Adesulu-Dahunsi, A.T.; Dahunsi, S.O.; Ajayeoba, T.A. Co-occurrence of Lactobacillus Species During Fermentation of African Indigenous Foods: Impact on Food Safety and Shelf-Life Extension. Front. Microbiol. 2022, 13, 684730. [Google Scholar] [CrossRef]
- Ramos, C.L.; Bressani, A.P.P.; Batista, N.N.; Martinez, S.J.; Dias, D.R.; Schwan, R.F. Indigenous fermented foods: Nutritional and safety aspects. Curr. Opin. Food Sci. 2023, 53, 101075. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Xiong, Y.; Liu, Z.; Lin, Y.; Ni, K.; Yang, F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresour. Technol. 2022, 360, 127429. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, W.; Wu, S.; Chen, X.; Zhang, Q. Dynamic changes in the bacterial communities and metabolites of Moringa oleifera leaves during fermentation with or without pyroligneous acid. LWT 2023, 177, 114593. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, L.; Zhou, H.; Hou, G. Chemical composition and anti-inflammatory activity of n-butanol extract of Piper sarmentosum Roxb. In the intestinal porcine epithelial cells (IPEC-J2). J. Ethnopharmacol. 2021, 269, 113723. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, D.; Zhou, H. Metabolic profiling of two medicinal Piper species. S. Afr. J. Bot. 2021, 139, 281–289. [Google Scholar] [CrossRef]
- Shao, J.H.; Liu, Y.L.; Lyu, J.K.; Chen, X. Alkaloids from leaves of Piper sarmentosum. Nat. Prod. Res. Dev. 2023, 35, 231–235. [Google Scholar]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Chang. 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Wen, T.; Xie, P.; Yang, S.; Niu, G.; Liu, X.; Ding, Z.; Xue, C.; Liu, Y.-X.; Shen, Q.; Yuan, J. ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta 2022, 1, e32. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Sun, R.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Co-Ensiling Whole-Plant Cassava with Corn Stalk for Excellent SilageProduction: Fermentation Characteristics, Bacterial Community, Function Profile, and Microbial Ecological Network Features. Agronomy 2024, 14, 501. [Google Scholar] [CrossRef]
- Bai, J.; Ding, Z.; Su, R.; Wang, M.; Cheng, M.; Xie, D.; Guo, X. Storage Temperature Is More Effective than Lactic Acid Bacteria Inoculations in Manipulating Fermentation and Bacterial Community Diversity, Co-Occurrence and Functionality of the Whole-Plant Corn Silage. Microbiol. Spectr. 2022, 10, e0010122. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Shi, W.; Sun, J.; Xia, T.; Huang, F.; Liu, Y.; Li, H.; Teng, K.; Zhong, J. Dynamic Changes in Fermentation Quality and Structure and Function of the Microbiome during Mixed Silage of Sesbania cannabina and Sweet Sorghum Grown on Saline-Alkaline Land. Microbiol. Spectr. 2022, 10, e0248322. [Google Scholar] [CrossRef]
- Dong, Z.; Li, J.; Wang, S.; Dong, D.; Shao, T. Diurnal Variation of Epiphytic Microbiota: An Unignorable Factor Affecting the Anaerobic Fermentation Characteristics of Sorghum-Sudangrass Hybrid Silage. Microbiol. Spectr. 2023, 11, e0340422. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Bai, J.; Franco, M.; Ding, Z.; Hao, L.; Ke, W.; Wang, M.; Xie, D.; Li, Z.; Zhang, Y.; Ai, L.; et al. Effect of Bacillus amyloliquefaciens and Bacillus subtilis on fermentation, dynamics of bacterial community and their functional shifts of whole-plant corn silage. J. Anim. Sci. Biotechnol. 2022, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, B.; Zhang, Y.; Zhang, X.; Usman, S.; Ding, Z.; Hao, L.; Guo, X. Probiotic effect of feruloyl esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. Anim. Nutr. 2022, 11, 38–47. [Google Scholar] [CrossRef]
