Comparative Analysis of Texture Characteristics, Sensory Properties, and Volatile Components in Four Types of Marinated Tofu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Reagents
2.2. Sample Preparation
2.3. Sensory Evaluation
2.4. Textural Property Analysis (TPA)
2.5. Analysis of Volatile Compounds by HS–GC-IMS
2.6. Calculation of Relative Odor Activity Values
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation
3.2. Textural Property Analysis
3.3. HS-GC-IMS Analysis
Count | Compound Name | Formula | CAS | MW | RI | Rt [sec] | Relative Amount/% | |||
---|---|---|---|---|---|---|---|---|---|---|
TF1 | TF2 | TF3 | TF4 | |||||||
Hydrocarbons (11) | ||||||||||
1 | α-Pinene | C80568 | C10H16 | 136.2 | 1025.5 | 244.293 | 1.46 ± 0.02 b | 1.86 ± 0.02 a | 1.91 ± 0.06 a | 1.60 ± 0.17 b |
2 | β-Pinene | C127913 | C10H16 | 136.2 | 1102.8 | 311.786 | 0.64 ± 0.03 c | 0.81 ± 0.01 b | 0.88 ± 0.01 a | 0.30 ± 0.03 d |
3 | β-Thujene | C28634891 | C10H16 | 136.2 | 1118.0 | 329.116 | 7.54 ± 0.16 b | 7.06 ± 0.04 c | 7.65 ± 0.09 b | 8.76 ± 0.14 a |
4 | δ-3-Carene | C13466789 | C10H16 | 136.2 | 1144.7 | 362.058 | 0.41 ± 0.00 c | 0.81 ± 0.03 a | 0.62 ± 0.00 b | 0.34 ± 0.02 d |
5 | β-Myrcene | C123353 | C10H16 | 136.2 | 1160.3 | 382.802 | 1.82 ± 0.06 c | 2.12 ± 0.04 b | 2.25 ± 0.06 a | 2.11 ± 0.08 b |
6 | α-Phellandrene | C99832 | C10H16 | 136.2 | 1173.3 | 400.953 | 0.78 ± 0.02 b | 0.84 ± 0.03 b | 1.41 ± 0.06 a | 0.38 ± 0.03 c |
7 | (+)-Limonene | C138863 | C10H16 | 136.2 | 1192.0 | 428.611 | 1.30 ± 0.03 b | 1.24 ± 0.02 c | 1.32 ± 0.01 b | 1.49 ± 0.01 a |
8 | β-Phellandrene | C555102 | C10H16 | 136.2 | 1201.9 | 443.305 | 1.53 ± 0.04 b | 1.56 ± 0.02 b | 1.28 ± 0.02 c | 1.69 ± 0.08 a |
9 | β-Ocimene | C13877913 | C10H16 | 136.2 | 1239.8 | 503.885 | 1.51 ± 0.06 c | 2.17 ± 0.03 b | 2.55 ± 0.04 a | 0.46 ± 0.03 d |
10 | γ-Terpinene | C99854 | C10H16 | 136.2 | 1250.1 | 521.526 | 0.33 ± 0.01 c | 0.40 ± 0.01 b | 0.48 ± 0.03 a | 0.32 ± 0.02 c |
11 | α-Terpinolene | C586629 | C10H16 | 136.2 | 1277.1 | 571.277 | 0.42 ± 0.01 c | 0.68 ± 0.01 b | 0.73 ± 0.02 a | 0.31 ± 0.01 d |
Total | 17.73 ± 0.38 c | 19.56 ± 0.16 b | 21.08 ± 0.37 a | 17.76 ± 0.34 c | ||||||
Alcohols (11) | ||||||||||
12 | 2-Methyl-2-propanol | C75650 | C4H10O | 74.1 | 912.8 | 181.353 | 1.29 ± 0.01 b | 0.98 ± 0.02 c | 1.29 ± 0.01 b | 1.43 ± 0.05 a |
13 | Ethanol | C64175 | C2H6O | 46.1 | 934.6 | 191.393 | 3.54 ± 0.34 b | 3.35 ± 0.03 b | 3.21 ± 0.14 b | 4.42 ± 0.2 a |
14 | 1-Propanol | C71238 | C3H8O | 60.1 | 1037.3 | 253.466 | 0.63 ± 0.03 b | 0.68 ± 0.01 a | 0.55 ± 0.03 c | 0.57 ± 0.00 c |
15 | 1- Butanol | C71363 | C4H10O | 74.1 | 1148.8 | 367.424 | 1.03 ± 0.05 a | 1.05 ± 0.01 a | 0.26 ± 0.00 c | 0.51 ± 0.03 b |
16 | 1-Penten-3-ol | C616251 | C5H10O | 86.1 | 1165.4 | 389.764 | 1.31 ± 0.03 a | 1.16 ± 0.02 b | 1.07 ± 0.07 b | 0.98 ± 0.05 c |
17 | 1-Butanol, 3-methyl | C123513 | C5H12O | 88.1 | 1211.4 | 457.634 | 0.38 ± 0.01 b | 0.38 ± 0.01 b | 0.29 ± 0.01 c | 0.78 ± 0.01 a |
