Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Extraction of Sweet Lime Juice
2.3. Experimental Design
2.4. Response Surface Methodology
2.5. Numerical Optimization
2.6. Processing of Sweet Lime Juice
2.6.1. Pulsed-Light Processing
2.6.2. Ultrasound Processing
2.6.3. Selection of Sequence for Pulsed Light (PL) and Ultrasound (US) Treatments
2.7. Characterization of Optimized Sequential PL- and US-Treated Sweet Lime Juice
2.7.1. Microbial Enumeration
2.7.2. Enzyme Assay
2.7.3. Measurement of Physicochemical Properties
2.7.4. Total Phenolic Content, Antioxidant Capacity, and Vitamin C
2.7.5. Sensory Analysis
2.7.6. Phenolic Profile Using LC-DAD-ESI-MS/MS
2.7.7. Morphology of Saccharomyces cerevisiae
2.7.8. Circular Dichroism Analysis of PPO
2.8. Statistical Analysis
3. Results and Discussions
3.1. Selection of Sequence for Pulsed Light (PL) and Ultrasound (US) Treatments
3.2. Effect of Sequential Pulsed Light (PL) and Ultrasonication (US) Treatments on S. cerevisiae, PPO, and Vitamin C
3.2.1. Response Surface Models
Linear Terms
Square Terms
Interaction Terms
3.2.2. Numerical Optimization
3.3. Quality Attributes of the Optimized PL + US Treated Sweet Lime Juice
3.3.1. Microbial Inactivation
3.3.2. Enzyme Inactivation
3.3.3. Physicochemical Attributes
3.3.4. Bioactive Compounds
3.3.5. Color Profile and Bioactive Compounds
3.3.6. Viscosity
3.3.7. Overall Sensory Acceptability
3.4. Characterization of Optimized PL + US Treated Sweet Lime Juice
3.4.1. Phenolic Profiling of Sweet Lime Juice
3.4.2. Influence of PL + US Treatment on the Morphology of Saccharomyces cerevisiae
3.4.3. Conformational Change in PPO after Sequential PL + US Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kehinde, B.A.; Nayik, G.A.; Rafiq, S. Muntingia calabura. Antioxidants in Fruits: Properties and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2020; pp. 251–270. [Google Scholar]
- Kashtock, M.E. Guidance for Industry: Juice Hazard Analysis Critical Control Point Hazards and Controls Guidance, 1st ed.; FDA Guid. Doc. no. 2; Centre for Food Safety and Applied Nutrition: College Park, MD, USA, 2004; pp. 1–52. [Google Scholar]
- Aneja, K.R.; Dhiman, R.; Aggarwal, N.K.; Kumar, V.; Kaur, M. Microbes associated with freshly prepared juices of citrus and carrots. Int. J. Food Sci. 2014, 2014, 408085. [Google Scholar] [CrossRef] [PubMed]
- Aleem, S.; Ramteke, P.W. Sensory and Nutritional study of locally available fresh and processed Fruit and Vegetable juices in Allahabad City. Pharma Innov. 2017, 6, 380–386. [Google Scholar]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound-based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef]
- Chacha, J.S.; Zhang, L.; Ofoedu, C.E.; Suleiman, R.A.; Dotto, J.M.; Roobab, U.; Agunbiade, A.O.; Duguma, H.T.; Mkojera, B.T.; Hossaini, S.M.; et al. Revisiting nonthermal food processing and preservation methods—Action mechanisms, pros and cons: A technological update (2016–2021). Foods 2021, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473. [Google Scholar] [CrossRef]
- Illera, A.E.; Sanz, M.T.; Benito-Román, O.; Varona, S.; Beltrán, S.; Melgosa, R.; Solaesa, A.G. Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innov. Food Sci. Emerg. Technol. 2018, 47, 71–80. [Google Scholar] [CrossRef]