- Zeng, T.; Li, X.; Guan, H.; Yang, W.; Liu, W.; Liu, J.; Du, Z.; Li, X.; Xiao, Q.; Wang, X.; et al. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system. Bioresour. Technol. 2020, 313, 123655. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, M.; Zhang, J.; Shi, S.; Cai, Y. Characteristics of isolated lactic acid bacteria and their effectiveness to improve stylo (Stylosanthes guianensis Sw.) silage quality at various temperatures. Anim. Sci. J. 2012, 83, 128–135. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef]
- Langille, M.G.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.; Dai, W.; Xin, H.; Rahmand, K.; Wang, Y.; Zhang, J.; Zhang, S.; Xu, L.; Han, T. Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 2020, 263, 112897. [Google Scholar] [CrossRef]
- Kouassi, K.B.; Nindjin, C.; Kouassi, K.N.; Amani, N.G.G. Specific qualities of pressed fermented cassava doughs used for attiéké production based on their geographical origin in Côte d’Ivoire. Int. J. Food Prop. 2022, 25, 2617–2626. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Pan, Y.; Ma, J.; Zhou, G.; Tao, Y.; Liu, X.; Zhong, J. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Lv, R.; Tang, J.; Cai, Y. Effect of lactic acid bacteria, molasses, and their combination on the fermentation quality and bacterial community of cassava foliage silage. Anim. Sci. J. 2021, 92, e13635. [Google Scholar] [CrossRef]
- Wang, M.; Franco, M.; Cai, Y.; Yu, Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim. Feed Sci. Technol. 2020, 270, 114702. [Google Scholar] [CrossRef]
- Guo, X.S.; Ke, W.C.; Ding, W.R.; Ding, L.M.; Xu, D.M.; Wang, W.W.; Zhang, P.; Yang, F.Y. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri. Sci. Rep. 2018, 8, 357. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Zou, X.; Ruan, S.; Kholif, A.E.; Hu, L.; Chen, X.; Zhou, W. Effects of Neolamarckia cadamba leaves extract on methanogenesis, microbial community in the rumen and digestibility of stylo silage. J. Clean. Prod. 2022, 369, 133338. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, C.; Yang, F.; Chen, X.; Zhang, Q. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage. J. Dairy Sci. 2019, 102, 9919–9931. [Google Scholar] [CrossRef]
- Ekeledo, E.; Latif, S.; Abass, A.; Müller, J. Antioxidant potential of extracts from peels and stems of yellow-fleshed and white cassava varieties. Int. J. Food Sci. Technol. 2021, 56, 1333–1342. [Google Scholar] [CrossRef]
- Dike, K.S.; Okafor, C.P.; Ohabughiro, B.N.; Maduwuba, M.C.; Ezeokoli, O.T.; Ayeni, K.I.; Okafor, C.M.; Ezekiel, C.N. Analysis of bacterial communities of three cassava-based traditionally fermented Nigerian foods (abacha, fufu and garri). Lett. Appl. Microbiol. 2022, 74, 452–461. [Google Scholar] [CrossRef]
- Li, M.; Lv, R.; Zhou, H.; Zi, X. Dynamics and correlations of chlorophyll and phytol content with silage bacterial of different growth heights Pennisetum sinese. Front. Plant Sci. 2022, 13, 996970. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Zhang, Q.; Zi, X.; Lv, R.; Tang, J.; Zhou, H. Impacts of Citric Acid and Malic Acid on Fermentation Quality and Bacterial Community of Cassava Foliage Silage. Front. Microbiol. 2020, 11, 595622. [Google Scholar] [CrossRef]
- Xu, D.; Wang, N.; Rinne, M.; Ke, W.; Weinberg, Z.G.; Da, M.; Bai, J.; Zhang, Y.; Li, F.; Guo, X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 2021, 14, 561–576. [Google Scholar] [CrossRef]
- Du, Z.; Sun, L.; Lin, Y.; Chen, C.; Yang, F.; Cai, Y. Use of Napier grass and rice straw hay as exogenous additive improves microbial community and fermentation quality of paper mulberry silage. Anim. Feed Sci. Technol. 2022, 285, 115219. [Google Scholar] [CrossRef]
- Thébault, E.; Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 2010, 329, 853–856. [Google Scholar] [CrossRef]
- Toju, H.; Yamamichi, M.; Guimarães, P.R., Jr.; Olesen, J.M.; Mougi, A.; Yoshida, T.; Thompson, J.N. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 2017, 1, 24. [Google Scholar] [CrossRef]
Items | Abbreviation | Whole-Plant Cassava | Piper sarmentosum | SEM | p-Value |
---|---|---|---|---|---|
