Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention
Abstract
1. Introduction
2. Oxidative Stress and Antioxidant Defense System
3. Natural Antioxidant
3.1. Polyphenols
3.1.1. Resveratrol
3.1.2. Quercetin
3.1.3. Curcumin
3.1.4. Ferulic Acid
3.2. Carotenoids
3.3. Vitamins
3.3.1. Vitamin C
3.3.2. Vitamin A
3.3.3. Vitamin E
4. Diseases Associated with Oxidative Stress in Humans
4.1. Non-Alcoholic Fatty Liver Disease
4.2. Ischemia–Reperfusion Injury
4.2.1. Coronary Artery Disease
4.2.2. Post Operative Atrial Fibrillation
4.2.3. Ischemic Stroke
5. Multitherapeutic Approaches Using Natural Antioxidants in Oxidative Stress-Related Diseases
5.1. Non-Alcoholic Fatty Liver Disease
5.2. Ischemia–Reperfusion Injury
5.2.1. Acute Myocardial Infarction
5.2.2. Postoperative Atrial Fibrillation
5.2.3. Stroke
Disease | Study Details | “n” | Main Findings | Reference |
---|---|---|---|---|
NAFLD | Vitamin C measurement in patients with NAFLD | 4.494 | Inverse association between serum VC levels and NAFLD | [142] |
12 weeks of oral treatment with low/medium/high doses of VC | 84 | VC supplementation, specially medium dose (1000 mg/day), improved liver health and glucose metabolism | [143] | |
Lifestyle intervention with or without antioxidant therapy (alpha-tocopherol and vitamin C) | 53 | Antioxidant therapy plus lifestyle did not have better results than lifestyle alone in liver histology and laboratory abnormalities | [144] | |
Resveratrol supplementation in overweight, obese, and insulin-resistant patients. | 112 | Resveratrol was well tolerated, but it did not significantly impact liver fat content and cardiometabolic risk | [145] | |
Subjects with NAFLD were given resveratrol daily for 3 months versus a placebo | 60 | In the resveratrol group, there was a reduction in different parameters, showing beneficial effects in comparison to the placebo group | [146] | |
Obese patients were given low (5 mg) versus high (20 mg) doses of astaxanthin | 23 | Astaxanthin supplementation was associated with an improvement in OS markers | [150] | |
Baseline serum concentrations of carotenoids, followed by abdominal US at 3 and 6 years | 2687 | Higher serum carotenoid concentration was associated with NAFLD improvement | [151] | |
Acute myocardial infarction | Effect of intravenous and intracoronary vitamin C in patients undergoing PCI | 252 | Patients with VC had significantly lower troponin T and CK MB levels at 12 and 6 h | [155] |
VC administration prior to PCI followed by oral VC + vitamin E for 84 days | 53 | Left ventricular ejection fraction was significantly higher in the high ascorbate group than in the low ascorbate group | [156] | |
VC in patients after thrombolysis in AMI for 5 days | 65 | OS markers were restored almost back to normal values after VC administration | [157] | |
POAF | Meta-analysis of PUFA and vitamin C/E in the incidence of POAF | 3137 | PUFA alone did not reduce the incidence of POAF, but PUFA plus vitamin C and E had a significant effect in preventing POAF | [167] |
Perioperative addition of PUFAs in patients scheduled for cardiac surgery | 1516 | The risk of developing POAF was not reduced with the addition of PUFAs | [168] | |
Patients undergoing coronary artery bypass graft surgery treated with oral PUFAs before surgery | 260 | Oral supplementation of PUFAs before surgery did not reduce the risk of POAF | [169] | |
Patients with cardiac surgery were given PUFAs 5–7 days before the procedure and after until hospital discharge | 168 | There was not beneficial effect in the incidence of POAF in patients supplemented with PUFAs | [170] | |
Patients undergoing cardiac surgery were given PUFAs for at least 5 days before | 108 | Omega-3 PUFA did not reduce the risk of AF after coronary artery bypass graft surgery | [171] | |
Preoperative PUFA therapy in patients undergoing cardiac surgery | 530 | Preoperative PUFA therapy is associated with a decreased incidence of early AF after cardiac surgery but not late AF | [172] | |
Pre- and postoperative treatment with PUFAs at least 5 days before elective cardiac surgery | 160 | PUFA administration substantially reduced the incidence of POAF (54.4%) and was associated with a shorter hospital stay | [173] | |
Pre- and postoperative administration of PUFAs in patients undergoing elective cardiac surgery | 201 | There was a significant reduction in POAF in patients treated with PUFAs | [174] | |
Long-term intake of antioxidant-rich foods in patients undergoing cardiac surgery | 217 | Long-term consumption of antioxidant-rich foods was associated with a reduced risk of developing POAF | [178] | |
Stroke | Nutritional status and plasma levels of vitamin C and E in patients 2–5 days after stroke onset | 15 | Stroke patients had significantly lower plasma levels of vitamin C and higher oxidative stress markers | [179] |
Vitamin C therapy for 10 days after stroke onset | 60 | Vitamin C elevated serum antioxidant levels, but it did not improve the clinical and functional status of the patient after 3 months | [180] | |
Vitamin C plus aspirin vs. aspirin alone in patients after ischemic stroke | 59 | Vitamin C plus aspirin significantly decreases lipid peroxidation | [181] | |
Over-time changes in a number of carotenoids during the first hours after the occurrence of ischemic stroke | 28 | The majority of plasma carotenoids are lowered immediately after an ischemic stroke | [186] | |
Plasma levels of lipophilic antioxidant vitamins and neurological deficits after 48 h of stroke onset | 68 | Plasma levels of alpha- and beta-carotene were lower in patients with stroke. There was a negative association between neurologic deficit and plasma levels of carotenoids | [187] |
6. In Silico Studies on Natural Antioxidants
7. Concluding Remarks and Future Perspectives
Authors Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, P.; Li, K.; Peng, X.-X.; Kan, Y.; Yao, T.-J.; Wang, Z.-Y.; Li, Z.; Liu, H.-Y.; Cai, D. Curcumin Derived from Medicinal Homologous Foods: Its Main Signals in Immunoregulation of Oxidative Stress, Inflammation, and Apoptosis. Front. Immunol. 2023, 14, 1233652. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, S.I.; Taha, M.M.E.; Mariod, A.A.; Al-Foraih, M.; Al-Asmari, H. Exploring Nutraceuticals: A Comprehensive Examination of Inception, Thematic Mapping, Evolution, Emerging Trends, and Gaps. Curr. Res. Nutr. Food Sci. J. 2024, 12, 41–57. [Google Scholar] [CrossRef]
- Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of Oxidative Stress in Pathophysiology of Nonalcoholic Fatty Liver Disease. Oxid. Med. Cell. Longev. 2018, 2018, 9547613. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Ninic, A.; Kotur-Stevuljevic, J. Oxidative Stress and Cardiometabolic Biomarkers in Patients with Non-Alcoholic Fatty Liver Disease. Sci. Rep. 2021, 11, 18455. [Google Scholar] [CrossRef]