- Ferrario, M.; Alzamora, S.M.; Guerrero, S. Study of pulsed light inactivation and growth dynamics during storage of Escherichia coli ATCC 35218, Listeria innocua ATCC 33090, Salmonella Enteritidis MA44 and Saccharomyces cerevisiae KE162 and native flora in apple, orange and strawberry juices. Int. J. Food Sci. Technol. 2015, 50, 2498–2507. [Google Scholar] [CrossRef]
- Char, C.D.; Mitilinaki, E.; Guerrero, S.N.; Alzamora, S.M. Use of High-Intensity Ultrasound and UV-C Light to Inactivate Some Microorganisms in Fruit Juices. Food Bioprocess Technol. 2010, 3, 797–803. [Google Scholar] [CrossRef]
- Pataro, G.; Muñoz, A.; Palgan, I.; Noci, F.; Ferrari, G.; Lyng, J.G. Bacterial inactivation in fruit juices using a continuous flow Pulsed Light (PL) system. Food Res. Int. 2011, 44, 1642–1648. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Gabaldón, J.A.; Gómez-López, V.M. Effect of pH on pulsed light inactivation of polyphenol oxidase. Enzym. Microb. Technol. 2021, 148, 109812. [Google Scholar] [CrossRef]
- Namala, B.; Reddy, P.Y. Design, development and fabrication of batch type continuous UV-C light system for food products. J. Pharmacogn. Phytochem. 2017, 6, 2078–2081. [Google Scholar]
- Shaik, L.; Chakraborty, S. Effect of pH and total fluence on microbial and enzyme inactivation in sweet lime (Citrus limetta) juice during pulsed light treatment. J. Food Process. Preserv. 2022, 46, e16749. [Google Scholar] [CrossRef]
- Shaik, L.; Chakraborty, S. Ultrasound processing of sweet lime juice: Effect of matrix pH on microbial inactivation, enzyme stability, and bioactive retention. J. Food Process Eng. 2023, 46, e14231. [Google Scholar] [CrossRef]
- Putnik, P.; Pavlić, B.; Šojić, B.; Zavadlav, S.; Žuntar, I.; Kao, L.; Kitonić, D.; Kovačević, D.B. Innovative hurdle technologies for the preservation of functional fruit juices. Foods 2020, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Corona, N.; García, N.A.; Martínez, M.J.; López-Malo, A.; Mani-López, E. Effect of combining ultrasound and UVC treatments for processing orange juice and mango nectar on their microbiological, physicochemical, and sensory characteristics. Innov. Food Sci. Emerg. Technol. 2024, 94, 103686. [Google Scholar] [CrossRef]
- Hasani, M.; Chudyk, J.; Murray, K.; Lim, L.T.; Lubitz, D.; Warriner, K. Inactivation of Salmonella, Listeria monocytogenes, Aspergillus and Penicillium on lemons using advanced oxidation process optimized through response surface methodology. Innov. Food Sci. Emerg. Technol. 2019, 54, 182–191. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Bolton, J.R. An Approach to Standardize Methods for Fluence Determination in Bench-Scale Pulsed Light Experiments. Food Bioprocess Technol. 2016, 9, 1040–1048. [Google Scholar] [CrossRef]
- Guerrouj, K.; Sánchez-Rubio, M.; Taboada-Rodríguez, A.; Cava-Roda, R.M.; Marín-Iniesta, F. Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food Bioprod. Process. 2016, 99, 20–28. [Google Scholar] [CrossRef]
