Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Samples
2.3. Determination of Protein Solubility
2.4. Particle Analysis
2.5. Determination of Total Sulfhydryl Content
2.6. Determination of Surface Hydrophobicity
2.7. SDS-PAGE
2.8. DSC Analysis
2.9. Determination of Protein Secondary Structure
2.10. Amino Acid Composition Analysis
2.11. Electron Paramagnetic Resonance (EPR) Measurements
2.12. Statistical Analysis
3. Results and Discussion
3.1. Solubility and Particle Size
3.2. Surface Hydrophobicity
3.3. Total Sulfhydryl Content
3.4. SDS-PAGE
3.5. Thermal Denaturation
3.6. Protein Secondary Structure
3.7. Amino Acid Profile
3.8. Analysis of EPR Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Jo, K.; Jeong, H.G.; Choi, Y.S.; Kyoung, H.; Jung, S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit. Rev. Food Sci. Nutr. 2024, 64, 1385–1402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, G.; Wang, J.; Wang, Y.; Jin, G.; Teng, W.; Geng, F.; Cao, J. Myofibrillar protein denaturation/oxidation in freezing-thawing impair the heat-induced gelation: Mechanisms and control technologies. Trends Food Sci. Technol. 2023, 138, 655–670. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, C.; Walayat, N.; Nawaz, A.; Ding, Y.; Liu, J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit. Rev. Food Sci. Nutr. 2023, 63, 5874–5889. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, W.; Zhao, X.; Xu, X. Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chem. 2022, 380, 131734. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Y.; Sun, J. Synergistic effect of high-intensity ultrasound and pH-shifting on the functionalities of chicken wooden breast myofibrillar protein: Reveal the mechanism of protein structure change. LWT-Food Sci. Technol. 2023, 181, 114743. [Google Scholar] [CrossRef]
- Pezeshk, S.; Rezaei, M.; Hosseini, H.; Abdollahi, M. Ultrasound-assisted alkaline pH-shift process effects on structural and interfacial properties of proteins isolated from shrimp by-products. Food Struct. 2022, 32, 100273. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Wu, C.; Cai, R.; Xu, X.; Zhou, G.; Wu, T.; Zhang, Y. Inhibition of heat-induced flocculation of myosin-based emulsions through steric repulsion by conformational adaptation-enhanced interfacial protein with an alkaline pH-shifting-driven method. Langmuir 2018, 34, 8848–8856. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Z.; Cao, Y.; Ming, Y.; Wu, M. Improving the solubility and interfacial absorption of hempseed protein via a novel high pressure homogenization-assisted pH-shift strategy. Food Chem. 2024, 442, 138447. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Chen, B.; Cao, Y.; Rao, J. Synergistic effect of pH-shift and controlled heating on improving foaming properties of pea vicilin and its adsorption behavior at the air-water interface. Food Hydrocoll. 2023, 145, 109022. [Google Scholar] [CrossRef]
- Otero, L.; Rodríguez, A.C.; Pérez-Mateos, M.; Sanz, P.D. Effects of magnetic fields on freezing: Application to biological products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 646–667. [Google Scholar] [CrossRef]
- Zhang, R.; Realini, C.E.; Kim, Y.H.B.; Farouk, M.M. Challenges and processing strategies to produce high quality frozen meat. Meat Sci. 2023, 205, 109311. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, Y.; Yang, K.; Yin, X.; Ma, J.; Li, Z.; Sun, W.; Han, M. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins. Food Chem. 2019, 274, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.P. Comparison of the effect of sodium chloride concentration on protein determination: Bradford and Biuret methods. Anal. Biochem. 2024, 687, 115450. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Xu, L.; Xiang, R.; Liu, X.; Zhu, M. Effects of mulberry polyphenols on oxidation stability of sarcoplasmic and myofibrillar proteins in dried minced pork slices during processing and storage. Meat Sci. 2020, 160, 107973. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Zhang, J.; Zheng, J.; Li, X.; Shao, J.H. The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with Low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy. Food Chem. 2019, 280, 263–269. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.Y.; Fu, L.; Zhao, Y.Y.; Bai, Y.H. Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat. Asian-Australas. J. Anim. Sci. 2019, 32, 721–733. [Google Scholar] [CrossRef]
- Bai, X.; Shi, S.; Kong, B.; Chen, Q.; Liu, Q.; Li, Z.; Wu, K.; Xia, X. Analysis of the influencing mechanism of the freeze–thawing cycles on in vitro chicken meat digestion based on protein structural changes. Food Chem. 2023, 399, 134020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ertbjerg, P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chem. 2019, 299, 125104. [Google Scholar] [CrossRef]