- Kumar, V.; Bishayee, K.; Park, S.; Lee, U.; Kim, J. Oxidative Stress in Cerebrovascular Disease and Associated Diseases. Front. Endocrinol. 2023, 14, 1124419. [Google Scholar] [CrossRef]
- Xiang, M.; Lu, Y.; Xin, L.; Gao, J.; Shang, C.; Jiang, Z.; Lin, H.; Fang, X.; Qu, Y.; Wang, Y.; et al. Role of Oxidative Stress in Reperfusion Following Myocardial Ischemia and Its Treatments. Oxid. Med. Cell. Longev. 2021, 2021, 6614009. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Jones, D. Oxidative Stress*. In Encyclopedia of Stress, 2nd ed.; Fink, G., Ed.; Academic Press: New York, NY, USA, 2007; pp. 45–48. ISBN 978-0-12-373947-6. [Google Scholar]
- Sies, H. Oxidative Eustress: On Constant Alert for Redox Homeostasis. Redox Biol. 2021, 41, 101867. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Eustress: The Physiological Role of Oxidants. Sci. China Life Sci. 2023, 66, 1947–1948. [Google Scholar] [CrossRef]
- del Río, L.A. ROS and RNS in Plant Physiology: An Overview. J. Exp. Bot. 2015, 66, 2827–2837. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Janaszak-Jasiecka, A.; Płoska, A.; Wierońska, J.M.; Dobrucki, L.W.; Kalinowski, L. Endothelial Dysfunction Due to eNOS Uncoupling: Molecular Mechanisms as Potential Therapeutic Targets. Cell. Mol. Biol. Lett. 2023, 28, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, N.; Xu, Y.; Feng, J.; Yao, T.; Wang, F.; Ma, Z.; Han, H. Fenton Reaction-Mediated Dual-Attenuation of Signal for Ultrasensitive Amperometric Immunoassay. Biosens. Bioelectron. 2021, 178, 113009. [Google Scholar] [CrossRef] [PubMed]
- Karunatilleke, N.C.; Fast, C.S.; Ngo, V.; Brickenden, A.; Duennwald, M.L.; Konermann, L.; Choy, W.Y. Nrf2, the Major Regulator of the Cellular Oxidative Stress Response, Is Partially Disordered. Int. J. Mol. Sci. 2021, 22, 7434. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.Y.; Ahmad, N.; Haqqi, T.M. Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomed. Pharmacother. 2020, 129, 110452. [Google Scholar] [CrossRef]
- Acosta, M.L.C. Polifenoles-Compuestos Bioactivos Con Efectos Benéficos En La Prevención De Diabetes Tipo 2. Rev. Digit. REDCieN 2019, 1, 6. [Google Scholar]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef] [PubMed]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health Benefits of Resveratrol Administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Luo, M.; Huang, S.-Y.; Saimaiti, A.; Shang, A.; Gan, R.-Y.; Li, H.-B. Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French Paradox Revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Meng, X.; Maliakal, P.; Lu, H.; Lee, M.-J.; Yang, C.S. Urinary and Plasma Levels of Resveratrol and Quercetin in Humans, Mice, and Rats after Ingestion of Pure Compounds and Grape Juice. J. Agric. Food Chem. 2004, 52, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Bento-Silva, A.; Koistinen, V.M.; Mena, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.-M. Factors Affecting Intake, Metabolism and Health Benefits of Phenolic Acids: Do We Understand Individual Variability? Eur. J. Nutr. 2020, 59, 1275–1293. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Milenkovic, D.; Van de Wiele, T.; Rodriguez-Mateos, A.; de Roos, B.; Garcia-Conesa, M.T.; Landberg, R.; Gibney, E.R.; Heinonen, M.; Tomás-Barberán, F.; et al. Addressing the Inter-individual Variation in Response to Consumption of Plant Food Bioactives: Towards a Better Understanding of Their Role in Healthy Aging and Cardiometabolic Risk Reduction. Mol. Nutr. Food Res. 2017, 61, 1600557. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health Benefits of Resveratrol: Evidence from Clinical Studies. Med. Res. Rev. 2019, 39, 1851–1891. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic Application of Quercetin in Aging-Related Diseases: SIRT1 as a Potential Mechanism. Front. Immunol. 2022, 13, 943321. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. BioMed Res. Int. 2019, 2019, 7039802. [Google Scholar] [CrossRef] [PubMed]
- Shabir, I.; Kumar Pandey, V.; Shams, R.; Dar, A.H.; Dash, K.K.; Khan, S.A.; Bashir, I.; Jeevarathinam, G.; Rusu, A.V.; Esatbeyoglu, T.; et al. Promising Bioactive Properties of Quercetin for Potential Food Applications and Health Benefits: A Review. Front. Nutr. 2022, 9, 999752. [Google Scholar] [CrossRef] [PubMed]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, R.; Retamal, C.; Schupper, D.; Vergara-Hernández, D.; Saha, S.; Profumo, E.; Buttari, B.; Saso, L. Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022, 27, 2564. [Google Scholar] [CrossRef]
- Jakobušić Brala, C.; Karković Marković, A.; Kugić, A.; Torić, J.; Barbarić, M. Combination Chemotherapy with Selected Polyphenols in Preclinical and Clinical Studies—An Update Overview. Molecules 2023, 28, 3746. [Google Scholar] [CrossRef]
- Boretti, A. Quercetin as a Cancer Chemopreventive or Chemotherapeutic Agent: Where We Stand. Phytother. Res. PTR 2023, 37, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Ferry, D.R.; Smith, A.; Malkhandi, J.; Fyfe, D.W.; deTakats, P.G.; Anderson, D.; Baker, J.; Kerr, D.J. Phase I Clinical Trial of the Flavonoid Quercetin: Pharmacokinetics and Evidence for in Vivo Tyrosine Kinase Inhibition. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1996, 2, 659–668. [Google Scholar]
- Shoskes, D.A.; Zeitlin, S.I.; Shahed, A.; Rajfer, J. Quercetin in Men with Category III Chronic Prostatitis: A Preliminary Prospective, Double-Blind, Placebo-Controlled Trial. Urology 1999, 54, 960–963. [Google Scholar] [CrossRef] [PubMed]
- Galati, G.; O’Brien, P.J. Potential Toxicity of Flavonoids and Other Dietary Phenolics: Significance for Their Chemopreventive and Anticancer Properties. Free Radic. Biol. Med. 2004, 37, 287–303. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.J.; Hasan, M.F.; Afroz, M.; Sarker, D.K.; Rouf, R.; Islam, M.T.; Shilpi, J.A.; Mubarak, M.S. Curcumin and Its Multi-Target Function Against Pain and Inflammation: An Update of Pre-Clinical Data. Curr. Drug Targets 2020, 22, 656–671. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L.; Maes, M.; Maker, G.L.; Hood, S.D.; Drummond, P.D. Curcumin for the Treatment of Major Depression: A Randomised, Double-Blind, Placebo Controlled Study. J. Affect. Disord. 2014, 167, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Pandaran Sudheeran, S.; Jacob, D.; Natinga Mulakal, J.; Gopinathan Nair, G.; Maliakel, A.; Maliakel, B.; Kuttan, R.; Im, K. Safety, Tolerance, and Enhanced Efficacy of a Bioavailable Formulation of Curcumin with Fenugreek Dietary Fiber on Occupational Stress: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. J. Clin. Psychopharmacol. 2016, 36, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Hanai, H.; Iida, T.; Takeuchi, K.; Watanabe, F.; Maruyama, Y.; Andoh, A.; Tsujikawa, T.; Fujiyama, Y.; Mitsuyama, K.; Sata, M.; et al. Curcumin Maintenance Therapy for Ulcerative Colitis: Randomized, Multicenter, Double-Blind, Placebo-Controlled Trial. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2006, 4, 1502–1506. [Google Scholar] [CrossRef]