18 | 1-Pentanol | C71410 | C5H12O | 88.1 | 1256.3 | 532.617 | 3.79 ± 0.19 b | 4.03 ± 0.04 a | 3.91 ± 0.07 ab | 2.69 ± 0.05 c |
19 | 3-Methyl-3-buten-1-ol | C763326 | C5H10O | 86.1 | 1260.8 | 540.729 | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.21 ± 0.01 a |
20 | (E)-3-Hexen-1-ol | C928972 | C6H12O | 100.2 | 1354.2 | 692.953 | 0.11 ± 0.01 b | 0.11 ± 0.01 b | 0.11 ± 0.00 b | 2.17 ± 0.14 a |
21 | 1 -Hexanol | C111273 | C6H14O | 102.2 | 1365.2 | 710.272 | 0.48 ± 0.07 c | 0.66 ± 0.08 b | 0.67 ± 0.01 b | 1.73 ± 0.07 a |
22 | Linalool | C78706 | C10H18O | 154.3 | 1555.3 | 1087.114 | 8.46 ± 0.15 a | 8.33 ± 0.07 a | 7.45 ± 0.18 b | 3.71 ± 0.03 c |
Total | 21.10 ± 0.16 a | 20.79 ± 0.01 a | 18.89 ± 0.15 b | 19.21 ± 0.51 b | ||||||
Ketones (10) | ||||||||||
23 | 2-Propanone | C67641 | C3H6O | 58.1 | 815.6 | 142.536 | 13.84 ± 0.09 a | 13.61 ± 0.07 a | 13.57 ± 0.09 a | 11.65 ± 0.24 b |
24 | 2-Butanone | C78933 | C4H8O | 72.1 | 898.2 | 174.898 | 4.17 ± 0.05 b | 3.23 ± 0.06 c | 3.38 ± 0.14 c | 4.76 ± 0.23 a |
25 | 4-Methyl-2-pentanone | C108101 | C6H12O | 100.2 | 1014.5 | 236.054 | 0.011 ± 0.00 c | 0.016 ± 0.00 b | 0.014 ± 0.00 b | 0.022 ± 0.00 a |
26 | 1-Penten-3-one | C1629589 | C5H8O | 84.1 | 1015.1 | 236.543 | 0.21 ± 0.02 b | 0.21 ± 0.00 b | 0.51 ± 0.02 a | 0.07 ± 0.00 c |
27 | 3-Hexanone | C589388 | C6H12O | 100.2 | 1096.6 | 304.963 | 0.53 ± 0.01 b | 0.40 ± 0.01 c | 0.50 ± 0.01 b | 0.93 ± 0.03 a |
28 | 2-Heptanone | C110430 | C7H14O | 114.2 | 1183.4 | 415.646 | 4.28 ± 0.09 a | 3.99 ± 0.07 b | 3.62 ± 0.16 c | 1.91 ± 0.02 d |
29 | 2-Methyl-3-ketotetrahydrofuran | C3188009 | C5H8O2 | 100.1 | 1269.6 | 556.989 | 0.37 ± 0.02 a | 0.34 ± 0.01 b | 0.35 ± 0.02 ab | 0.19 ± 0.00 c |
30 | 2-Butanone, 3-hydroxy | C513860 | C4H8O2 | 88.1 | 1289.2 | 595.229 | 0.35 ± 0.06 b | 0.38 ± 0.02 b | 0.52 ± 0.04 a | 0.23 ± 0.12 c |
31 | 1-Hydroxy-2-propanone | C116096 | C3H6O2 | 74.1 | 1307.2 | 623.804 | 1.20 ± 0.04 a | 1.11 ± 0.03 a | 1.06 ± 0.04 a | 0.46 ± 0.21 b |
32 | 2-Methyl-2-hepten-6-one | C110930 | C8H14O | 126.2 | 1346.8 | 681.715 | 0.08 ± 0.00 c | 0.14 ± 0.01 b | 0.18 ± 0.01 a | 0.09 ± 0.00 c |
Total | 25.03 ± 0.10 a | 23.43 ± 0.19 b | 23.72 ± 0.33 b | 20.32 ± 0.46 c | ||||||
Aldehydes (15) | ||||||||||
33 | Propanal | C123386 | C3H6O | 58.1 | 778.5 | 130.069 | 1.87 ± 0.03 ab | 1.82 ± 0.04 b | 1.92 ± 0.04 a | 1.91 ± 0.07 ab |
34 | Butanal | C123728 | C4H8O | 72.1 | 868.2 | 162.380 | 0.15 ± 0.01 b | 0.05 ± 0.00 c | 0.13 ± 0.00 b | 0.21 ± 0.03 a |
35 | 3-Methyl butanal | C590863 | C5H10O | 86.1 | 912.8 | 181.353 | 1.31 ± 0.04 b | 0.91 ± 0.05 c | 1.45 ± 0.05 a | 1.47 ± 0.09 a |
36 | n-Pentanal | C110623 | C5H10O | 86.1 | 986.6 | 217.707 | 3.51 ± 0.13 b | 3.20 ± 0.02 c | 3.43 ± 0.04 b | 4.59 ± 0.11 a |
37 | (E)-2-Butenal | C123739 | C4H6O | 70.1 | 1051.3 | 264.774 | 0.10 ± 0.00 b | 0.11 ± 0.00 a | 0.12 ± 0.00 a | 0.08 ± 0.00 c |
38 | 1-Hexanal | C66251 | C6H12O | 100.2 | 1091.2 | 299.928 | 4.29 ± 0.09 b | 4.33 ± 0.04 b | 4.31 ± 0.06 b | 6.13 ± 0.08 a |