- Sahoo, P.; Chakraborty, S. Influence of Pulsed Light, Ultrasound, and Series Treatments on Quality Attributes, Pectin Methyl Esterase, and Native Flora Inactivation in Sweet Orange Juice (Citrus sinensis L. Osbeck). Food Bioprocess Technol. 2023, 16, 2095–2112. [Google Scholar] [CrossRef]
- Dak, M.; Verma, R.C.; Jaaffrey, S.N.A. Effect of temperature and concentration on Rheological properties of ‘Kesar’ mango juice. J. Food Eng. 2007, 80, 1011–1015. [Google Scholar] [CrossRef]
- Rodríguez-Rivera, M.P.; Lugo-Cervantes, E.; Winterhalter, P.; Jerz, G. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC-ESI-MS/MS. Food Chem. 2014, 158, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Kelebek, H.; Selli, S.; Kola, O. Quantitative determination of phenolic compounds using LC-DAD-ESI-MS/MS in cv. Ayvalik olive oils as affected by harvest time. J. Food Meas. Charact. 2017, 11, 226–235. [Google Scholar] [CrossRef]
- Kaláb, M.; Yang, A.-F.; Chabot, D. Conventional Scanning Electron Microscopy of Bacteria. Infocus Mag. 2008, 10, 42–61. [Google Scholar] [CrossRef]
- Dhar, R.; Chakraborty, S. Effect of continuous microwave processing on enzymes and quality attributes of bael beverage. Food Chem. 2024, 453, 139621. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.J.; Ramalli, S.G.; Wallace, B.A. DichroWeb, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci. 2022, 31, 37–46. [Google Scholar] [CrossRef]
- Andrade, M.A.; Chacon, P.; Merelo, J.J.; Morán, F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng. Des. Sel. 1993, 6, 383–390. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Xu, B.; Yagoub, A.E.A.; Mustapha, A.T.; Zhou, C. Effect of intensive pulsed light on the activity, structure, physico-chemical properties and surface topography of polyphenol oxidase from mushroom. Innov. Food Sci. Emerg. Technol. 2021, 72, 102741. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Xie, B.; Sun, Z. Effect of ultrasound combined with ultraviolet treatment on microbial inactivation and quality properties of mango juice. Ultrason. Sonochem. 2019, 64, 105000. [Google Scholar] [CrossRef]
- Ferrario, M.; Guerrero, S. Impact of a combined processing technology involving ultrasound and pulsed light on structural and physiological changes of Saccharomyces cerevisiae KE 162 in apple juice. Food Microbiol. 2017, 65, 83–94. [Google Scholar] [CrossRef]
- Ferrario, M.; Alzamora, S.M.; Guerrero, S. Study of the inactivation of spoilage microorganisms in apple juice by pulsed light and ultrasound. Food Microbiol. 2015, 46, 635–642. [Google Scholar] [CrossRef]
- Raso, J.; Barbosa-Cánovas, G.V. Nonthermal Preservation of Foods Using Combined Processing Techniques. Crit. Rev. Food Sci. Nutr. 2003, 43, 265–285. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Barroso, M.K.D.A.; Alves Filho, E.D.G.; Fernandes, F.A.N.; Rodrigues, S. Ultrasound and ozone processing of cashew apple juice: Effects of single and combined processing on the juice quality and microbial stability. Processes 2021, 9, 2243. [Google Scholar] [CrossRef]
- Vollmer, K.; Chakraborty, S.; Bhalerao, P.P.; Carle, R.; Frank, J.; Steingass, C.B. Effect of Pulsed Light Treatment on Natural Microbiota, Enzyme Activity, and Phytochemical Composition of Pineapple (Ananas comosus [L.] Merr.) juice. Food Bioprocess Technol. 2020, 13, 1095–1109. [Google Scholar] [CrossRef]
