Correlation Study between Multi-Scale Structure and In Vitro Digestibility of Starch Modified by Temperature Difference
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Preparation of Samples
2.3. Morphology
2.3.1. Micromorphology Observation
2.3.2. Confocal Laser Scanning Microscopy
2.4. Chain Length Distribution (CLD) of Amylopectin
2.5. Crystalline Structure
2.5.1. X-ray Diffraction (XRD)
2.5.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Amylose Content
2.7. Pasting Properties
2.8. In Vitro Digestibility
2.8.1. Starch-Type Detection Analysis
2.8.2. Fitting to First-Order Kinetics
2.9. Data Analyses
3. Results and Discussion
3.1. Morphology
3.2. Microstructure
3.3. Amylopectin Chain Length Distribution (CLD)
3.4. Crystallinity
3.5. FTIR Spectra
3.6. Amylose Content
3.7. Viscosity
3.8. RDS, SDS, and RS
3.9. First-Order Kinetics Analysis
3.10. Structure–Properties Relationship
3.11. Modification Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, S.J.; Baik, M.Y. Characteristics of physically modified starches. Food Sci. Biotechnol. 2023, 32, 875–883. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, X.F.; Lu, F.; Yang, Z.; Tao, H.; Xu, Y.; Wang, H.L. Physical modification of waxy maize starch: Combining SDS and freezing/thawing treatments to modify starch structure and functionality. Food Struct. 2022, 32, 100263. [Google Scholar] [CrossRef]
- Adedeji, A.A.; Ngadi, M. Impact of freezing method, frying and storage on fat absorption kinetics and structural changes of parfried potato. J. Food Eng. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Wang, H.W.; Xu, K.; Liu, X.L.; Zhang, Y.Y.; Xie, X.H.; Zhang, H. Understanding the structural, pasting and digestion properties of starch isolated from frozen wheat dough. Food Hydrocoll. 2021, 111, 106168. [Google Scholar] [CrossRef]
- Tao, H.; Wang, P.; Ali, B.; Wu, F.; Jin, Z.; Xu, X. Structural and functional properties of wheat starch affected by multiple freezing/thawing cycles. Starch/Stärke 2015, 67, 683–691. [Google Scholar] [CrossRef]
- Szymońska, J.; Krok, F.; Tomasik, P. Deep-freezing of potato starch. Int. J. Biol. Macromol. 2000, 27, 307–314. [Google Scholar] [CrossRef]
- Wang, Y.C.; Liang, Y.C.; Huang, F.L.; Chang, W.C. Effect of Freeze-Thaw Cycles on Physicochemical and Functional Properties of Ginger Starch. Processes 2023, 11, 1828. [Google Scholar] [CrossRef]
- Gong, Y.; Xu, S.; He, T.; Dong, R.; Hu, X. Effect of quick-freezing temperature on starch retrogradation and ice crystals properties of steamed oat roll. J. Cereal Sci. 2020, 96, 103109. [Google Scholar] [CrossRef]
- Liu, R.; Yang, Y.H.; Cui, X.J.; Mwabulili, F.; Xie, Y.L. Effects of Baking and Frying on the Protein Oxidation of Wheat Dough. Foods 2023, 12, 4479. [Google Scholar] [CrossRef]
- Jain, A.; Passi, S.J.; Selvamurthy, W.; Singh, A. Effect of frying temperature/frying cycles on trans-fats and oxidative stability of groundnut oil-cardiac risk factors. Asian J. Pharm. Clin. Res. 2019, 12, 452. [Google Scholar] [CrossRef]
- Gong, B.; Xu, M.J.; Li, B.; Wu, H.; Liu, Y.; Zhang, G.Q.; Ouyang, S.H.; Li, W.H. Repeated heat-moisture treatment exhibits superiorities in modification of structural, physicochemical and digestibility properties of red adzuki bean starch compared to continuous heat-moisture way. Food Res. Int. 2017, 102, 776–784. [Google Scholar] [CrossRef]