39 | (Z)-2-Pentenal | C1576869 | C5H8O | 84.1 | 1105.3 | 314.522 | 1.38 ± 0.03 a | 1.11 ± 0.03 b | 1.35 ± 0.01 a | 0.57 ± 0.02 c |
40 | (E)-2-Pentenal | C1576870 | C5H8O | 84.1 | 1136.4 | 351.462 | 1.85 ± 0.04 b | 1.70 ± 0.01 c | 2.08 ± 0.01 a | 1.32 ± 0.02 d |
41 | Heptaldehyde | C111717 | C7H14O | 114.2 | 1185.7 | 419.103 | 0.31 ± 0.01 b | 0.31 ± 0.00 b | 0.34 ± 0.01 b | 0.72 ± 0.05 a |
42 | (E)-2-Hexen-1-al | C6728263 | C6H10O | 98.1 | 1220.6 | 472.090 | 0.39 ± 0.03 c | 0.47 ± 0.02 b | 0.34 ± 0.03 c | 1.89 ± 0.06 a |
43 | 1-Octanal | C124130 | C8H16O | 128.2 | 1291.7 | 600.271 | 0.47 ± 0.06 c | 0.57 ± 0.02 b | 0.51 ± 0.00 bc | 0.81 ± 0.05 a |
44 | (E)-2-Heptenal | C18829555 | C7H12O | 112.2 | 1331.3 | 658.340 | 0.13 ± 0.01 b | 0.16 ± 0.01 b | 0.14 ± 0.01 b | 1.09 ± 0.08 a |
45 | 1-Nonanal | C124196 | C9H18O | 142.2 | 1396.6 | 762.009 | 0.31 ± 0.02 b | 0.33 ± 0.01 b | 0.33 ± 0.01 b | 0.55 ± 0.03 a |
46 | Benzaldehyde | C100527 | C7H6O | 106.1 | 1499.3 | 958.971 | 1.86 ± 0.07 b | 1.76 ± 0.01 b | 2.06 ± 0.05 a | 1.35 ± 0.05 c |
47 | 5-Methyl furfural | C620020 | C6H6O2 | 110.1 | 1628.0 | 1279.329 | 1.51 ± 0.05 c | 1.30 ± 0.02 c | 2.62 ± 0.17 a | 2.12 ± 0.15 b |
Total | 19.44 ± 0.49 c | 18.13 ± 0.03 d | 21.14 ± 0.15 b | 24.80 ± 0.46 a | ||||||
Esters (4) | ||||||||||
48 | Acetic acid ethyl ester | C141786 | C4H8O2 | 88.1 | 875.6 | 165.385 | 0.66 ± 0.01 c | 4.00 ± 0.04 a | 0.67 ± 0.03 c | 0.96 ± 0.05 b |
49 | Isopropyl acetate | C108214 | C5H10O2 | 102.1 | 882.3 | 168.143 | 0.20 ± 0.00 b | 0.02 ± 0.01 c | 0.41 ± 0.03 a | 0.02 ± 0.00 c |
50 | Acetic acid propyl ester | C109604 | C5H10O2 | 102.1 | 975.8 | 211.946 | 1.69 ± 0.02 a | 0.52 ± 0.01 c | 0.85 ± 0.05 b | 0.21 ± 0.01 d |
51 | Butyl acetate | C123864 | C6H12O2 | 116.2 | 1074.7 | 284.879 | 0.18 ± 0.00 c | 0.67 ± 0.01 a | 0.25 ± 0.01 b | 0.06 ± 0.00 d |
Total | 2.73 ± 0.01 b | 5.20 ± 0.04 a | 2.19 ± 0.05 c | 1.25 ± 0.07 d | ||||||
Acids (1) | ||||||||||
52 | Acetic acid | C64197 | C2H4O2 | 60.1 | 1463.1 | 884.22 | 3.68 ± 0.15 a | 3.09 ± 0.16 b | 2.08 ± 0.09 c | 3.31 ± 0.08 b |
Total | 3.68 ± 0.15 a | 3.09 ± 0.16 b | 2.08 ± 0.09 c | 3.31 ± 0.08 b | ||||||
Others (12) | ||||||||||
53 | 2,5-Dimethylfuran | C625865 | C6H8O | 96.1 | 958.1 | 202.849 | 0.05 ± 0.02 b | 0.05 ± 0.00 b | 0.06 ± 0.00 b | 0.18 ± 0.01 a |
54 | Ethyl thiolacetate | C625605 | C4H8OS | 104.2 | 1109.8 | 319.571 | 0.03 ± 0.01 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.12 ± 0.01 a |
55 | 2-Butylfuran | C4466244 | C8H12O | 124.2 | 1132 | 345.990 | 0.41 ± 0.01 b | 0.34 ± 0.01 c | 0.40 ± 0.01 b | 0.74 ± 0.02 a |
56 | 1,8-Cineol | C470826 | C10H18O | 154.3 | 1203.3 | 445.292 | 0.27 ± 0.01 c | 0.32 ± 0.02 bc | 1.06 ± 0.04 a | 0.33 ± 0.03 b |
57 | 2-Pentyl furan | C3777693 | C9H14O | 138.2 | 1230.3 | 487.817 | 7.68 ± 0.09 a | 7.22 ± 0.10 b | 6.35 ± 0.17 c | 4.74 ± 0.06 d |