- Alabdali, T.A.; Icyer, N.C.; Ucak Ozkaya, G.; Durak, M.Z. Effect of Stand-Alone and Combined Ultraviolet and Ultrasound Treatments on Physicochemical and Microbial Characteristics of Pomegranate Juice. Appl. Sci. 2020, 10, 5458. [Google Scholar] [CrossRef]
- Ferrario, M.; Alzamora, S.M.; Guerrero, S. Inactivation kinetics of some microorganisms in apple, melon, orange and strawberry juices by high-intensity light pulses. J. Food Eng. 2013, 118, 302–311. [Google Scholar] [CrossRef]
- Iqbal, A.; Murtaza, A.; Hu, W.; Ahmad, I.; Ahmed, A.; Xu, X. Activation and inactivation mechanisms of polyphenol oxidase during thermal and nonthermal methods of food processing. Food Bioprod. Process. 2019, 117, 170–182. [Google Scholar] [CrossRef]
- Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Masuzawa, N.; Ohdaira, E.; Ide, M. Effects of ultrasonic irradiation on phenolic compounds in wine. Jpn. J. Appl. Phys. 2000, 39, 2979. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Noci, F.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. The effect of pulsed electric fields, ultraviolet light or high intensity light pulses in combination with manothermosonication on selected physico-chemical and sensory attributes of an orange and carrot juice blend. Food Bioprod. Process. 2012, 90, 442–448. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Daròs, J.A. Transient expression systems to rewire plant carotenoid metabolism. Curr. Opin. Plant Biol. 2022, 66, 102190. [Google Scholar] [CrossRef]
- Momin, S.M.I. Analysis of Viscosity of Orange Fruit Juice to Ensure the Suitability of Processing Applications. Int. J. Pure Appl. Biosci. 2015, 3, 223–225. [Google Scholar] [CrossRef]
- Anjaly, M.G.; Prince, M.V.; Warrier, A.S.; Lal, A.N.; Mahanti, N.K.; Pandiselvam, R.; Thirumdas, R.; Sreeja, R.; Rusu, A.V.; Trif, M.; et al. Design consideration and modelling studies of ultrasound and ultraviolet combined approach for shelf-life enhancement of pine apple juice. Ultrason. Sonochem. 2022, 90, 106166. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, A.A.; Magalhães, D.; Campos, D.A.; Porretta, S.; Dellapina, G.; Poli, G.; Istanbullu, Y.; Demir, S.; San Martín, Á.M.; García-Gómez, P.; et al. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022, 11, 3859. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Liu, J.; Wang, X.; Wu, Z.; Xiang, Q.; Bai, Y. Effect of Combined Treatment with Cinnamon Oil and petit-High Pressure CO2 against Saccharomyces cerevisiae. Foods 2022, 11, 3474. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, K.; Shibato, J.; Sameshima, T.; Fukunaga, S.; Isobe, S.; Arihara, K.; Itoh, M. Damage of yeast cells induced by pulsed light irradiation. Int. J. Food Microbiol. 2003, 85, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, K.; Demirci, A.; Irudayaraj, J. Inactivation of Staphylococcus aureus in milk and milk foam by pulsed UV-light treatment and surface response modeling. Trans. ASABE 2008, 51, 2083–2090. [Google Scholar]