- Zavareze, E.D.; Dias, A.R.G. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Oktaviani, S.R.; Faridah, D.N.; Wulandari, N.; Afandi, F.A.; Jayanegara, A. Resistant starch content of dual modification autoclaving-cooling and pullulanase debranching on various carbohydrate sources: A systematic review. Int. J. Food Sci. Technol. 2023, 58, 6890–6901. [Google Scholar] [CrossRef]
- Almeida, R.L.J.; Santos, N.C.; Ferreira, I.L.S.; Pedro, M.S.; Feitoza, J.V.F.; Edu-ardo, R.S.; Freire, V.A.; Pereira, T.S.; de Sousa, A.B.B.; de Queiroga, A.X.M.; et al. Effect of combined freezing with heat-moisture treatment (HMT) on the modification of in vitro digestibility, morphostructural, physicochemical, and thermal properties of Adzuki bean starch. J. Food Meas. Charact. 2024. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yin, L.; Wang, Q.Y.; Wang, Y.; Su, J.M.; Li, C.M.; Zhou, X.Y. Effects of freeze–thaw cycles on the physicochemical and in vitro digestibility of starch in pre-fermented frozen raw dough. Int. J. Food. Sci. Technol. 2024, 59, 3297–3307. [Google Scholar] [CrossRef]
- Xie, D.; Guo, D.; Guo, Z.; Hu, X.; Luo, S.; Liu, C. Reduction of oil uptake of fried food by coatings: A review. Int. J. Food Sci. Technol. 2021, 6, 3268–3277. [Google Scholar] [CrossRef]
- Daniel, A.O.; Matthews, L.; Reza, T.A.O. Chicken processing by-product: A source of protein for fat uptake reduction in deep-fried chicken. Food Hydrocoll. 2020, 101, 105500.1–105500.8. [Google Scholar]
- Yang, Q.Y.; Lu, X.X.; Chen, Y.Z.; Luo, Z.G.; Xiao, Z.G. Fine structure, crystalline and physicochemical properties of waxy corn starch treated by ultrasound irradiation. Ultrason. Sonochem. 2019, 51, 350–358. [Google Scholar] [CrossRef]
- Zou, J.; Feng, Y.T.; Xu, M.J.; Yang, P.Y.; Zhao, X.D.; Yang, B. The structure-glycemic index relationship of Chinese yam (Dioscorea opposita Thunb.) starch. Food Chem. 2023, 421, 136228. [Google Scholar] [CrossRef]
- Peng, Y.; Mao, B.; Zhang, C.; Shao, Y.; Wu, T.; Hu, L.; Hu, Y.; Tang, L.; Li, Y.; Tang, W.; et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content. Food Chem. 2021, 353, 129461. [Google Scholar] [CrossRef]
- Yao, M.; Tian, Y.; Yang, W.; Huang, M.; Zhou, S.; Liu, X. The multi-scale structure, thermal and digestion properties of mung bean starch. Int. J. Biol. Macromol. 2019, 131, 871–878. [Google Scholar] [CrossRef] [PubMed]
- He, J.F.; Li, Y.J.; Wang, T.; Deng, Y.L.; Wang, S.B. Kinetic parameter estimation of hepatocellular carcinoma on 18 F-FDG PET/CT based on Bayesian method. Med. Phys. 2023, 50, 2860–2871. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.S.; Ge, X.Z.; Zhang, B.; Su, C.Y.; Zhang, Q.; Jiang, H.; Zhang, G.Q.; Yuan, L.; Yu, X.Z.; Li, W.H. Preparing potato starch nanocrystals assisted by dielectric barrier discharge plasma and its multiscale structure, physicochemical and rheological properties. Food Chem. 2022, 372, 131240. [Google Scholar] [CrossRef] [PubMed]
- Zavareze, E.D.; Storck, C.R.; de Castro, L.A.S.; Schirmer, M.A.; Dias, A.R.G. Effect of heat-moisture treatment on rice starch of varying amylose content. Food Chem. 2010, 121, 358–365. [Google Scholar] [CrossRef]