58 | Methyl thiocyanate | C556649 | C2H3NS | 73.1 | 1277.4 | 571.914 | 0.25 ± 0.01 b | 0.31 ± 0.02 b | 0.33 ± 0.02 b | 6.21 ± 0.08 a |
59 | Methyl 2-propenyl disulfide | C2179580 | C4H8S2 | 120.2 | 1304.2 | 619.601 | 0.30 ± 0.04 a | 0.25 ± 0.02 a | 0.24 ± 0.01 a | 0.15 ± 0.06 b |
60 | 2,5-Dimethylpyrazine | C123320 | C6H8N2 | 108.1 | 1326.1 | 650.697 | 0.52 ± 0.06 a | 0.58 ± 0.01 a | 0.65 ± 0.02 a | 0.16 ± 0.12 b |
61 | 2,3,5- Trimethylpyrazine | C14667551 | C7H10N2 | 122.2 | 1396.6 | 762.009 | 0.21 ± 0.01 b | 0.19 ± 0 bc | 0.37 ± 0.04 a | 0.17 ± 0.02 c |
62 | Dipropyl disulfide | C629196 | C6H14S2 | 150.3 | 1406.9 | 779.807 | 0.16 ± 0.02 c | 0.19 ± 0.01 b | 0.16 ± 0.01 c | 0.37 ± 0.01 a |
63 | 2,3-Diethylpyrazine | C15707241 | C8H12N2 | 136.2 | 1456.4 | 871.169 | 0.36 ± 0.03 b | 0.31 ± 0 b | 0.74 ± 0.06 a | 0.11 ± 0.02 c |
64 | Allyl disulfide | C2179579 | C6H10S2 | 146.3 | 1464.3 | 886.593 | 0.05 ± 0.01 b | 0.05 ± 0 b | 0.52 ± 0.07 a | 0.06 ± 0.01 b |
Total | 10.29 ± 0.14 | 9.80 ± 0.1 d | 10.90 ± 0.13 b | 13.34 ± 0.13 a |
3.4. Relative Calculation of Odor Activity Values
3.5. PLS-DA and Model Evaluation Analysis
3.6. Key Volatile Substances
3.7. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raja, J.; Punoo, H.A.; Masoodi, F.A. Comparative study of soy paneer prepared from soymilk, blends of soymilk and skimmed milk. J. Food Process. Technol. 2014, 5, 1–5. [Google Scholar]
- Hendrich, S. Nutritional, nutraceutical and functional properties of soybeans. Food Sci. Hum. Nutr. 2017, 2, 162. [Google Scholar]
- Guan, X.; Zhong, X.; Lu, Y.; Du, X.; Jia, R.; Li, H.; Zhang, M. Changes of Soybean Protein during Tofu Processing. Foods 2021, 10, 1594. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Cho, H.; Lee, K.-G. Volatile Compounds as Markers of Tofu (Soybean Curd) Freshness during Storage. J. Agric. Food Chem. 2014, 62, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, C.Z.; Li, B.K.; Li, L.; Lin, D.R.; Chen, H.; Liu, Y.W.; Li, S.Q.; Qin, W.; Liu, J.; et al. Research progress in tofu processing: From raw materials to processing conditions. Crit. Rev. Food Sci. Nutr. 2018, 58, 1448–1467. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ruiz, R.; Tena, N.; García-González, D.L. An International Survey on Olive Oils Quality and Traceability: Opinions from the Involved Actors. Foods 2022, 11, 1045. [Google Scholar] [CrossRef]
- Xiao, Z.B.; Shang, Y.; Chen, F.; Niu, Y.W.; Gu, Y.B.; Liu, S.J.; Zhu, J.C. Characterisation of aroma profiles of commercial sufus by odour activity value, gas chromatography-olfactometry, aroma recombination and omission studies. Nat. Prod. Res. 2015, 29, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, Y.Y.; Wen, R.X.; Wang, Y.; Qin, L.G.; Kong, B.H. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef]