- Kuznetsova, I.M.; Stepanenko, O.V.; Turoverov, K.K.; Zhu, L.; Zhou, J.M.; Fink, A.L.; Uversky, V.N. Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2002, 1596, 138–155. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Liu, C.; Zhong, Y.; Liu, W.; Wan, J. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment. Innov. Food Sci. Emerg. Technol. 2009, 10, 142–147. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Xiong, Z.; Zou, L.; Liu, J.; Zhong, J.; Chen, J. Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzym. Microb. Technol. 2016, 90, 61–68. [Google Scholar] [CrossRef]
- Yi, J.; Yi, J.; Dong, P.; Liao, X.; Hu, X.; Zhang, Y. Effect of high-hydrostatic-pressure on molecular microstructure of mushroom (Agaricus bisporus) polyphenoloxidase. LWT Food Sci. Technol. 2015, 60, 890–898. [Google Scholar] [CrossRef]
Voltage (kV) | Average Fluence Rate # (W/cm2) | Treatment Time § (s) | Number of Pulses * | Pulse Width (µs) | Effective Fluence * (Fe, J/cm2) ¥ |
---|---|---|---|---|---|
2.8 | 9.36 ± 0.05 | 160 | 160 | 400 | 0.60 |
2.9 | 10.06 ± 0.02 | 180 | 180 | 400 | 0.72 |
2.4 | 8.74 ± 0.01 | 240 | 240 | 400 | 0.84 |
2.7 | 8.88 ± 0.02 | 225 | 225 | 400 | 0.80 |
Sequence | Treatment Conditions | S. cerevisiae Inactivation (log cfu/mL) | PPO Inactivation (%) | Vitamin C Retention (%) | |||
---|---|---|---|---|---|---|---|
PL + US | 0.60 | J/cm2 | 0.2 | W/cm3 | 3.7 ± 0.1 a | 36.3 ± 0.4 a | 94.4 ± 0.5 a |
0.84 | 0.4 | 6.0 ± 0.2 b | 97.2 ± 0.3 b | 91.6 ± 0.5 b | |||
US + PL | 0.2 | W/cm3 | 0.60 | J/cm2 | 3.7 ± 0.3 a | 36.5 ± 0.4 a | 94.2 ± 0.5 a |
0.4 | 0.84 | 5.9 ± 0.2 b | 97.0 ± 0.5 b | 91.4 ± 0.6 b |
Independent Parameters (Coded Value) | Maximum Temperature Rise (ΔT, °C) | Dependent Variables or Responses (Y1–3) | |||||
---|---|---|---|---|---|---|---|
pH | PL Fluence (J/cm2) | US Intensity (W/cm3) | After PL (J/cm2) | After US (W/cm3) | Inactivation of S. cerevisiae (Y1, log cfu/mL) | Inactivation of PPO (Y2, %) | Retention in Vitamin C (Y3, %) |
3.5 (−1) | 0.60 (−1) | 0.2 (−1) | 1.3 ± 0.1 | 1.0 ± 0.1 | 3.9 ± 0.3 j | 36.8 ± 0.8 ef | 96.2 ± 0.4 e |
3.5 (−1) | 0.60 (−1) | 0.3 (0) | 2.1 ± 0.2 | 1.6 ± 0.2 | 4.6 ± 0.2 k | 43.9 ± 1.1 g | 95.9 ± 0.6 de |
3.5 (−1) | 0.60 (−1) | 0.4 (+1) | 3.5 ± 0.1 | 2.7 ± 0.1 | 5.5 ± 0.2 l | 50.7 ± 1.0 h | 95.5 ± 1.0 d |
3.5 (−1) | 0.72 (0) | 0.2 (−1) | 5.6 ± 0.3 | 4.3 ± 0.1 | 4.5 ± 0.2 k | 47.6 ± 0.9 gh | 95.9 ± 0.6 de |
3.5 (−1) | 0.72 (0) | 0.3 (0) | 8.9 ± 0.1 | 6.6 ± 0.2 | 5.4 ± 0.1 ll | 62.5 ± 1.5 ij | 95.5 ± 0.8 d |
3.5 (−1) | 0.72 (0) | 0.4 (+1) | 10.6 ± 0.1 | 8.2 ± 0.1 | 6.0 ± 0.2 m | 76.3 ± 1.3 j | 95.5 ± 1.2 d |
3.5 (−1) | 0.84 (+1) | 0.2 (−1) | 11.4 ± 0.1 | 8.7 ± 0.2 | 5.2 ± 0.1 kl | 79.9 ± 1.0 jk | 95.5 ± 0.7 d |
3.5 (−1) | 0.84 (+1) | 0.3 (0) | 13.1 ± 0.1 | 10.2 ± 0.2 | 6.0 ± 0.2 m | 97.7 ± 0.9 kl | 95.5 ± 0.9 d |
3.5 (−1) | 0.84 (+1) | 0.4 (+1) | 14.1 ± 0.2 | 10.9 ± 0.2 | 6.1 ± 0.1 n | 100.0 ± 0.3 l | 95.1 ± 1.2 d |
4 (0) | 0.60 (−1) | 0.2 (−1) | 1.3 ± 0.1 | 1.0 ± 0.1 | 3.7 ± 0.1 j | 36.3 ± 0.4 ef | 94.4 ± 0.5 cd |
4 (0) | 0.60 (−1) | 0.3 (0) | 2.0 ± 0.2 | 1.6 ± 0.1 | 4.4 ± 0.1 k | 43.6 ± 0.5 g | 93.7 ± 0.7 cd |
4 (0) | 0.60 (−1) | 0.4 (+1) | 3.8 ± 0.1 | 2.9 ± 0.1 | 5.4 ± 0.2 l | 50.5 ± 0.6 h | 93.0 ± 0.8 c |
4 (0) | 0.72 (0) | 0.2 (−1) | 5.7 ± 0.2 | 4.3 ± 0.1 | 4.3 ± 0.2 jk | 47.3 ± 0.5 gh | 94.1 ± 0.9 cd |
4 (0) | 0.72 (0) | 0.3 (0) | 8.6 ± 0.1 | 6.6 ± 0.2 | 5.2 ± 0.1 kl | 62.2 ± 0.4 ij | 93.4 ± 1.0 cd |