- Zhang, B.; Saleh, A.S.M.; Su, C.; Gong, B.; Zhao, K.; Zhang, G.; Li, W.; Yan, W. The molecular structure, morphology, and physicochemical property and digestibility of potato starch after repeated and continuous heat-moisture treatment. J Food. Sci. 2020, 85, 4215–4224. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Yu, L.; Yang, M.; Wang, C.; Wang, M.; Bai, X. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocoll. 2018, 83, 465–472. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, W.Q.; Liu, X.Y.; Zheng, J.Y.; Sun, Z.Z.; Ge, X.Z.; Shen, H.S.; Ospankulova, G.; Muratkhan, M.; Li, W.H. Understanding how electron beam irradiation doses and frequencies modify the multiscale structure, physicochemical properties, and in vitro digestibility of potato starch. Food Res. Int. 2022, 162, 111947. [Google Scholar] [CrossRef]
- Chen, P.; Yu, L.; Simon, G.; Petinakis, E.; Dean, K.; Chen, L. Morphologies and microstructures of corn starches with different amylose-amylopectin ratios studied by confocal laser scanning microscope. J. Cereal Sci. 2009, 50, 241–247. [Google Scholar] [CrossRef]
- Hu, A.J.; Lu, J.; Zheng, J.; Sun, J.Y.; Yang, L.; Zhang, X.Q.; Zhang, Y.; Lin, Q.Q. Ultrasonically aided enzymatical effects on the properties and structure of mung bean starch. Innov. Food Sci. Emerg. 2013, 20, 146–151. [Google Scholar] [CrossRef]
- Sun, X.; Saleh, A.S.M.; Lu, Y.; Sun, Z.; Zhang, X.; Ge, X.; Shen, H.; Yu, X.; Li, W. Effects of ultra-high pressure combined with cold plasma on structural, physicochemical, and digestive properties of proso millet starch. Int. J. Biol. Macromol. 2022, 212, 146–154. [Google Scholar] [CrossRef]
- Shen, H.; Guo, Y.; Zhao, J.; Zhao, J.; Ge, X.; Zhang, Q.; Yan, W. The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int. J. Biol. Macromol. 2021, 191, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Shen, H.; Su, C.; Zhang, B.; Li, W. The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch. Food Chem. 2021, 349, 129159. [Google Scholar] [CrossRef] [PubMed]
- Sievert, D.; Pomeranz, Y. Enzyme-resistant starch I: Characterization and evaluation by enzymatic, thermoanalytical, and microscopic methods. Cereal Chem. 1989, 66, 342–347. [Google Scholar]
- Sun, X.; Sun, Z.; Guo, Y.; Yan, W. Effect of twin-xuscrew extrusion combined with cold plasma on multi-scale structure, physicochemical properties, and digestibility of potato starches. Innov. Food Sci. Emerging Technol. 2021, 74, 102855. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Yang, Q.Y.; Xu, X.J.; Qi, L.; Dong, Z.H.; Luo, Z.G.; Lu, X.X.; Peng, X.C. Structural changes of waxy and normal maize starches modified by heat moisture treatment and their relationship with starch digestibility. Carbohydr. Polym. 2017, 177, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, B.; Chen, L.; Li, X. Understanding the structure and digestibility of heat-moisture treated starch. Int. J. Biol. Macromol. 2016, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gustavo1, L.V.; Jose, A.R.; Consuelo, L.C.; Eduardo Jaime, V.C.; Nancy, H.M. Characterization of Corn Starch-Calcium Alginate Xerogels by Microscopy, Thermal, XRD, and FTIR Analyses. Starch/Stärke 2021, 73, 2000282. [Google Scholar]
- Zou, J.; Xu, M.J.; Zou, Y.F.; Yang, B. Physicochemical properties and microstructure of Chinese yam (Dioscorea opposita Thunb.) flour. Food Hydrocoll. 2020, 113, 106448. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I. Research advances on structural characterization of resistant starch and its structure-physiological function relationship: A review. Crit. Rev. Food Sci. 2018, 58, 1059–1083. [Google Scholar] [CrossRef]