- Krokou, A.; Kokkinofta, R.; Stylianou, M.; Agapiou, A. Decoding carob flavor aroma using HS–SPME–GC–MS and chemometrics. Eur. Food Res. Technol. 2020, 246, 1419–1428. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Liu, Y.; Zhu, R.; Ma, X.X.; Xin, S.L.; Zhu, B.W.; Dong, X.P. Multi-omics Analysis of Volatile Flavor Components in Pacific Chub and Spanish Mackerel during Freezing using GC–MS–O. Food Chem. 2024, 443, 138534. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.Q.; Cai, W.T.; Feng, T.; Chen, D.; Lu, J.; Song, S.Q.; Yao, L.Y.; Sun, M.; Wang, H.T.; Liu, Q.; et al. Revealing the flavor profile of citrus Pu-erh tea through GC-MS-O and untargeted metabolomics. Beverage Plant Res. 2024, 4, e009. [Google Scholar] [CrossRef]
- Sun, X.X.; Yu, Y.M.; Saleh, A.S.M.; Yang, X.Y.; Ma, J.L.; Gao, Z.W.; Zhang, D.Q.; Li, W.H.; Wang, Z.Y. Characterization of aroma profiles of chinese four most famous traditional red-cooked chickens using GC–MS, GC-IMS, and E-nose. Food Res. Int. 2023, 173, 113335. [Google Scholar] [CrossRef] [PubMed]
- Tiggemann, L.; Ballen, S.C.; Bocalon, C.M.; Graboski, A.M.; Manzoli, A.; Steffens, J.; Valduga, E.; Steffens, C. Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innov. Food Sci. Emerg. 2017, 43, 112–116. [Google Scholar] [CrossRef]
- Fan, C.M.; Shi, X.; Pan, C.M.; Zhang, F.L.; Zhou, Y.Y.; Hou, X.G.; Hui, M. GC-IMS and GC/Q-TOFMS analysis of Maotai-flavor baijiu at different aging times. LWT 2024, 192, 115744. [Google Scholar] [CrossRef]
- Shen, C.; Cai, Y.; Wu, X.N.; Gai, S.M.; Wang, B.; Liu, D.Y. Characterization of selected commercially available grilled lamb shashliks based on flavor profiles using GC-MS, GC × GC-TOF-MS, GC-IMS, E-nose and E-tongue combined with chemometrics. Food Chem. 2023, 423, 136257. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, Z.; Kong, Y.; Ma, Z.; Wu, C.; Regenstein, J.M.; Teng, F.; Li, Y. Different commercial soy protein isolates and the characteristics of Chiba tofu. Food Hydrocolloid 2021, 110, 106115. [Google Scholar] [CrossRef]
- Shi, Y.G.; Yang, Y.; Piekoszewski, W.; Zeng, J.H.; Guan, H.N.; Wang, B.; Liu, L.L.; Zhu, X.Q.; Chen, F.L.; Zhang, N. Influence of four different coagulants on the physicochemical properties, textural characteristics and flavour of tofu. Int. J. Food Sci. Technol. 2020, 55, 1218–1229. [Google Scholar] [CrossRef]
- Lv, Y.C.; Song, H.L.; Li, X.; Wu, L.; Guo, S.T. Influence of Blanching and Grinding Process with Hot Water on Beany and Non-Beany Flavor in Soymilk. J. Food Sci. 2011, 76, S20–S25. [Google Scholar] [CrossRef]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E. Volatile profiles of thua nao, a Thai fermented soy product. Food Chem. 2011, 125, 464–470. [Google Scholar] [CrossRef]
- Li, X.F.; Liu, X.; Hua, Y.F.; Chen, Y.M.; Kong, X.Z.; Zhang, C.M. Effects of water absorption of soybean seed on the quality of soymilk and the release of flavor compounds. RSC Adv. 2019, 9, 2906–2918. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.C.; Lin, Z.Y.; Li, Y.; Chen, F.S.; Liu, S.X.; Li, C.F. Effects of different cooking methods on volatile flavor compounds of chicken breast. J. Food Biochem. 2021, 45, e13770. [Google Scholar] [CrossRef] [PubMed]