4 (0) | 0.72 (0) | 0.4 (+1) | 10.5 ± 0.2 | 8.0 ± 0.1 | 6.0 ± 0.2 m | 76.1 ± 0.5 j | 92.3 ± 0.9 c |
4 (0) | 0.84 (+1) | 0.2 (−1) | 11.5 ± 0.1 | 8.8 ± 0.1 | 5.0 ± 0.1 jk | 59.9 ± 0.4 i | 93.7 ± 0.8 cd |
4 (0) | 0.84 (+1) | 0.3 (0) | 13.1 ± 0.1 | 10.1± 0.2 | 6.0 ± 0.2 m | 79.6 ± 0.5 jk | 93.0 ± 0.7 c |
4 (0) | 0.84 (+1) | 0.4 (+1) | 14.0 ± 0.2 | 10.8 ± 0.1 | 6.0 ± 0.2 m | 97.2 ± 0.3 kl | 91.6 ± 0.5 ab |
4.5 (+1) | 0.60 (−1) | 0.2 (−1) | 1.3 ± 0.4 | 1.0 ± 0.2 | 3.6 ± 0.1 j | 36.1 ± 0.4 f | 92.7 ± 0.6 b |
4.5 (+1) | 0.60 (−1) | 0.3 (0) | 2.0 ± 0.3 | 1.6 ± 0.3 | 4.3 ± 0.2 k | 43.3 ± 0.5 g | 91.2 ± 0.7 ab |
4.5 (+1) | 0.60 (−1) | 0.4 (+1) | 3.8 ± 0.2 | 2.9 ± 0.1 | 5.3 ± 0.2 l | 50.2 ± 0.3 h | 90.5 ± 0.5 ab |
4.5 (+1) | 0.72 (0) | 0.2 (−1) | 5.8 ± 0.2 | 4.4 ± 0.2 | 4.2 ± 0.1 jk | 47.1 ± 0.4 gh | 92.3 ± 0.5 b |
4.5 (+1) | 0.72 (0) | 0.3 (0) | 8.4 ± 0.4 | 6.5 ± 0.3 | 5.1 ± 0.1 kl | 61.8 ± 0.3 ij | 90.9 ± 0.6 ab |
4.5 (+1) | 0.72 (0) | 0.4 (+1) | 10.4 ± 0.2 | 8.0 ± 0.2 | 6.0 ± 0.2 m | 75.9 ± 0.7 j | 89.8 ± 0.5 a |
4.5 (+1) | 0.84 (+1) | 0.2 (−1) | 11.7 ± 0.1 | 8.7 ± 0.1 | 4.8 ± 0.2 kl | 59.7 ± 0.4 i | 92.0 ± 0.5 b |
4.5 (+1) | 0.84 (+1) | 0.3 (0) | 13.0 ± 0.2 | 10.3 ± 0.2 | 6.0 ± 0.1 m | 79.3 ± 0.5 jk | 90.2 ± 0.7 ab |
4.5 (+1) | 0.84 (+1) | 0.4 (+1) | 13.9 ± 0.2 | 11.0 ± 0.1 | 6.0 ± 0.2 m | 95.5 ± 0.5 k | 89.1 ± 0.4 a |
3.5 (−1) | 0.60 (−1) | 0 (−3) | 1.3 ± 0.1 | NA | 1.9 ± 0.3 b | 26.3 ± 0.3 de | 95.1 ± 0.5 d |
4 (0) | 0.60 (−1) | 0 (−3) | 1.3 ± 0.1 | NA | 1.6 ± 0.2 ab | 25.9 ± 0.4 d | 94.0 ± 0.6 cd |
4.5 (+1) | 0.60 (−1) | 0 (−3) | 1.3 ± 0.4 | NA | 1.4 ± 0.2 a | 25.8 ± 0.4 d | 93.7 ± 0.7 cd |
3.5 (−1) | 0.72 (0) | 0 (−3) | 5.6 ± 0.3 | NA | 3.7 ± 0.2 g | 34.0 ± 0.3 e | 94.2 ± 0.6 cd |
4 (0) | 0.72 (0) | 0 (−3) | 5.7 ± 0.2 | NA | 3.4 ± 0.2 f | 33.8 ± 0.2 e | 93.6 ± 0.5 c |
4.5 (+1) | 0.72 (0) | 0 (−3) | 5.8 ± 0.2 | NA | 3.2 ± 0.3 ef | 33.6 ± 0.2 e | 93.1 ± 0.5 c |
3.5 (−1) | 0.84 (+1) | 0 (−3) | 11.4 ± 0.1 | NA | 5.5 ± 0.2 i | 40.2 ± 0.3 g | 93.9 ± 0.4 cd |
4 (0) | 0.84 (+1) | 0 (−3) | 11.5 ± 0.1 | NA | 5.3 ± 0.3 hi | 38.6 ± 0.2 f | 93.4 ± 0.5 c |
4.5 (+1) | 0.84 (+1) | 0 (−3) | 11.7 ± 0.1 | NA | 5.1 ± 0.1 h | 42.6 ± 0.3 g | 93.0 ± 0.5 c |
3.5 (−1) | 0 (−6) | 0.2 (−1) | NA | 1.0 ± 0.1 | 1.6 ± 0.3 ab | 10.5 ± 0.3 a | 95.5 ± 0.6 d |
4 (0) | 0 (−6) | 0.2 (−1) | NA | 1.0 ± 0.1 | 1.5 ± 0.3 a | 10.4 ± 0.2 a | 95.5 ± 0.5 d |
4.5 (+1) | 0 (−6) | 0.2 (−1) | NA | 1.1 ± 0.2 | 1.3 ± 0.2 a | 10.3 ± 0.2 a | 95.6 ± 0.3 d |
3.5 (−1) | 0 (−6) | 0.3 (0) | NA | 6.6 ± 0.2 | 2.4 ± 0.2 d | 13.6 ± 0.2 b | 96.7 ± 0.6 de |
4 (0) | 0 (−6) | 0.3 (0) | NA | 6.5 ± 0.2 | 1.8 ± 0.3 b | 13.5 ± 0.1 b | 96.4 ± 0.4 e |
4.5 (+1) | 0 (−6) | 0.3 (0) | NA | 6.7 ± 0.2 | 1.7 ± 0.2 ab | 13.5 ± 0.2 b | 95.6 ± 0.3 d |
3.5 (−1) | 0 (−6) | 0.4 (+1) | NA | 10.9 ± 0.2 | 2.9 ± 0.2 e | 20.1 ± 0.2 c | 97.8 ± 0.7 f |
4 (0) | 0 (−6) | 0.4 (+1) | NA | 10.8 ± 0.4 | 2.5 ± 0.2 d | 21.3 ± 0.2 c | 97.4 ± 0.4 f |
4.5 (+1) | 0 (−6) | 0.4 (+1) | NA | 11.1 ± 0.3 | 2.0 ± 0.1 cd | 17.1 ± 0.1 bc | 96.7 ± 0.3 de |
Model Terms | Responses | ||
---|---|---|---|
Inactivation of S. cerevisiae (Y1, log cfu/mL) | Inactivation of PPO (Y2, %) | Retention in Vitamin C (Y3, %) | |