- Storka, A.; Vcelar, B.; Klickovic, U.; Gouya, G.; Weisshaar, S.; Aschauer, S.; Bolger, G.; Helson, L.; Wolzt, M. Safety, Tolerability and Pharmacokinetics of Liposomal Curcumin in Healthy Humans. Int. J. Clin. Pharmacol. Ther. 2015, 53, 54–65. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Rahimi, R.; Farzaei, M.H. Pharmacokinetic Interactions of Curcuminoids with Conventional Drugs: A Review. J. Ethnopharmacol. 2017, 209, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Neto-Neves, E.M.; da Silva Maia Bezerra Filho, C.; Dejani, N.N.; de Sousa, D.P. Ferulic Acid and Cardiovascular Health: Therapeutic and Preventive Potential. Mini Rev. Med. Chem. 2021, 21, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Rui, Y.-X.; Guo, S.-D.; Luan, F.; Liu, R.; Zeng, N. Ferulic Acid: A Review of Its Pharmacology, Pharmacokinetics and Derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, L.; Qiu, W.; Shi, Y. Ferulic Acid Exhibits Anti-Inflammatory Effects by Inducing Autophagy and Blocking NLRP3 Inflammasome Activation. Mol. Cell. Toxicol. 2022, 18, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2018, 10, 713. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wu, Y.; Zhou, L.; Wang, Q.; Tang, Y.; Sun, Y.; Zheng, F.; Li, Y. The Efficacy of Sodium Ferulate Combination Therapy in Coronary Heart Disease: A Systematic Review and Meta-Analysis. Phytomed. Int. J. Phytother. Phytopharm. 2023, 115, 154829. [Google Scholar] [CrossRef] [PubMed]
- Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, Pharmacology and Treatment. Br. J. Pharmacol. 2017, 174, 1290–1324. [Google Scholar] [CrossRef]
- Furr, H.C.; Clark, R.M. Intestinal Absorption and Tissue Distribution of Carotenoids. J. Nutr. Biochem. 1997, 8, 364–377. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Silva, A.M.S.; Carvalho, F.; Fernandes, E. Antioxidant and Pro-Oxidant Activities of Carotenoids and Their Oxidation Products. Food Chem. Toxicol. 2018, 120, 681–699. [Google Scholar] [CrossRef]
- Martin, H.D.; Ruck, C.; Schmidt, M.; Sell, S.; Beutner, S.; Mayer, B.; Walsh, R. Chemistry of Carotenoid Oxidation and Free Radical Reactions. Pure Appl. Chem. 1999, 71, 2253–2262. [Google Scholar] [CrossRef]
- Boussiba, S. Carotenogenesis in the Green Alga Haematococcus Pluvialis: Cellular Physiology and Stress Response. Physiol. Plant. 2000, 108, 111–117. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H. Inhibitory Effect of Astaxanthin on Oxidative Stress-Induced Mitochondrial Dysfunction—A Mini-Review. Nutrients 2018, 10, 1137. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Nawaz, A.; Hecht, K.; Tobe, K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021, 14, 107. [Google Scholar] [CrossRef]
- Urakaze, M.; Kobashi, C.; Satou, Y.; Shigeta, K.; Toshima, M.; Takagi, M.; Takahashi, J.; Nishida, H. The Beneficial Effects of Astaxanthin on Glucose Metabolism and Modified Low-Density Lipoprotein in Healthy Volunteers and Subjects with Prediabetes. Nutrients 2021, 13, 4381. [Google Scholar] [CrossRef] [PubMed]
- Kupcinskas, L.; Lafolie, P.; Lignell, A.; Kiudelis, G.; Jonaitis, L.; Adamonis, K.; Andersen, L.P.; Wadström, T. Efficacy of the Natural Antioxidant Astaxanthin in the Treatment of Functional Dyspepsia in Patients with or without Helicobacter Pylori Infection: A Prospective, Randomized, Double Blind, and Placebo-Controlled Study. Phytomed. Int. J. Phytother. Phytopharm. 2008, 15, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, T.; Kizawa, Y.; Li, Y.; Miura, N. Effects of Diet Containing Astaxanthin on Visual Function in Healthy Individuals: A Randomized, Double-Blind, Placebo-Controlled, Parallel Study. J. Clin. Biochem. Nutr. 2023, 72, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.P.; Holck, S.; Kupcinskas, L.; Kiudelis, G.; Jonaitis, L.; Janciauskas, D.; Permin, H.; Wadström, T. Gastric Inflammatory Markers and Interleukins in Patients with Functional Dyspepsia Treated with Astaxanthin. FEMS Immunol. Med. Microbiol. 2007, 50, 244–248. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M.; et al. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxid. Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef]
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef]
- Linster, C.L.; Van Schaftingen, E. Vitamin C. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef]
- Burns, J.J. Missing Step in Man, Monkey and Guinea Pig Required for the Biosynthesis of L-Ascorbic Acid. Nature 1957, 180, 553. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Skrzydlewska, E. Ascorbic Acid as Antioxidant. Vitam. Horm. 2023, 121, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Ariharan, V.N.; Kalirajan, K.; Devi, V.N.M.; Prasad, P.N. Una Fruta Exótica Que Constituye La Nueva Fuente Natural de Vitamina C. Rasayan J. Chem. 2012, 5, 356–359. [Google Scholar]
- Domínguez-Perles, R.; Mena, P.; García-Viguera, C.; Moreno, D.A. Brassica Foods as a Dietary Source of Vitamin C: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1076–1091. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Espey, M.G.; Sun, A.Y.; Lee, J.H.; Krishna, M.C.; Shacter, E.; Choyke, P.L.; Pooput, C.; Kirk, K.L.; Buettner, G.R.; et al. Ascorbate in Pharmacologic Concentrations Selectively Generates Ascorbate Radical and Hydrogen Peroxide in Extracellular Fluid in Vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 8749–8754. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Corpe, C.P.; Tu, H.; Eck, P.; Wang, J.; Faulhaber-Walter, R.; Schnermann, J.; Margolis, S.; Padayatty, S.; Sun, H.; Wang, Y.; et al. Vitamin C Transporter Slc23a1 Links Renal Reabsorption, Vitamin C Tissue Accumulation, and Perinatal Survival in Mice. J. Clin. Investig. 2010, 120, 1069–1083. [Google Scholar] [CrossRef] [PubMed]
- Rumsey, S.C.; Daruwala, R.; Al-Hasani, H.; Zarnowski, M.J.; Simpson, I.A.; Levine, M. Dehydroascorbic Acid Transport by GLUT4 Xenopus Oocytes and Isolated Rat Adipocytes. J. Biol. Chem. 2000, 275, 28246–28253. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J.; Kivirikko, K.I. COLLAGENS: Molecular Biology, Diseases, and Potentials for Therapy. Annu. Rev. Biochem. 2003, 64, 403–434. [Google Scholar] [CrossRef]