- Lemos, P.V.F.; Barbosa, L.S.; Ramos, I.G.; Coelho, R.E.; Druzian, J.I. The important role of crystallinity and amylose ratio in thermal stability of starches. J. Therm. Anal. Calorims. 2018, 131, 2555–2567. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B.R. REVIEW: Cereal Carbohydrates and Colon Health. Cereal Chem. 2010, 87, 331–341. [Google Scholar] [CrossRef]
- Rosell Cristina, M.; Yaiza, B.-G. Comparison of porous starches obtained from different enzyme types and levels. Carbohydr. Polym. 2017, 157, 533–540. [Google Scholar]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Shin, S.I.; Lee, C.J.; Kim, D.I.; Lee, H.A.; Cheong, J.J.; Chung, K.M.; Baik, M.Y.; Park, C.S.; Kim, C.H.; Moon, T.W. Formation, characterization, and glucose response in mice to rice starch with low digestibility produced by citric acid treatment. J. Cereal Sci. 2007, 45, 24–33. [Google Scholar] [CrossRef]
- Lee, C.J.; Moon, T.W. Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch. Carbohydr. Polym. 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.K.; Lim, S.T. Influences of temperature-cycled storage on retrogradation and in vitro digestibility of waxy maize starch gel. J. Cereal Sci. 2009, 50, 43–48. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, S.K.; Liu, L.; Wang, S.; Copeland, L. Structural Orders of Wheat Starch Do Not Determine the In Vitro Enzymatic Digestibility. J. Agric. Food Chem. 2017, 65, 1697–1706. [Google Scholar] [CrossRef]
- Dhital, S.; Shrestha, A.K.; Gidley, M.J. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydr. Polym. 2010, 82, 480–488. [Google Scholar] [CrossRef]
Samples’ Designation | Details of Sample Preparation |
---|---|
H3 | The pretreated corn starch was heated at 230 °C for 3 h. |
L3 | The pretreated corn starch was subjected to −80 °C for 3 h. |
H3-L3 | The pretreated corn starch was heated at 230 °C for 3 h and then cooled at −80 °C for 3 h. |
L3-H3 | The pretreated corn starch was subjected to −80 °C for 3 h and then 230 °C for 3 h. |
H6-L3 | The pretreated corn starch was heated at 230 °C for 6 h and then cooled at −80 °C for 3 h. |
L3-H6 | The pretreated corn starch was modified at −80 °C for 3 h and then at 230 °C for 6 h. |
H6-L6 | The pretreated corn starch was heated at 230 °C for 6 h and then cooled at −80 °C for 6 h. |
L6-H6 | The pretreated corn starch was modified at −80 °C for 6 h and then at 230 °C for 6 h. |
Samples | A (DP6-12) | B1 (DP13-24) | B2 (DP24-36) | B3 (DP ≥ 37) | A + B1 |
---|---|---|---|---|---|
Native | 12.55 ± 0.17 d | 42.31 ± 0.17 e | 19.53 ± 0.04 a | 25.61 ± 0.38 ab | 54.86 ± 0.34 ef |
H3 | 13.28 ± 0.64 d | 43.27 ± 0.16 de | 19.20 ± 0.26 abc | 24.25 ± 0.53 bc | 56.55 ± 0.79 de |
L3 | 11.19 ± 0.43 e | 42.66 ± 0.45 e | 19.59 ± 0.26 a | 26.54 ± 0.61 a | 53.86 ± 0.88 f |
H3-L3 | 13.25 ± 0.11 d | 43.80 ± 0.25 d | 19.40 ± 0.11 ab | 23.54 ± 0.24 c | 57.06 ± 0.35 d |
L3-H3 | 12.17 ± 0.27 de | 43.22 ± 0.14 de | 19.62 ± 0.07 a | 24.98 ± 0.35 abc | 55.39 ± 0.42 def |
H6-L3 | 17.26 ± 0.21 b | 49.57 ± 0.36 a | 17.78 ± 0.15 de | 15.38 ± 0.41 e | 66.84 ± 0.56 b |
L3-H6 | 15.25 ± 0.25 c | 47.73 ± 0.11 b | 18.55 ± 0.38 bcd | 18.47 ± 0.24 d | 62.98 ± 0.14 c |
H6-L6 | 18.90 ± 0.19 a | 50.04 ± 0.27 a | 17.28 ± 0.21 e | 13.78 ± 0.66 e | 68.94 ± 0.46 a |
L6-H6 | 16.66 ± 0.25 b | 46.43 ± 0.44 c | 18.50 ± 0.22 bcd | 18.40 ± 0.41 d | 63.09 ± 0.19 c |