- Moy, Y.-S.; Lu, T.J.; Chou, C.C. Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean. J. Biosci. Bioeng. 2012, 113, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, L.; Liu, H.J.; Liu, H.Y.; Zhou, Y.; Li, M.N.; Gao, R.C. Analysis of the changes of volatile flavor compounds in a traditional Chinese shrimp paste during fermentation based on electronic nose, SPME-GC-MS and HS-GC-IMS. Food Sci. Hum. Wellness 2023, 12, 173–182. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, J.; Chen, X.; Chen, D.; Deng, S. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Xu, L.R.; Yu, X.Z.; Li, M.J.; Chen, J.; Wang, X.G. Monitoring oxidative stability and changes in key volatile compounds in edible oils during ambient storage through HS-SPME/GC–MS. Int. J. Food Prop. 2017, 20 (Suppl. S3), S2926–S2938. [Google Scholar] [CrossRef]
- Xi, B.N.; Zhang, J.J.; Xu, X.; Li, C.; Shu, Y.; Zhang, Y.; Shi, X.M.; Shen, Y.H. Characterization and metabolism pathway of volatile compounds in walnut oil obtained from various ripening stages via HS-GC-IMS and HS-SPME-GC–MS. Food Chem. 2024, 435, 137547. [Google Scholar] [CrossRef]
- Zhao, M.; Li, T.; Yang, F.; Cui, X.; Zou, T.; Song, H.; Liu, Y. Characterization of key aroma-active compounds in Hanyuan Zanthoxylum bungeanum by GC-O-MS and switchable GC × GC-O-MS. Food Chem. 2022, 385, 132659. [Google Scholar] [CrossRef]
- Chang, M.J.; Liu, Y.; Li, Z.; Feng, X.; Xiao, Y.; Huang, W.; Liu, Y. Fingerprint analysis of volatile flavor compounds in twenty varieties of Lentinula edodes based on GC-IMS. Sci. Hortic. 2024, 328, 112893. [Google Scholar] [CrossRef]
- Sun, W.Z.; Ji, H.W.; Zhang, D.; Zhang, Z.W.; Liu, S.C.; Song, W.K. Evaluation of Aroma Characteristics of Dried Shrimp (Litopenaeus vannamei) Prepared by Five Different Procedures. Foods 2022, 11, 3532. [Google Scholar] [CrossRef]
Items | Scoring Criteria | Score |
---|---|---|
Color (25%) | The epidermis is yellow-brown, uniform, and shiny. | 20–25 |
The epidermis is yellow-brown, relatively uniform, and shiny. | 14–19 | |
The epidermis is uneven and dull. | 7–13 | |
Too dark or too light in color, dull. | 0–6 | |
Taste (25%) | The taste is delicate, tender, juicy, and chewy. | 20–25 |
The taste is delicate, delicious, and chewy. | 14–19 | |
The taste is acceptable and the chewiness is average. | 7–13 | |
Rough taste and poor chewiness. | 0–6 | |
Flavour (25%) | It has a strong tofu flavor, strong spicy taste, and harmonious taste. | 20–25 |
It has a certain tofu flavor and moderate seasoning. | 14–19 | |
General flavor, uncoordinated seasoning. | 7–13 | |
Poor flavor, insufficient aroma. | 0–6 | |
Texture (25%) | Moderate hardness, good elasticity, and complete shape. | 20–25 |
General hardness, general elasticity, and relatively complete shape. | 14–19 | |
Poor hardness, poor elasticity, and barely complete shape. | 7–13 | |
Too hard, inelastic, and incomplete in shape. | 0–6 |