- Myllyharju, J. Prolyl 4-Hydroxylases, Key Enzymes in the Synthesis of Collagens and Regulation of the Response to Hypoxia, and Their Roles as Treatment Targets. Ann. Med. 2009, 40, 402–417. [Google Scholar] [CrossRef]
- Plantinga, Y.; Ghiadoni, L.; Magagna, A.; Giannarelli, C.; Franzoni, F.; Taddei, S.; Salvetti, A. Supplementation with Vitamins C and E Improves Arterial Stiffness and Endothelial Function in Essential Hypertensive Patients. Am. J. Hypertens. 2007, 20, 392–397. [Google Scholar] [CrossRef]
- Hemilä, H.; Chalker, E. Vitamin C for Preventing and Treating the Common Cold. Cochrane Database Syst. Rev. 2013, 2013, CD000980. [Google Scholar] [CrossRef]
- Böttger, F.; Vallés-Martí, A.; Cahn, L.; Jimenez, C.R. High-Dose Intravenous Vitamin C, a Promising Multi-Targeting Agent in the Treatment of Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 343. [Google Scholar] [CrossRef]
- Saari, J.C. Vitamin A and Vision. Subcell. Biochem. 2016, 81, 231–259. [Google Scholar] [CrossRef]
- Kam, R.K.T.; Deng, Y.; Chen, Y.; Zhao, H. Retinoic Acid Synthesis and Functions in Early Embryonic Development. Cell Biosci. 2012, 2, 11. [Google Scholar] [CrossRef]
- Amimo, J.O.; Michael, H.; Chepngeno, J.; Raev, S.A.; Saif, L.J.; Vlasova, A.N. Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients 2022, 14, 5038. [Google Scholar] [CrossRef]
- Surman, S.L.; Penkert, R.R.; Sealy, R.E.; Jones, B.G.; Marion, T.N.; Vogel, P.; Hurwitz, J.L. Consequences of Vitamin A Deficiency: Immunoglobulin Dysregulation, Squamous Cell Metaplasia, Infectious Disease, and Death. Int. J. Mol. Sci. 2020, 21, 5570. [Google Scholar] [CrossRef]
- D’Ambrosio, D.N.; Clugston, R.D.; Blaner, W.S. Vitamin A Metabolism: An Update. Nutrients 2011, 3, 63–103. [Google Scholar] [CrossRef]
- Von Lintig, J. Provitamin A Metabolism and Functions in Mammalian Biology. Am. J. Clin. Nutr. 2012, 96, 1234S–1244S. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.E.; Ramkumar, S.; Sun, W.; Colon Ortiz, C.; Kiser, P.D.; Golczak, M.; Von Lintig, J. The Biochemical Basis of Vitamin A Production from the Asymmetric Carotenoid β-Cryptoxanthin. ACS Chem. Biol. 2018, 13, 2121–2129. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-de-Miguel, B.; Estévez-Santiago, R.; Olmedilla-Alonso, B. Assessment of Dietary Vitamin A Intake (Retinol, α-Carotene, β-Carotene, β-Cryptoxanthin) and Its Sources in the National Survey of Dietary Intake in Spain (2009–2010). Int. J. Food Sci. Nutr. 2015, 66, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Maiani, G.; Castón, M.J.P.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; et al. Carotenoids: Actual Knowledge on Food Sources, Intakes, Stability and Bioavailability and Their Protective Role in Humans. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Reuss, L.; Wang, Y. β-Cryptoxanthin: Chemistry, Occurrence, and Potential Health Benefits. Curr. Pharmacol. Rep. 2019, 5, 20–34. [Google Scholar] [CrossRef]
- Kedishvili, N.Y. Retinoic Acid Synthesis and Degradation. Subcell. Biochem. 2016, 81, 127–161. [Google Scholar] [CrossRef] [PubMed]
- Dao, D.Q.; Ngo, T.C.; Thong, N.M.; Nam, P.C. Is Vitamin A an Antioxidant or a Pro-Oxidant? J. Phys. Chem. B 2017, 121, 9348–9357. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H.; Reddy, S.P.M.; Di, Y.P.P.; Yoneda, K.; Harper, R.; Wu, R. Regulation of Thioredoxin Gene Expression by Vitamin A in Human Airway Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2002, 26, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Xiu, J.W.; Hayes, J.D.; Henderson, C.J.; Wolf, C.R. Identification of Retinoic Acid as an Inhibitor of Transcription Factor Nrf2 through Activation of Retinoic Acid Receptor Alpha. Proc. Natl. Acad. Sci. USA 2007, 104, 19589–19594. [Google Scholar] [CrossRef]
- Tan, K.P.; Kosuge, K.; Yang, M.; Ito, S. NRF2 as a Determinant of Cellular Resistance in Retinoic Acid Cytotoxicity. Free Radic. Biol. Med. 2008, 45, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Molina-Jijón, E.; Rodríguez-Muñoz, R.; Namorado, M.d.C.; Bautista-García, P.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Reyes, J.L. All-Trans Retinoic Acid Prevents Oxidative Stress-Induced Loss of Renal Tight Junction Proteins in Type-1 Diabetic Model. J. Nutr. Biochem. 2015, 26, 441–454. [Google Scholar] [CrossRef]
- Wiegand, U.W.; Hartmann, S.; Hummler, H. Safety of Vitamin A: Recent Results. Int. J. Vitam. Nutr. Res. Int. Z. Vitam.-Ernahrungsforschung J. Int. Vitaminol. Nutr. 1998, 68, 411–416. [Google Scholar]
- Kocher, H.M.; Basu, B.; Froeling, F.E.M.; Sarker, D.; Slater, S.; Carlin, D.; deSouza, N.M.; De Paepe, K.N.; Goulart, M.R.; Hughes, C.; et al. Phase I Clinical Trial Repurposing All-Trans Retinoic Acid as a Stromal Targeting Agent for Pancreatic Cancer. Nat. Commun. 2020, 11, 4841. [Google Scholar] [CrossRef]
- Niki, E.; Abe, K. CHAPTER 1: Vitamin E: Structure, properties and functions. In Food Chemistry, Function and Analysis; The Royal Society of Chemistry: London, UK, 2019; pp. 1–11. [Google Scholar] [CrossRef]
- Mène-Saffrané, L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants 2017, 7, 2. [Google Scholar] [CrossRef]
- Kemnic, T.R.; Coleman, M. Vitamin E Deficiency. In Nutrition and the Eye A Practical Approach; Elsevier: Amsterdam, The Netherlands, 2022; pp. 121–122. [Google Scholar] [CrossRef]
- Schwartz, H.; Ollilainen, V.; Piironen, V.; Lampi, A.M. Tocopherol, Tocotrienol and Plant Sterol Contents of Vegetable Oils and Industrial Fats. J. Food Compos. Anal. 2008, 21, 152–161. [Google Scholar] [CrossRef]
- Xu, B.; You, S.; Zhou, L.; Kang, H.; Luo, D.; Ma, H.; Han, S. Simultaneous Determination of Free Phytosterols and Tocopherols in Vegetable Oils by an Improved SPE–GC–FID Method. Food Anal. Methods 2020, 13, 358–369. [Google Scholar] [CrossRef]
- Qian, J.; Morley, S.; Wilson, K.; Nava, P.; Atkinson, J.; Manor, D. Intracellular Trafficking of Vitamin E in Hepatocytes: The Role of Tocopherol Transfer Protein. J. Lipid Res. 2005, 46, 2072–2082. [Google Scholar] [CrossRef]
- Schmolz, L.; Birringer, M.; Lorkowski, S.; Wallert, M. Complexity of Vitamin E Metabolism. World J. Biol. Chem. 2016, 7, 14–43. [Google Scholar] [CrossRef]
- Goncalves, A.; Margier, M.; Roi, S.; Collet, X.; Niot, I.; Goupy, P.; Caris-Veyrat, C.; Reboul, E. Intestinal Scavenger Receptors Are Involved in Vitamin K1 Absorption. J. Biol. Chem. 2014, 289, 30743–30752. [Google Scholar] [CrossRef]