Samples | RC (%) | 1047/1022 | AC (%) |
---|---|---|---|
Native | 25.46 ± 0.16 cd | 0.866 ± 0.002 bc | 23.03 ± 0.44 a |
H3 | 26.67 ± 0.38 bc | 0.879 ± 0.003 ab | 6.94 ± 0.95 d |
L3 | 22.49 ± 0.37 fg | 0.818 ± 0.009 d | 22.13 ± 0.43 a |
H3-L3 | 23.64 ± 0.30 ef | 0.874 ± 0.001 ab | 5.13 ± 0.14 de |
L3-H3 | 21.86 ± 0.13 g | 0.852 ± 0.005 c | 13.46 ± 1.37 b |
H6-L3 | 29.41 ± 0.82 a | 0.883 ± 0.004 ab | 3.89 ± 0.87 ef |
L3-H6 | 24.93 ± 0.23 de | 0.877 ± 0.001 ab | 9.13 ± 0.14 c |
H6-L6 | 30.46 ± 1.04 a | 0.891 ± 0.010 a | 2.65 ± 0.30 f |
L6-H6 | 27.52 ± 0.47 b | 0.885 ± 0.002 ab | 5.13 ± 0.89 de |
Samples | PV (cp) | TV (cp) | BD (cp) | FV (cp) | SB (cp) | PT (min) | GT (°C) |
---|---|---|---|---|---|---|---|
Native | 2811 ± 17 a | 2347 ± 26 a | 464 ± 9 a | 2864 ± 11 a | 517 ± 14 a | 5.40 ± 0.00 a | 77.63 ± 0.04 b |
H3 | 1061 ± 13 b | 873 ± 6 b | 188 ± 8 b | 996 ± 14 b | 123 ± 8 b | 5.34 ± 0.09 a | 84.78 ± 0.04 a |
L3 | 2836 ± 71 a | 2343 ± 2 a | 494 ± 69 a | 2868 ± 32 a | 525 ± 29 a | 5.34 ± 0.09 a | 77.50 ± 1.20 b |
H3-L3 | 1022 ± 2 b | 898 ± 4 b | 124 ± 1 b | 1019 ± 8 b | 121 ± 4 b | 5.40 ± 0.10 a | 85.70 ± 0.00 a |
L3-H3 | 821 ± 23 c | 652 ± 27 c | 169 ± 4 b | 769 ± 28 c | 116 ± 1 b | 5.34 ± 0.09 a | 84.38 ± 0.67 a |
H6-L3 | 46 ± 3 d | 27 ± 0 d | 19 ± 3 c | 41 ± 1 d | 14 ± 1 c | 4.17 ± 0.05 b | / |
L3-H6 | 32 ± 2 d | 15 ± 1 d | 17 ± 1 c | 22 ± 0 d | 7 ± 1 c | 3.80 ± 0.00 c | / |
H6-L6 | 46 ± 0 d | 29 ± 1 d | 18 ± 1 c | 43 ± 1 d | 14 ± 0 c | 4.20 ± 0.00 b | / |
L6-H6 | 24 ± 1 d | 10 ± 1 d | 15 ± 1 c | 17 ± 1 d | 7 ± 0 c | 3.83 ± 0.14 c | / |
Samples | K1 (min−1) | C1∞ (%) | K2 (min−1) | C2∞ (%) |
---|---|---|---|---|
Native | 0.08 ± 0.00 c | 37.02 ± 0.03 c | 0.05 ± 0.00 cd | 41.26 ± 0.07 d |
H3 | 0.14 ± 0.00 bc | 42.55 ± 0.02 b | 0.07 ± 0.00 bc | 46.85 ± 0.37 ab |
L3 | 0.15 ± 0.00 bc | 28.50 ± 0.46 d | 0.03 ± 0.00 d | 45.55 ± 0.65 c |
H3-L3 | 0.18 ± 0.02 bc | 43.58 ± 0.48 ab | 0.10 ± 0.00 ab | 46.11 ± 0.13 bc |
L3-H3 | 0.16 ± 0.05 bc | 28.48 ± 0.96 d | 0.07 ± 0.00 bc | 32.87 ± 0.24 e |
H6-L3 | 0.28 ± 0.03 ab | 45.42 ± 0.63 a | 0.12 ± 0.03 a | 47.49 ± 0.19 a |
L3-H6 | 0.17 ± 0.01 bc | 30.30 ± 0.80 d | 0.08 ± 0.00 bc | 33.80 ± 0.11 e |
H6-L6 | 0.35 ± 0.05 a | 45.40 ± 0.04 a | 0.13 ± 0.00 a | 46.50 ± 0.06 abc |
L6-H6 | 0.35 ± 0.09 a | 45.49 ± 0.05 a | 0.12 ± 0.01 a | 46.37 ± 0.05 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Xu, M.; Chen, D.; Zhang, X.; Zhou, B.; Zou, J. Correlation Study between Multi-Scale Structure and In Vitro Digestibility of Starch Modified by Temperature Difference. Foods 2024, 13, 2047. https://doi.org/10.3390/foods13132047
Feng Y, Xu M, Chen D, Zhang X, Zhou B, Zou J. Correlation Study between Multi-Scale Structure and In Vitro Digestibility of Starch Modified by Temperature Difference. Foods. 2024; 13(13):2047. https://doi.org/10.3390/foods13132047
Chicago/Turabian StyleFeng, Yongting, Meijuan Xu, Dongwei Chen, Xiao Zhang, Bin Zhou, and Jian Zou. 2024. "Correlation Study between Multi-Scale Structure and In Vitro Digestibility of Starch Modified by Temperature Difference" Foods 13, no. 13: 2047. https://doi.org/10.3390/foods13132047
APA StyleFeng, Y., Xu, M., Chen, D., Zhang, X., Zhou, B., & Zou, J. (2024). Correlation Study between Multi-Scale Structure and In Vitro Digestibility of Starch Modified by Temperature Difference. Foods, 13(13), 2047. https://doi.org/10.3390/foods13132047