Color | Taste | Flavour | Texture | Total Score | |
---|---|---|---|---|---|
TF1 | 19.00 ± 2.80 a | 19.83 ± 1.70 a | 20.42 ± 1.44 a | 19.17 ± 3.16 a | 78.42 ± 5.37 a |
TF2 | 19.25 ± 1.66 a | 21.17 ± 1.40 a | 20.75 ± 1.86 a | 20.17 ± 1.75 a | 81.33 ± 4.52 a |
TF3 | 20.75 ± 2.26 a | 19.67 ± 2.50 a | 19.58 ± 1.38 a | 19.58 ± 2.54 a | 79.58 ± 5.30 a |
TF4 | 9.42 ± 3.40 b | 16.08 ± 1.78 b | 13.92 ± 1.78 b | 18.08 ± 2.35 a | 57.50 ± 3.50 b |
Hardness(g) | Resilience | Cohesiveness | Springiness | Gumminess | Chewiness | |
---|---|---|---|---|---|---|
TF1 | 1375.00 ± 82.50 c | 0.38 ± 0.01 b | 0.71 ± 0.01 b | 4.90 ± 0.23 b | 998.00 ± 28.60 d | 4809.75 ± 359.52 b |
TF2 | 1561.75 ± 90.82 b | 0.38 ± 0.01 b | 0.70 ± 0.02 b | 4.48 ± 0.26 c | 1154.25 ± 93.13 c | 4810.75 ± 594.78 b |
TF3 | 1655.88 ± 31.54 b | 0.40 ± 0.02 a | 0.73 ± 0.01 a | 3.60 ± 0.14 d | 1280.50 ± 70.38 b | 4417.75 ± 273.01 b |
TF4 | 3963.13 ± 179.44 a | 0.36 ± 0.01 b | 0.74 ± 0.01 a | 6.15 ± 0.23 a | 2869.75 ± 75.25 a | 17884.00 ± 750.77 a |
Count | Odor Threshold μg/kg | Compound Name | ROAV | |||
---|---|---|---|---|---|---|
TF1 | TF2 | TF3 | TF4 | |||
1 | 41 | α-Pinene | 2.34 | 2.57 | 2.49 | 2.22 |
2 | 140 | β-Pinene | 0.30 | 0.33 | 0.34 | 0.12 |
3 | - | β-Thujene | - | - | - | - |
4 | 770 | δ-3-Carene | 0.04 | 0.06 | 0.04 | 0.03 |
5 | 1.2 | β-Myrcene | 100.00 | 100.00 | 100.00 | 100.00 |
6 | 40 | α-Phellandrene | 1.28 | 1.18 | 1.87 | 0.53 |
7 | 10 | (+)-Limonene | 8.52 | 7.01 | 7.02 | 8.47 |
8 | 36 | β-Phellandrene | 2.79 | 2.45 | 1.89 | 2.66 |
9 | 34 | β-Ocimene | 2.92 | 3.61 | 4.00 | 0.77 |
10 | 1000 | γ-Terpinene | 0.02 | 0.02 | 0.03 | 0.02 |
11 | 200 | α-Terpinolene | 0.14 | 0.19 | 0.19 | 0.09 |
12 | 8200 | 2-Methyl-2-propanol | 0.01 | 0.01 | 0.01 | 0.01 |
13 | 950,000 | Ethanol | 0.00 | 0.00 | 0.00 | 0.00 |
14 | 9000 | 1-Propanol | 0.00 | 0.00 | 0.00 | 0.00 |
15 | 459.2 | 1-Butanol | 0.15 | 0.13 | 0.03 | 0.06 |
16 | 358.1 | 1-Penten-3-ol | 0.24 | 0.18 | 0.16 | 0.15 |
17 | 4 | 1-Butanol, 3-methyl | 6.23 | 5.37 | 3.88 | 11.13 |
18 | 150.2 | 1-Pentanol | 1.66 | 1.52 | 1.39 | 1.02 |
19 | 547.125 | 3-Methyl-3-buten-1-ol | 0.01 | 0.01 | 0.01 | 0.02 |
20 | 110 | (E)-3-Hexen-1-ol | 0.07 | 0.06 | 0.05 | 1.12 |
21 | 5.6 | 1-Hexanol | 5.65 | 6.63 | 6.37 | 17.53 |
22 | 6 | Linalool | 92.77 | 78.46 | 66.20 | 35.12 |
23 | 40,000 | 2-Propanone | 0.02 | 0.02 | 0.02 | 0.02 |
24 | 35,400.2 | 2-Butanone | 0.01 | 0.01 | 0.01 | 0.01 |
25 | 240 | 4-Methyl-2-pentanone | 0.00 | 0.00 | 0.00 | 0.01 |
26 | 23 | 1-Penten-3-one | 0.59 | 0.52 | 1.18 | 0.17 |
27 | 41 | 3-Hexanone | 0.85 | 0.55 | 0.66 | 1.29 |
28 | 140 | 2-Heptanone | 2.01 | 1.61 | 1.38 | 0.77 |
29 | - | 2-Methyl-3-ketotetrahydrofuran | - | - | - | - |
30 | 14 | 2-Butanone, 3-hydroxy | 1.65 | 1.55 | 1.99 | 0.93 |
31 | 10,000 | 1-Hydroxy-2-propanone | 0.01 | 0.01 | 0.01 | 0.00 |
32 | 68 | 2-Methyl-2-hepten-6-one | 0.08 | 0.11 | 0.14 | 0.08 |
33 | 15.1 | Propanal | 8.17 | 6.82 | 6.78 | 7.18 |