- Borel, P.; Lietz, G.; Goncalves, A.; de Edelenyi, F.S.; Lecompte, S.; Curtis, P.; Goumidi, L.; Caslake, M.J.; Miles, E.A.; Packard, C.; et al. CD36 and SR-BI Are Involved in Cellular Uptake of Provitamin A Carotenoids by Caco-2 and HEK Cells, and Some of Their Genetic Variants Are Associated with Plasma Concentrations of These Micronutrients in Humans. J. Nutr. 2013, 143, 448–456. [Google Scholar] [CrossRef]
- Atkinson, J.; Harroun, T.; Wassall, S.R.; Stillwell, W.; Katsaras, J. The Location and Behavior of α-Tocopherol in Membranes. Mol. Nutr. Food Res. 2010, 54, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, M.; Kamal-Eldin, A.; Lampi, A.M.; Hopia, A. Effects of α- and γ-Tocopherols on Formation of Hydroperoxides and Two Decomposition Products from Methyl Linoleate. J. Am. Oil Chem. Soc. 2000, 77, 801–806. [Google Scholar] [CrossRef]
- Cadenas, E.; Packer, L.; Traber, M.G. Antioxidants, Oxidants, and Redox Impacts on Cell Function—A Tribute to Helmut Sies. Arch. Biochem. Biophys. 2016, 595, 94–99. [Google Scholar] [CrossRef]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, Biology, and Role in Disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266. [Google Scholar] [CrossRef]
- Kim, H.K.; Han, S.N. Vitamin E: Regulatory Role on Gene and Protein Expression and Metabolomics Profiles. IUBMB Life 2019, 71, 442–455. [Google Scholar] [CrossRef]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern. Med. 2005, 142, 37–46. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Grune, T.; Tinz, J.; Zöllner, I.; Blumberg, J.B. Reexamination of a Meta-Analysis of the Effect of Antioxidant Supplementation on Mortality and Health in Randomized Trials. Nutrients 2010, 2, 929–949. [Google Scholar] [CrossRef]
- O’Connor, E.A.; Evans, C.V.; Ivlev, I.; Rushkin, M.C.; Thomas, R.G.; Martin, A.; Lin, J.S. Vitamin and Mineral Supplements for the Primary Prevention of Cardiovascular Disease and Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2022, 327, 2334–2347. [Google Scholar] [CrossRef]
- Traber, M.G.; Head, B. Vitamin E: How Much Is Enough, Too Much and Why! Free Radic. Biol. Med. 2021, 177, 212–225. [Google Scholar] [CrossRef]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-Alcoholic Fatty Liver Disease (NAFLD): A Review of Pathophysiology, Clinical Management and Effects of Weight Loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of Beneficial Effects of Exercise Training on Non-Alcoholic Fatty Liver Disease (NAFLD): Roles of Oxidative Stress and Inflammation. Eur. J. Sport Sci. 2019, 19, 994–1003. [Google Scholar] [CrossRef]
- Romero-Corral, A.; Montori, V.M.; Somers, V.K.; Korinek, J.; Thomas, R.J.; Allison, T.G.; Mookadam, F.; Lopez-Jimenez, F. Association of Bodyweight with Total Mortality and with Cardiovascular Events in Coronary Artery Disease: A Systematic Review of Cohort Studies. Lancet 2006, 368, 666–678. [Google Scholar] [CrossRef]
- Yesilbursa, D.; Serdar, A.; Senturk, T.; Serdar, Z.; Sağ, S.; Cordan, J. Effect of N-Acetylcysteine on Oxidative Stress and Ventricular Function in Patients with Myocardial Infarction. Heart Vessel. 2006, 21, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Castro, M.B.; Cornide-Petronio, M.E.; Gracia-Sancho, J.; Peralta, C. Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019, 8, 1131. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Yiang, G.-T.; Liao, W.-T.; Tsai, A.P.-Y.; Cheng, Y.-L.; Cheng, P.-W.; Li, C.-Y.; Li, C.-J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, R.; Hasson, D.; Prieto, J.C.; Dussaillant, G.; Ramos, C.; León, L.; Gárate, J.; Valls, N.; Gormaz, J.G. The Effectiveness of Antioxidant Vitamins C and E in Reducing Myocardial Infarct Size in Patients Subjected to Percutaneous Coronary Angioplasty (PREVEC Trial): Study Protocol for a Pilot Randomized Double-Blind Controlled Trial. Trials 2014, 15, 192. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.; Brito, R.; González-Montero, J.; Valls, N.; Gormaz, J.G.; Prieto, J.C.; Aguayo, R.; Puentes, Á.; Noriega, V.; Pereira, G.; et al. Effects of a Novel Ascorbate-Based Protocol on Infarct Size and Ventricle Function in Acute Myocardial Infarction Patients Undergoing Percutaneous Coronary Angioplasty. Arch. Med. Sci. 2017, 13, 558–567. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial Electron Transport Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of Measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, E.A.; Almeida, D.C.; Roma, L.P.; Ortis, F.; Carpinelli, A.R. Lipotoxicity and β-Cell Failure in Type 2 Diabetes: Oxidative Stress Linked to NADPH Oxidase and ER Stress. Cells 2021, 10, 3328. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Brechin, C.M.; Lane, D.A. The Global Burden of Atrial Fibrillation and Stroke: A Systematic Review of the Epidemiology of Atrial Fibrillation in Regions Outside North America and Europe. Chest 2012, 142, 1489–1498. [Google Scholar] [CrossRef]
- Lapar, D.J.; Speir, A.M.; Crosby, I.K.; Fonner, E.; Brown, M.; Rich, J.B.; Quader, M.; Kern, J.A.; Kron, I.L.; Ailawadi, G. Postoperative Atrial Fibrillation Significantly Increases Mortality, Hospital Readmission, and Hospital Costs. Ann. Thorac. Surg. 2014, 98, 527–533. [Google Scholar] [CrossRef]
- Caldonazo, T.; Kirov, H.; Rahouma, M.; Robinson, N.B.; Demetres, M.; Gaudino, M.; Doenst, T.; Dobrev, D.; Borger, M.A.; Kiehntopf, M.; et al. Atrial Fibrillation after Cardiac Surgery: A Systematic Review and Meta-Analysis. J. Thorac. Cardiovasc. Surg. 2023, 165, 94–103.e24. [Google Scholar] [CrossRef]
- Greenberg, J.W.; Lancaster, T.S.; Schuessler, R.B.; Melby, S.J. Postoperative Atrial Fibrillation Following Cardiac Surgery: A Persistent Complication. Eur. J. Cardiothorac. Surg. 2017, 52, 665–672. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Mitchell, D.H.; Colston, J.T.; Freeman, G.L. Regulation of CCAAT/Enhancer Binding Protein, Interleukin-6, Interleukin-6 Receptor, and Gp130 Expression During Myocardial Ischemia/Reperfusion. Circulation 1999, 99, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, G. Systemic Inflammation and Cardiac Surgery: An Update. Perfusion 2001, 16, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Anogeianaki, A.; Angelucci, D.; Cianchetti, E.; D’Alessandro, M.; Maccauro, G.; Saggini, A.; Salini, V.; Caraffa, A.; Teté, S.; Conti, F.; et al. Atherosclerosis: A Classic Inflammatory Disease. Int. J. Immunopathol. Pharmacol. 2011, 24, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Pagani, F.D.; Baker, L.S.; Hsi, C.; Knox, M.; Fink, M.P.; Visner, M.S. Left Ventricular Systolic and Diastolic Dysfunction after Infusion of Tumor Necrosis Factor-Alpha in Conscious Dogs. J. Clin. Investig. 1992, 90, 389–398. [Google Scholar] [CrossRef]
- Wan, S.; Yim, A.P.C. Cytokines in Myocardial Injury: Impact on Cardiac Surgical Approach. Eur. J. Cardiothorac. Surg. 1999, 16, S107–S111. [Google Scholar] [CrossRef]