Coefficient ± CI | Coefficient ± CI | Coefficient ± CI | |
Constant | 5.07 ± 0.14 | 60.13 ± 1.48 | 93.36 ± 0.12 |
x1 | −0.11 ± 0.11 ** | −2.47 ± 1.09 | −2.27 ± 0.09 |
x2 | 0.84 ± 0.10 | 18.13 ± 1.01 | −0.57 ± 0.08 |
x3 | 0.56 ± 0.11 | 13.11 ± 1.08 | −0.67 ± 0.09 |
x1 × x2 | 0.03 ± 0.04 ** | −0.46 ± 0.36 ** | −0.30 ± 0.03 |
x1 × x3 | 0.03 ± 0.06 ** | −0.51 ± 0.64 ** | −0.54 ± 0.05 |
x3 × x2 | −0.06 ± 0.03 | 1.97 ± 0.33 | −0.21 ± 0.02 |
x1 × x1 | 0.03 ± 0.15 ** | 1.38 ± 1.53 ** | 0.04 ± 0.12 ** |
x2 × x2 | 0.05 ± 0.02 | 1.71 ± 0.18 | −0.01 ± 0.01 ** |
x3 × x3 | 0.00 ± 0.01 ** | 1.15 ± 0.44 | −0.17 ± 0.03 |
plof | 0.155 | 0.251 | 0.347 |
pmodel | <0.0001 | <0.0001 | <0.0001 |
F value | 51.9 | 133.6 | 122.4 |
R2 | 0.93 | 0.97 | 0.97 |
Adj R2 | 0.91 | 0.96 | 0.96 |
Parameters | Goal | Lower Limit (Li) | Upper Limit (Ui) | Importance (ri) | Optimized Value at D = 0.89 | Actual Value |
---|---|---|---|---|---|---|
pH (-) | In range | 3.5 | 4.5 | - | 3.5 | 3.5 |
PL fluence (J/cm2) | In range | 0.60 | 0.84 | - | 0.80 | 0.80 |
US intensity (W/cm3) | In range | 0.2 | 0.4 | - | 0.4 | 0.4 |
Inactivation of S. cerevisiae (Y1, log cfu/mL) | Maximize | 1.3 | 6.2 | 5 | 6.2 | 6.1 ± 0.2 |
Inactivation of PPO (Y2, %) | Maximize | 10.3 | 100 | 4 | 90.1 | 90.5 ± 1.3 |
Retention in vitamin C (Y3, %) | Maximize | 89.1 | 97.8 | 4 | 95.2 | 95.0 ± 0.8 |
Attributes | Sample Treated at Various Conditions | ||||
---|---|---|---|---|---|
Untreated | PL (Fe = 0.8 J·cm−2) + US (0.4 W·cm−3) | PL (Fe = 1.2 J·cm−2) [14] | US (0.69 W·cm−3) [15] | Thermal Treatment (95 °C/5 min) | |
S1 | S2 | S3 | S4 | S5 | |
Aerobic mesophilic count (log cfu/mL) | 6.0 ± 0.2 | <DL | <DL | <DL | <DL |
Yeast and molds count (log cfu/mL) | 6.3 ± 0.2 | <DL | <DL | <DL | <DL |
E. coli population (log cfu/mL) | 7.0 ± 0.1 | <DL | <DL | <DL | <DL |
L. monocytogenes population (log cfu/mL) | 7.0 ± 0.3 | <DL | <DL | <DL | <DL |
S. cerevisiae population (log cfu/mL) | 7.1 ± 0.2 | <DL | <DL | <DL | <DL |
Inactivation of PPO (%) | 0 d | 90.5 ± 1.1 b | 99.9 ± 0.2 c | 60.0 ± 1.2 a | 99.0 ± 0.3 c |
Inactivation of POD (%) | 0 c | 95.3 ± 1.3 a | 99.9 ± 0.1 b | 95.5 ± 0.9 a | 100 ± 0.1 b |
Inactivation of PME (%) | 0 c | 97.6 ± 0.6 a | 99.9 ± 0.1 b | 99.8 ± 0.1 b | 100 ± 0.1 cd |
pH (-) | 3.5 ± 0.1 a | 3.5 ± 0.1 a | 3.5 ± 0.2 a | 3.51 ± 0.1 a | 3.49 ± 0.2 a |
TSS (°Brix) | 11.7 ± 0.1 a | 11.8 ± 0.2 a | 11.7 ± 0.1 a | 11.9 ± 0.3 a | 11.78 ± 0.3 a |
Titratable acidity (% citric acid) | 2.1 ± 0.1 a | 2.1 ± 0.2 a | 2.1 ± 0.1 a | 2.1 ± 0.1 a | 2.1 ± 0.2 a |
Viscosity (cp) | 12.25 ± 0.3 a | 12.05 ± 0.2 a | N.D. | N.D. | 12.17 ± 0.3 a |
Total phenolic content (g GAE/L) | 26.4 ± 0.3 c | 25.3 ± 0.2 ab | 24.6 ± 0.2 a | 30.8 ± 0.3 d | 16.2 ± 0.3 a |
Antioxidant capacity (g GAEAC/L) | 22.7 ± 0.3 c | 21.8 ± 0.3 b | 20.8 ± 0.2 a | 24.9 ± 0.3 d | 13.1 ± 0.2 a |
Ascorbic acid (g/L) | 2.82 ± 0.2 c | 2.68 ± 0.4 b | 2.19 ± 0.2 a | 3.24 ± 0.3 d | 1.64 ± 0.3 a |
Browning Index (BI) | 63.8 ± 0.2 a | 64.7 ± 0.3 b | 67.1 ± 0.1 c | 64.0 ± 0.1 a | 72.6 ± 0.4 d |
Total color change (ΔE*) | - | 1.7 ± 0.3 a | 7.8 ± 0.4 c | 2.6 ± 0.2 b | 12.4 ± 0.4 d |
Overall acceptability (out of 9) | 8.1 ± 0.2 c | 7.7 ± 0.2 b | 7.2 ± 0.3 a | 7.5 ± 0.2 ab | 6.9 ± 0.2 a |