Dry matter (g/kg FM) | DM | 312.5 ± 17.18 a | 192.4 ± 15.34 b | <0.05 | |
Crude protein (g/kg DM) | CP | 158.6 ± 9.64 a | 41.9 ± 2.55 b | <0.05 | |
Acid detergent fiber (g/kg DM) | ADF | 116.8 ± 8.73 a | 62.5 ± 4.38 b | <0.05 | |
Neutral detergent fiber (g/kg DM) | NDF | 158.9 ± 16.41 a | 86.1 ± 6.04 b | <0.05 | |
Water soluble carbohydrates (g/kg DM) | WSC | 177.2 ± 22.5 a | 38.7 ± 3.59 b | <0.05 | |
Starch (g/kg DM) | 215.9 ± 14.6 a | 12.4 ± 0.83 b | <0.05 | ||
Lactic acid bacteria (Log cfu/g FM) | LAB | 5.76 ± 0.45 | 5.28 ± 0.66 | >0.05 | |
Mold (Log cfu/g FM) | 2.43 ± 0.18 a | 1.52 ± 0.12 b | <0.05 | ||
Enterobacter (Log cfu/g FM) | 2.68 ± 0.23 a | 1.73 ± 0.17 b | <0.05 |
Items | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CFCK | CF10PS | CF20PS | CF30PS | T | L | ||
Nutrition composition, g/kgDM | |||||||
DM (g/kg FM) | 301.3 ± 20.7 a | 294.0 ± 15.6 b | 283.5 ± 17.6 c | 269.2 ± 18.1 d | 7.0 | <0.05 | <0.05 |
CP (DM) | 142.5 ± 7.1 a | 131.8 ± 8.0 b | 121.6 ± 9.6 c | 111.7 ± 7.9 d | 6.6 | <0.05 | <0.05 |
ADF | 94.1 ± 6.2 a | 89.3 ± 4.3 a | 85.7 ± 8.3 b | 81.8 ± 3.9 b | 2.6 | <0.05 | <0.05 |
NDF | 132.4 ± 10.7 a | 125.8 ± 7.9 ab | 120.6 ± 11.4 b | 115.4 ± 6.3 c | 3.6 | <0.05 | <0.05 |
WSC | 92.0 ± 6.6 a | 84.8 ± 3.4 b | 76.5 ± 7.0 c | 70.4 ± 4.5 d | 4.7 | <0.05 | <0.05 |
Starch | 155.4 ± 14.8 a | 138.6 ± 9.2 b | 125.2 ± 13.5 c | 109.7 ± 7.9 d | 9.7 | <0.05 | <0.05 |
Fermentation characteristics, g/kg DM | |||||||
pH | 4.27 ± 0.1 a | 4.08 ± 0.07 b | 4.33 ± 0.12 a | 4.03 ± 0.06 b | 0.1 | <0.05 | >0.05 |
Lactic acid | 46.93 ± 4.5 b | 58.24 ± 2.7 a | 40.7 ± 3.6 c | 61.8 ± 3.1 a | 2.8 | <0.05 | >0.05 |
Acetic acid | 19.28 ± 1.5 b | 11.2 ± 0.8 c | 30.5 ± 2.5 a | 9.7 ± 0.7 c | 5.8 | <0.05 | >0.05 |
Propionic acid | 4.16 ± 0.12 a | 1.5 ± 0.05 b | 1.8 ± 0.06 b | 1.6 ± 0.05 b | 0.1 | <0.05 | >0.05 |
Butyric acid | 0.88 ± 0.07 a | N | N | N | N | <0.05 | >0.05 |
NH3-N/Total N | 85.78 ± 6.1 a | 45.4 ± 2.7 c | 61.2 ± 3.2 b | 47.3 ± 2.8 c | 4.3 | <0.05 | >0.05 |
Antioxidant capacity, U/g FM | |||||||
T-AOC | 112 ± 16 b | 267 ± 20 a | 283 ± 19 a | 274 ± 17 a | 40.8 | <0.05 | >0.05 |
SOD | 347 ± 25 b | 725 ± 46 a | 740 ± 33 a | 751 ± 50 a | 98.1 | <0.05 | >0.05 |
GSH-Px | 408 ± 28 b | 954 ± 38 a | 893 ± 44 a | 931 ± 52 a | 130.1 | <0.05 | >0.05 |
CAT | 15.6 ± 1.3 a | 8.3 ± 0.8 b | 7.9 ± 0.5 b | 8.6 ± 0.6 b | 1.8 b | <0.05 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lv, R.; Ou, W.; Chen, S.; Zhou, H.; Hou, G.; Zi, X. The Potential of Co-Fermentation of Whole-Plant Cassava with Piper sarmentosum: A Comprehensive Study of Fermentation Quality, Antioxidant Activity, Bacterial Community Structure, and Microbial Ecological Networks in Novel Foods. Foods 2024, 13, 2126. https://doi.org/10.3390/foods13132126
Li M, Lv R, Ou W, Chen S, Zhou H, Hou G, Zi X. The Potential of Co-Fermentation of Whole-Plant Cassava with Piper sarmentosum: A Comprehensive Study of Fermentation Quality, Antioxidant Activity, Bacterial Community Structure, and Microbial Ecological Networks in Novel Foods. Foods. 2024; 13(13):2126. https://doi.org/10.3390/foods13132126
Chicago/Turabian StyleLi, Mao, Renlong Lv, Wenjun Ou, Songbi Chen, Hanlin Zhou, Guanyu Hou, and Xuejuan Zi. 2024. "The Potential of Co-Fermentation of Whole-Plant Cassava with Piper sarmentosum: A Comprehensive Study of Fermentation Quality, Antioxidant Activity, Bacterial Community Structure, and Microbial Ecological Networks in Novel Foods" Foods 13, no. 13: 2126. https://doi.org/10.3390/foods13132126
APA StyleLi, M., Lv, R., Ou, W., Chen, S., Zhou, H., Hou, G., & Zi, X. (2024). The Potential of Co-Fermentation of Whole-Plant Cassava with Piper sarmentosum: A Comprehensive Study of Fermentation Quality, Antioxidant Activity, Bacterial Community Structure, and Microbial Ecological Networks in Novel Foods. Foods, 13(13), 2126. https://doi.org/10.3390/foods13132126