- Suleiman, M.S.; Halestrap, A.P.; Griffiths, E.J. Mitochondria: A Target for Myocardial Protection. Pharmacol. Ther. 2001, 89, 29–46. [Google Scholar] [CrossRef]
- Watt, T.M.F.; Kleeman, K.C.; Brescia, A.A.; Seymour, E.M.; Kirakosyan, A.; Khan, S.P.; Rosenbloom, L.M.; Murray, S.L.; Romano, M.A.; Bolling, S.F. Inflammatory and Antioxidant Gene Transcripts: A Novel Profile in Postoperative Atrial Fibrillation. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 948–955. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, F.; Wu, Y.; Elliott, M.; Zhou, W.; Deng, Y.; Ren, D.; Zhao, H. Mechanism of IL-6-Related Spontaneous Atrial Fibrillation after Coronary Artery Grafting Surgery: IL-6 Knockout Mouse Study and Human Observation. Transl. Res. 2021, 233, 16–31. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Wu, Y.; Wu, F.; Feng, X.; Zhao, H. Myeloperoxidase in the Pericardial Fluid Improves the Performance of Prediction Rules for Postoperative Atrial Fibrillation. J. Thorac. Cardiovasc. Surg. 2023, 165, 1064–1077.e8. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update a Report from the American Heart Association. Circulation 2020, 141, E139–E596. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.X.; Li, C.; Yan, X.L.; Qu, Y.; Yang, Y.; Guo, Z.N. Crosstalk between Oxidative Stress and Ferroptosis/Oxytosis in Ischemic Stroke: Possible Targets and Molecular Mechanisms. Oxid. Med. Cell. Longev. 2021, 2021, 6643382. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Ye, Y.; Shen, C.; Qiu, S.; Sun, Y.; Hu, S.; Xiong, X.; Li, Y.; Li, L.; Wang, H. Pathophysiology of Ischemic Stroke: Noncoding RNA Role in Oxidative Stress. Oxid. Med. Cell. Longev. 2022, 2022, 5815843. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Urzúa, S.; Briones-Valdivieso, C.; Chichiarelli, S.; Saso, L.; Rodrigo, R. Potential Role of Natural Antioxidants in Countering Reperfusion Injury in Acute Myocardial Infarction and Ischemic Stroke. Antioxidants 2023, 12, 1760. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.Y.; Scorziello, A.; Duchen, M.R. Three Distinct Mechanisms Generate Oxygen Free Radicals in Neurons and Contribute to Cell Death during Anoxia and Reoxygenation. J. Neurosci. 2007, 27, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Gao, S.; Tu, S.; Lenahan, C.; Shao, A.; Sheng, J. Pathophysiology and Therapeutic Potential of NADPH Oxidases in Ischemic Stroke-Induced Oxidative Stress. Oxid. Med. Cell. Longev. 2021, 2021, 6631805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jia, M.; Wang, Y.; Wang, Q.; Wu, J. Cell Death Mechanisms in Cerebral Ischemia–Reperfusion Injury. Neurochem. Res. 2022, 47, 3525–3542. [Google Scholar] [CrossRef] [PubMed]
- Anania, C.; Massimo Perla, F.; Olivero, F.; Pacifico, L.; Chiesa, C. Mediterranean Diet and Nonalcoholic Fatty Liver Disease. World J. Gastroenterol. 2018, 24, 2083–2094. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Li, H.X.; Tan, W.L.; Yang, L.; Ma, X.W.; Li, W.X.; Wang, Q.B.; Shang, C.Z.; Chen, Y.J. Association of Serum Vitamin C With NAFLD and MAFLD among Adults in the United States. Front. Nutr. 2022, 8, 795391. [Google Scholar] [CrossRef]
- He, Z.; Li, X.; Yang, H.; Wu, P.; Wang, S.; Cao, D.; Guo, X.; Xu, Z.; Gao, J.; Zhang, W.; et al. Effects of Oral Vitamin C Supplementation on Liver Health and Associated Parameters in Patients With Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Front. Nutr. 2021, 8, 745609. [Google Scholar] [CrossRef]
- Nobili, V.; Manco, M.; Devito, R.; Di Ciommo, V.; Comparcola, D.; Sartorelli, M.R.; Piemonte, F.; Marcellini, M.; Angulo, P. Lifestyle Intervention and Antioxidant Therapy in Children with Nonalcoholic Fatty Liver Disease: A Randomized, Controlled Trial. Hepatology 2008, 48, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Kantartzis, K.; Fritsche, L.; Bombrich, M.; Machann, J.; Schick, F.; Staiger, H.; Kunz, I.; Schoop, R.; Lehn-Stefan, A.; Heni, M.; et al. Effects of Resveratrol Supplementation on Liver Fat Content in Overweight and Insulin-Resistant Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Obes. Metab. 2018, 20, 1793–1797. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; et al. Resveratrol Improves Insulin Resistance, Glucose and Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Trial. Dig. Liver Dis. 2015, 47, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chen, J.; Zhang, T.; Yuan, X.; Ge, A.; Wang, S.; Xu, H.; Zeng, L.; Ge, J. Efficacy and Safety of Dietary Polyphenol Supplementation in the Treatment of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Immunol. 2022, 13, 745609. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin Improves Nonalcoholic Fatty Liver by Ameliorating Inflammation, Oxidative Stress, and Lipid Metabolism in Db/Db Mice. Phytother. Res. 2019, 33, 3140–3152. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Nagashimada, M.; Zhuge, F.; Zhan, L.; Nagata, N.; Tsutsui, A.; Nakanuma, Y.; Kaneko, S.; Ota, T. Astaxanthin Prevents and Reverses Diet-Induced Insulin Resistance and Steatohepatitis in Mice: A Comparison with Vitamin E. Sci. Rep. 2015, 5, 17192. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.D.; Kim, J.H.; Chang, M.J.; Kyu-Youn, Y.; Shin, W.G. Effects of Astaxanthin on Oxidative Stress in Overweight and Obese Adults. Phytother. Res. 2011, 25, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.-L.; Chen, G.-D.; Zeng, F.-F.; Qiu, R.; Shi, W.-Q.; Lin, J.-S.; Cao, Y.; Li, H.-B.; Ling, W.-H.; Chen, Y.-M. Higher Serum Carotenoids Associated with Improvement of Non-Alcoholic Fatty Liver Disease in Adults: A Prospective Study. Eur. J. Nutr. 2019, 58, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Piña-Zentella, R.M.; Rosado, J.L.; Gallegos-Corona, M.A.; Madrigal-Pérez, L.A.; García, O.P.; Ramos-Gomez, M. Lycopene Improves Diet-Mediated Recuperation in Rat Model of Nonalcoholic Fatty Liver Disease. J. Med. Food 2016, 19, 607–614. [Google Scholar] [CrossRef]
- Seif El-Din, S.H.; El-Lakkany, N.M.; El-Naggar, A.A.; Hammam, O.A.; Abd El-Latif, H.A.; Ain-Shoka, A.A.; Ebeid, F.A. Effects of Rosuvastatin and/or β-Carotene on Non-Alcoholic Fatty Liver in Rats. Res. Pharm. Sci. 2015, 10, 275–287. [Google Scholar]
- George, E.S.; Forsyth, A.; Itsiopoulos, C.; Nicoll, A.J.; Ryan, M.; Sood, S.; Roberts, S.K.; Tierney, A.C. Practical Dietary Recommendations for the Prevention and Management of Nonalcoholic Fatty Liver Disease in Adults. Adv. Nutr. Int. Rev. J. 2018, 9, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Shafaei-Bajestani, N.; Talasaz, A.; Salarifar, M.; Pourhosseini, H.; Sadri, F.; Jalali, A. Potential Role of Vitamin C Intracoronary Administration in Preventing Cardiac Injury after Primary Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction. J. Res. Pharm. Pract. 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed]