Flavor (out of 9) | 7.8 ± 0.1 d | 7.5 ± 0.2 c | 6.9 ± 0.1 b | 7.1 ± 0.1 bc | 6.3 ± 0.3 a |
Mouthfeel (out of 9) | 7.9 ± 0.2 d | 7.4 ± 0.3 c | 7.0 ± 0.2 b | 7.3 ± 0.2 c | 6.1 ± 0.2 a |
Aroma (out of 9) | 8.2 ± 0.1 d | 7.5 ± 0.2 bc | 7.1 ± 0.3 b | 7.2 ± 0.2 b | 6.4 ± 0.3 a |
No. | Compound Identified | Untreated Juice (S1) | PL + US-Treated Juice (S2) | RT | Mass | Formula | Description |
---|---|---|---|---|---|---|---|
1 | 3beta,6beta-Dihydroxynortropane | Present | Present | 1.107 | 143.0956 | C7H13NO2 | Tropane alkaloid |
2 | Dihydrocaffeic acid 3-O-glucuronide | Present | Present | 1.341 | 358.0912 | C15H18O10 | Antioxidants |
3 | 1,2-dihydrostilbene | Present | Absent | 3.284 | 182.109 | C14 H14 | Provides protection against chronic diseases |
4 | Isomyristicin | Present | Absent | 4.641 | 192.0799 | C11H12O3 | Has anti-cholinergic, antibacterial, and hepatoprotective effects |
5 | Biorobin | Present | Absent | 4.717 | 594.1595 | C27H30O15 | Flavones and flavonols |
6 | Naringenin | Present | Present | 4.978 | 272.0696 | C15H12O5 | Flavonoids and strong anti-inflammatory and antioxidant activities |
7 | Hesperetin | Present | Present | 6.366 | 302.08 | C16H14O6 | Antioxidant and anti-inflammatory properties |
8 | Ononin | Present | Present | 6.438 | 430.1279 | C22H22O9 | Isoflavone glycoside |
9 | Vinyl Cafeate | Absent | Present | 4.616 | 206.0591 | C11H10O4 | Antioxidant |
10 | 2-(2,5-Dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one | Absent | Present | 10.235 | 402.133 | C21H22O8 | A methoxy flavone that is flavone substituted by methoxy groups at positions 5, 6, 7, 8, 3′, and 5′ |
11 | N-Hexadecanoylpyrrolidine | Absent | Present | 18.837 | 309.3044 | C20H39NO | Byproduct of the Maillard reaction |
12 | Isocitrate | Present | Present | 1.483 | 192.027 | C6H8O7 | Commonly used as a marker to detect the authenticity and quality of fruit products, most often in citrus juices |
13 | Dalpanin | Present | Present | 8.973 | 534.1754 | C26H30O12 | Flavonoid |
14 | 7b-Hydroxy-3-oxo-5b-cholanoic acid | Present | Absent | 19.317 | 390.2793 | C24H38O4 | Bile acid |
15 | Kuwanon Z | Present | Present | 4.701 | 594.1548 | C34H26O10 | Flavans that feature a C5-isoprenoid substituent at the 3-position. This could make kuwanon-Z a potential biomarker for consuming these foods |
Sample | α-Helix (%) | ß Sheet (%) | ß Turn (%) | Random Coil (%) |
---|---|---|---|---|
Untreated (S1) | 7.7 ± 0.2 | 37.7 ± 0.4 | 6.9 ± 0.2 | 47.7 ± 0.5 |
PL + US (S2) | 2.7 ± 0.1 | 33.9 ± 0.3 | 1.4 ± 0.2 | 62 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaik, L.; Chakraborty, S. Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice. Foods 2024, 13, 1996. https://doi.org/10.3390/foods13131996
Shaik L, Chakraborty S. Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice. Foods. 2024; 13(13):1996. https://doi.org/10.3390/foods13131996
Chicago/Turabian StyleShaik, Lubna, and Snehasis Chakraborty. 2024. "Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice" Foods 13, no. 13: 1996. https://doi.org/10.3390/foods13131996
APA StyleShaik, L., & Chakraborty, S. (2024). Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice. Foods, 13(13), 1996. https://doi.org/10.3390/foods13131996