34 | 2 | Butanal | 4.80 | 1.47 | 3.58 | 5.97 |
35 | 1.1 | 3-Methyl butanal | 78.41 | 46.55 | 70.36 | 75.68 |
36 | 12 | n-Pentanal | 19.27 | 15.09 | 15.25 | 21.72 |
37 | 0.3 | (E)-2-butenal | 21.27 | 21.03 | 20.61 | 15.14 |
38 | 4.5 | 1-Hexanal | 62.71 | 54.35 | 51.11 | 77.33 |
39 | - | (Z)-2-Pentenal | - | - | - | - |
40 | 980 | (E)-2-Pentenal | 0.12 | 0.10 | 0.11 | 0.08 |
41 | 2.8 | Heptaldehyde | 7.37 | 6.18 | 6.51 | 14.63 |
42 | 17 | (E)-2-Hexen-1-al | 1.52 | 1.57 | 1.06 | 6.31 |
43 | 0.7 | 1-Octanal | 44.62 | 46.26 | 38.56 | 65.71 |
44 | 13 | (E)-2-Heptenal | 0.66 | 0.68 | 0.57 | 4.77 |
45 | 1.1 | 1-Nonanal | 18.32 | 16.80 | 15.99 | 28.52 |
46 | 350 | Benzaldehyde | 0.35 | 0.28 | 0.31 | 0.22 |
47 | 500 | 5-Methyl furfural | 0.20 | 0.15 | 0.28 | 0.24 |
48 | 5 | Acetic acid ethyl ester | 8.69 | 45.23 | 7.18 | 10.87 |
49 | 1700 | Isopropyl acetate | 0.01 | 0.00 | 0.01 | 0.00 |
50 | 2000 | Acetic acid propyl ester | 0.06 | 0.01 | 0.02 | 0.01 |
51 | 66 | Butyl acetate | 0.18 | 0.57 | 0.20 | 0.05 |
52 | 22,000 | Acetic acid | 0.01 | 0.01 | 0.01 | 0.01 |
53 | - | 2,5-Dimethylfuran | - | - | - | - |
54 | - | Ethyl thiolacetate | - | - | - | - |
55 | 5 | 2-Butylfuran | 5.41 | 3.81 | 4.30 | 8.42 |
56 | 1.1 | 1,8-Cineol | 16.14 | 16.20 | 51.51 | 16.99 |
57 | 5.8 | 2-Pentyl furan | 87.13 | 70.33 | 58.37 | 46.45 |
58 | 10 | Methyl thiocyanate | 1.67 | 1.75 | 1.75 | 35.25 |
59 | - | Methyl 2-propenyl disulfide | - | - | - | - |
60 | 1750 | 2,5-Dimethylpyrazine | 0.02 | 0.02 | 0.02 | 0.01 |
61 | 350.12 | 2,3,5-Trimethylpyrazine | 0.04 | 0.03 | 0.06 | 0.03 |
62 | - | Dipropyl disulfide | - | - | - | - |
63 | 50 | 2,3-Diethylpyrazine | 0.48 | 0.34 | 0.79 | 0.12 |
64 | 30 | Allyl disulfide | 0.10 | 0.09 | 0.92 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Zhang, W.; Wang, H.; Wang, S.; Yan, J.; Dong, Z.; Zhao, P.; Ren, F.; Chen, L. Comparative Analysis of Texture Characteristics, Sensory Properties, and Volatile Components in Four Types of Marinated Tofu. Foods 2024, 13, 2068. https://doi.org/10.3390/foods13132068
Yang B, Zhang W, Wang H, Wang S, Yan J, Dong Z, Zhao P, Ren F, Chen L. Comparative Analysis of Texture Characteristics, Sensory Properties, and Volatile Components in Four Types of Marinated Tofu. Foods. 2024; 13(13):2068. https://doi.org/10.3390/foods13132068
Chicago/Turabian StyleYang, Bing, Wanli Zhang, Heng Wang, Shenli Wang, Jing Yan, Zijie Dong, Penghui Zhao, Fazheng Ren, and Lishui Chen. 2024. "Comparative Analysis of Texture Characteristics, Sensory Properties, and Volatile Components in Four Types of Marinated Tofu" Foods 13, no. 13: 2068. https://doi.org/10.3390/foods13132068
APA StyleYang, B., Zhang, W., Wang, H., Wang, S., Yan, J., Dong, Z., Zhao, P., Ren, F., & Chen, L. (2024). Comparative Analysis of Texture Characteristics, Sensory Properties, and Volatile Components in Four Types of Marinated Tofu. Foods, 13(13), 2068. https://doi.org/10.3390/foods13132068