- Valls, N.; Gormaz, J.G.; Aguayo, R.; González, J.; Brito, R.; Hasson, D.; Libuy, M.; Ramos, C.; Carrasco, R.; Prieto, J.C.; et al. Amelioration of Persistent Left Ventricular Function Impairment through Increased Plasma Ascorbate Levels Following Myocardial Infarction. Redox Rep. 2016, 21, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Bhakuni, P.; Chandra, M.; Misra, M.K. Effect of Ascorbic Acid Supplementation on Certain Oxidative Stress Parameters in the Post Reperfusion Patients of Myocardial Infarction. Mol. Cell. Biochem. 2006, 290, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Jin, Z.; Zhao, R.; Ren, K.; Deng, C.; Yu, S. Original Article Resveratrol Attenuates Inflammation and Oxidative Stress Induced by Myocardial Ischemia-Reperfusion Injury: Role of Nrf2/ARE Pathway. Int. J. Clin. Exp. Med. 2015, 8, 10420–10428. [Google Scholar] [PubMed]
- Li, T.; Tan, Y.; Ouyang, S.; He, J.; Liu, L. Resveratrol Protects against Myocardial Ischemia-Reperfusion Injury via Attenuating Ferroptosis. Gene 2022, 808, 145968. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Guo, X.; Chu, Y.; Lu, S. Heart Protective Effects and Mechanism of Quercetin Preconditioning on Anti-Myocardial Ischemia Reperfusion (IR) Injuries in Rats. Gene 2014, 545, 149–155. [Google Scholar] [CrossRef]
- Li, W.; Wu, M.; Tang, L.; Pan, Y.; Liu, Z.; Zeng, C.; Wang, J.; Wei, T.; Liang, G. Novel Curcumin Analogue 14p Protects against Myocardial Ischemia Reperfusion Injury through Nrf2-Activating Anti-Oxidative Activity. Toxicol. Appl. Pharmacol. 2015, 282, 175–183. [Google Scholar] [CrossRef]
- Adluri, R.S.; Thirunavukkarasu, M.; Zhan, L.; Maulik, N.; Svennevig, K.; Bagchi, M.; Maulik, G. Cardioprotective Efficacy of a Novel Antioxidant Mix VitaePro Against Ex Vivo Myocardial Ischemia-Reperfusion Injury. Cell Biochem. Biophys. 2013, 67, 281–286. [Google Scholar] [CrossRef]
- Zeng, Y.F.; Guo, Q.H.; Wei, X.Y.; Chen, S.Y.; Deng, S.; Liu, J.J.; Yin, N.; Liu, Y.; Zeng, W.J. Cardioprotective Effect of Curcumin on Myocardial Ischemia/Reperfusion Injury: A Meta-Analysis of Preclinical Animal Studies. Front. Pharmacol. 2023, 14, 1184292. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, Y.; Zhang, B.; Xiao, C.; Sun, Z.; Gao, Y.; Dou, X. Mitochondrial Targeted Astaxanthin Liposomes for Myocardial Ischemia-Reperfusion Injury Based on Oxidative Stress. J. Biomater. Appl. 2022, 37, 303–314. [Google Scholar] [CrossRef]
- Leifert, W.R.; Jahangiri, A.; McMurchie, E.J. Antiarrhythmic Fatty Acids and Antioxidants in Animal and Cell Studies. J. Nutr. Biochem. 1999, 10, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, A.; Leifert, W.R.; Kind, K.L.; McMurchie, E.J. Dietary Fish Oil Alters Cardiomyocyte Ca2+ Dynamics and Antioxidant Status. Free Radic. Biol. Med. 2006, 40, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Yan, X.L.; Chen, Y.W.; Tang, R.B.; Du, X.; Dong, J.Z.; Ma, C.S. Omega-3 Fatty Acids for Postoperative Atrial Fibrillation: Alone or in Combination with Antioxidant Vitamins? Heart Lung Circ. 2014, 23, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Marchioli, R.; Macchia, A.; Silletta, M.G.; Ferrazzi, P.; Gardner, T.J.; Latini, R.; Libby, P.; Lombardi, F.; O’Gara, P.T.; et al. Fish Oil and Post-Operative Atrial Fibrillation—Results of the Omega-3 Fatty Acids for Prevention of Post-Operative Atrial Fibrillation (OPERA) Trial. JAMA J. Am. Med. Assoc. 2012, 308, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, C.M.; Chung, M.K.; Van Wagoner, D.R.; Barringer, T.A.; Allen, K.; Ismail, H.M.; Zimmerman, B.; Olshansky, B. A Randomized, Placebo-Controlled Trial of Omega-3 Fatty Acids for Inhibition of Supraventricular Arrhythmias After Cardiac Surgery: The FISH Trial. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2012, 1, e000547. [Google Scholar] [CrossRef] [PubMed]
- Heidarsdottir, R.; Arnar, D.O.; Skuladottir, G.V.; Torfason, B.; Edvardsson, V.; Gottskalksson, G.; Palsson, R.; Indridason, O.S. Does Treatment with n -3 Polyunsaturated Fatty Acids Prevent Atrial Fibrillation after Open Heart Surgery? EP Eur. 2010, 12, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, P.; Bridgewater, B.; West, A.L.; O’Neill, S.C.; Calder, P.C.; Davidson, N.C. Omega-3 Fatty Acid Supplementation Does Not Reduce Risk of Atrial Fibrillation after Coronary Artery Bypass Surgery: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Circ. Arrhythm. Electrophysiol. 2010, 3, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Mariscalco, G.; Sarzi Braga, S.; Banach, M.; Borsani, P.; Bruno, V.D.; Napoleone, M.; Vitale, C.; Piffaretti, G.; Pedretti, R.F.E.; Sala, A. Preoperative N-3 Polyunsatured Fatty Acids Are Associated with a Decrease in the Incidence of Early Atrial Fibrillation Following Cardiac Surgery. Angiology 2010, 61, 643–650. [Google Scholar] [CrossRef]
- Calò, L.; Bianconi, L.; Colivicchi, F.; Lamberti, F.; Loricchio, M.L.; de Ruvo, E.; Meo, A.; Pandozi, C.; Staibano, M.; Santini, M. N-3 Fatty Acids for the Prevention of Atrial Fibrillation after Coronary Artery Bypass Surgery: A Randomized, Controlled Trial. J. Am. Coll. Cardiol. 2005, 45, 1723–1728. [Google Scholar] [CrossRef]
- Sorice, M.; Tritto, F.P.; Sordelli, C.; Gregorio, R.; Piazza, L. N-3 Polyunsaturated Fatty Acids Reduces Post-Operative Atrial Fibrillation Incidence in Patients Undergoing †œon-pump†Coronary Artery Bypass Graft Surgery. Monaldi Arch. Chest Dis. 2011, 76, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, U.; Angeloni, E.; Melina, G.; Danesi, T.H.; Di Bartolomeo, R.; Lechiancole, A.; Refice, S.; Roscitano, A.; Comito, C.; Sinatra, R. N-3 Polyunsaturated Fatty Acids for the Prevention of Postoperative Atrial Fibrillation: A Meta-Analysis of Randomized Controlled Trials. J. Cardiovasc. Med. 2013, 14, 104. [Google Scholar] [CrossRef]
- Putzu, A.; Daems, A.M.; Lopez-Delgado, J.C.; Giordano, V.F.; Landoni, G. The Effect of Vitamin C on Clinical Outcome in Critically Ill Patients: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Crit. Care Med. 2019, 47, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, K.A.; Um, C.Y.; Gross, M.D.; Bostick, R.M. Circulating γ-Tocopherol Concentrations Are Inversely Associated with Antioxidant Exposures and Directly Associated with Systemic Oxidative Stress and Inflammation in Adults. J. Nutr. 2018, 148, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, S.; De Curtis, A.; Di Niro, V.; Olivieri, M.; Morena, M.; De Filippo, C.M.; Caradonna, E.; Krogh, V.; Serafini, M.; Pellegrini, N.; et al. Postoperative Atrial Fibrillation and Total Dietary Antioxidant Capacity in Patients Undergoing Cardiac Surgery: The Polyphemus Observational Study. J. Thorac. Cardiovasc. Surg. 2015, 149, 1175–1182.e1. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Dashe, J.F.; Scott, T.; Thaler, D.; Folstein, M.F.; Martin, A. Decreased Levels of Plasma Vitamin C and Increased Concentrations of Inflammatory and Oxidative Stress Markers after Stroke. Stroke 2004, 35, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Lagowska-Lenard, M.; Stelmasiak, Z.; Bartosik-Psujek, H. Influence of Vitamin C on Markers of Oxidative Stress in the Earliest Period of Ischemic Stroke. Pharmacol. Rep. 2010, 62, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Polidori, M.C.; Praticó, D.; Ingegni, T.; Mariani, E.; Spazzafumo, L.; Sindaco, P.D.; Cecchetti, R.; Yao, Y.; Ricci, S.; Cherubini, A.; et al. Effects of Vitamin C and Aspirin in Ischemic Stroke-Related Lipid Peroxidation: Results of the AVASAS (Aspirin versus Ascorbic Acid plus Aspirin in Stroke) Study. BioFactors 2005, 24, 265–274. [Google Scholar] [CrossRef]
- Yu, P.; Wang, L.; Tang, F.; Zeng, L.; Zhou, L.; Song, X.; Jia, W.; Chen, J.; Yang, Q. Resveratrol Pretreatment Decreases Ischemic Injury and Improves Neurological Function Via Sonic Hedgehog Signaling After Stroke in Rats. Mol. Neurobiol. 2017, 54, 212–226. [Google Scholar] [CrossRef]
- Ashafaq, M.; Intakhab Alam, M.; Khan, A.; Islam, F.; Khuwaja, G.; Hussain, S.; Ali, R.; Alshahrani, S.; Antar Makeen, H.; Alhazmi, H.A.; et al. Nanoparticles of Resveratrol Attenuates Oxidative Stress and Inflammation after Ischemic Stroke in Rats. Int. Immunopharmacol. 2021, 94, 107494. [Google Scholar] [CrossRef]
- Yang, X.; Xu, L.; Zhao, H.; Xie, T.; Wang, J.; Wang, L.; Yang, J. Curcumin Protects against Cerebral Ischemia-Reperfusion Injury in Rats by Attenuating Oxidative Stress and Inflammation: A Meta-Analysis and Mechanism Exploration. Nutr. Res. 2023, 113, 14–28. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, M.M.; Hoda, N.; Raza, S.S.; Khan, M.B.; Javed, H.; Ishrat, T.; Ashafaq, M.; Ahmad, E.; Safhi, M.M.; et al. Quercetin Protects Against Oxidative Stress Associated Damages in a Rat Model of Transient Focal Cerebral Ischemia and Reperfusion. Neurochem. Res. 2011, 36, 1360–1371. [Google Scholar] [CrossRef]
- Polidori, M.C.; Cherubini, A.; Stahl, W.; Senin, U.; Sies, H.; Mecocci, P. Plasma Carotenoid and Malondialdehyde Levels in Ischemic Stroke Patients: Relationship to Early Outcome. Free Radic. Res. 2002, 36, 265–268. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chen, J.Y.; Ke, D.; Hu, M.L. Plasma Levels of Lipophilic Antioxidant Vitamins in Acute Ischemic Stroke Patients: Correlation to Inflammation Markers and Neurological Deficits. Nutrition 2005, 21, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Adelusi, T.I.; Abdul-Hammed, M.; Idris, M.O.; Oyedele, Q.K.; Adedotun, I.O. Molecular Dynamics, Quantum Mechanics and Docking Studies of Some Keap1 Inhibitors—An Insight into the Atomistic Mechanisms of Their Antioxidant Potential. Heliyon 2021, 7, e07317. [Google Scholar] [CrossRef]
- Mhya, D.H.; Jakwa, A.G.; Agbo, J. In Silico Analysis of Antioxidant Phytochemicals with Potential NADPH Oxidase Inhibitory Effect. J. Health Sci. Med. Res. 2023, 41, 2022912. [Google Scholar] [CrossRef]
- Al Shammari, B.R. Antioxidant, Antimicrobial and In Silico NADPH Oxidase Inhibition of Chemically-Analyzed Essential Oils Derived from Ballota Deserti (Noë) Jury. Molecules 2022, 27, 6636. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, F.; Grinzato, A.; Bindoli, A.; Rigobello, M.P. From In Silico to a Cellular Model: Molecular Docking Approach to Evaluate Antioxidant Bioactive Peptides. Antioxidants 2023, 12, 665. [Google Scholar] [CrossRef]
- Rasulev, B.F.; Abdullaev, N.D.; Syrov, V.N.; Leszczynski, J. A Quantitative Structure-Activity Relationship (QSAR) Study of the Antioxidant Activity of Flavonoids. QSAR Comb. Sci. 2005, 24, 1056–1065. [Google Scholar] [CrossRef]
- Kavousi, S.; Novak, B.R.; Tong, X.; Moldovan, D. Molecular Dynamics Simulation Study of the Positioning and Dynamics of α-Tocopherol in Phospholipid Bilayers. Eur. Biophys. J. EBJ 2021, 50, 889–903. [Google Scholar] [CrossRef]
- Shan-Shan, Q.; Zhi-Wu, Y. Molecular Dynamics Simulations of α-Tocopherol in Model Biomembranes. Acta Phys.-Chim. Sin 2010, 27, 213–227. [Google Scholar] [CrossRef]
- Lavecchia, A.; Di Giovanni, C. Virtual Screening Strategies in Drug Discovery: A Critical Review. Curr. Med. Chem. 2013, 20, 2839–2860. [Google Scholar] [CrossRef] [PubMed]
- El Bakkali, M.; Ismaili, L.; Tomassoli, I.; Nicod, L.; Pudlo, M.; Refouvelet, B. Pharmacophore Modelling and Synthesis of Quinoline-3-Carbohydrazide as Antioxidants. Int. J. Med. Chem. 2011, 2011, 592879. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, S. In Silico ADME-Tox Modeling: Progress and Prospects. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, J.E.; Dharia, M.A.; Favre, P. A Risk and Credibility Framework for in Silico Clinical Trials of Medical Devices. Comput. Methods Programs Biomed. 2023, 242, 107813. [Google Scholar] [CrossRef]
- Rodero, C.; Baptiste, T.M.G.; Barrows, R.K.; Keramati, H.; Sillett, C.P.; Strocchi, M.; Lamata, P.; Niederer, S.A. A Systematic Review of Cardiac In-Silico Clinical Trials. Prog. Biomed. Eng. Bristol Engl. 2023, 5, 032004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinilla-González, V.; Rojas-Solé, C.; Gómez-Hevia, F.; González-Fernández, T.; Cereceda-Cornejo, A.; Chichiarelli, S.; Saso, L.; Rodrigo, R. Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods 2024, 13, 1999. https://doi.org/10.3390/foods13131999
Pinilla-González V, Rojas-Solé C, Gómez-Hevia F, González-Fernández T, Cereceda-Cornejo A, Chichiarelli S, Saso L, Rodrigo R. Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods. 2024; 13(13):1999. https://doi.org/10.3390/foods13131999
Chicago/Turabian StylePinilla-González, Víctor, Catalina Rojas-Solé, Francisca Gómez-Hevia, Tommy González-Fernández, Antonia Cereceda-Cornejo, Silvia Chichiarelli, Luciano Saso, and Ramón Rodrigo. 2024. "Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention" Foods 13, no. 13: 1999. https://doi.org/10.3390/foods13131999
APA StylePinilla-González, V., Rojas-Solé, C., Gómez-Hevia, F., González-Fernández, T., Cereceda-Cornejo, A., Chichiarelli, S., Saso, L., & Rodrigo, R. (2024). Tapping into Nature’s Arsenal: Harnessing the Potential of Natural Antioxidants for Human Health and Disease Prevention. Foods, 13(13), 1999. https://doi.org/10.3390/foods13131999