- Zhao, D.; Sheng, B.; Li, H.; Wu, Y.; Xu, D.; Li, C. Glycation from α-dicarbonyl compounds has different effects on the heat-induced aggregation of bovine serum albumin and β-casein. Food Chem. 2021, 340, 128108. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Z.; Tan, Y.; Luo, Y.; Li, X.; Hong, H. Protein oxidation-mediated changes in digestion profile and nutritional properties of myofibrillar proteins from bighead carp (Hypophthalmichthys nobilis). Food Res. Int. 2023, 174, 113546. [Google Scholar] [CrossRef] [PubMed]
- De Zawadzki, A.; Arrivetti, L.O.R.; Vidal, M.P.; Catai, J.R.; Nassu, R.T.; Tullio, R.R.; Berndt, A.; Oliveira, C.R.; Ferreira, A.G.; Neves-Junior, L.F.; et al. Mate extract as feed additive for improvement of beef quality. Food Res. Int. 2017, 99, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kim, Y.H.B.; Puolanne, E.; Ertbjerg, P. Role of freezing-induced myofibrillar protein denaturation in the generation of thaw loss: A review. Meat Sci. 2022, 190, 108841. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Li, X.; Wang, H.; Mehmood, W.; Zhong, M.; Zhang, C.; Blecker, C. Effects of low voltage electrostatic field thawing on the changes in physicochemical properties of myofibrillar proteins of bovine Longissimus dorsi muscle. J. Food Eng. 2019, 261, 140–149. [Google Scholar] [CrossRef]
- Kristinsson, H.G.; Hultin, H.O. Changes in Conformation and Subunit Assembly of Cod Myosin at Low and High pH and after Subsequent Refolding. J. Agric. Food Chem. 2003, 51, 7187–7196. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Udgaonkar, J.B. Heterogeneity in Protein Folding and Unfolding Reactions. Chem. Rev. 2022, 122, 8911–8935. [Google Scholar] [CrossRef] [PubMed]
- Pham, L.B.; Wang, B.; Zisu, B.; Adhikari, B. Covalent modification of flaxseed protein isolate by phenolic compounds and the structure and functional properties of the adducts. Food Chem. 2019, 293, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Puolanne, E.; Ertbjerg, P. Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength. Food Chem. 2021, 338, 128017. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, B.; Li, H.; Liu, H.; Shi, S.; Feng, J.; Pan, N.; Xia, X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4812–4846. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zhou, K.; Wang, Y.; Xie, Y.; Wang, Z.; Li, P.; Xu, B. Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions. Food Chem. 2020, 330, 127186. [Google Scholar] [CrossRef]
- Yu, Q.; Shi, T.; Xiong, Z.; Yuan, L.; Hong, H.; Gao, R.; Bao, Y. Oxidation affects dye binding of myofibrillar proteins via alteration in net charges mediated by a reduction in isoelectric point. Food Res. Int. 2023, 163, 112204. [Google Scholar] [CrossRef]
- Seelig, J.; Seelig, A. Protein stability-analysis of heat and cold denaturation without and with unfolding models. J. Phys. Chem. B 2023, 127, 3352–3363. [Google Scholar] [CrossRef] [PubMed]
- Guckeisen, T.; Hosseinpour, S.; Peukert, W. Effect of pH and urea on the proteins secondary structure at the water/air interface and in solution. J. Colloid Interf. Sci. 2021, 590, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Wang, Z.; Zhang, D.; Li, X.; Hou, C.; Ren, C. Phosphorylation of myosin regulatory light chain at Ser17 regulates actomyosin dissociation. Food Chem. 2021, 356, 129655. [Google Scholar] [CrossRef] [PubMed]
- Zadeh-Haghighi, H.; Simon, C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. R. Soc. Interface 2022, 19, 20220325. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, E.; Condello, S.; Currò, M.; Ferlazzo, N.; Caccamo, D.; Magazù, S.; Ientile, R. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells. Bioelectromagnetics 2013, 34, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Bekhite, M.M.; Figulla, H.R.; Sauer, H.; Wartenberg, M. Static magnetic fields increase cardiomyocyte differentiation of Flk-1+ cells derived from mouse embryonic stem cells via Ca2+ influx and ROS production. Int. J. Cardiol. 2013, 167, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Okano, H. Effects of static magnetic fields in biology: Role of free radicals. Front. Biosci. 2008, 13, 6106–6125. [Google Scholar] [CrossRef]
- Kumar, A.; Sevilla, M.D. SOMO-HOMO level inversion in biologically important Radicals. J. Phys. Chem. B 2018, 122, 98–105. [Google Scholar] [CrossRef]
Samples | T1 (°C) | T2 (°C) | ΔH1 (mJ/g) | ΔH2 (mJ/g) |
---|---|---|---|---|
MP | 50.34 ± 0.59 c | 69.11 ± 0.41 e | 76.27 ± 3.03 f | 26.49 ± 1.53 d |
MP-9 | 49.51 ± 0.67 bc | 66.28 ± 0.54 d | 68.89 ± 2.52 de | 24.23 ± 1.32 cd |
MP-10 | 49.03 ± 0.12 ab | 64.80 ± 0.21 c | 60.07 ± 2.33 bc | 22.30 ± 1.65 bc |
MP-11 | 48.88 ± 0.14 ab | 63.74 ± 0.11 b | 55.83 ± 2.23 ab | 19.98 ± 1.06 ab |
MP-9+ | 49.34 ± 0.06 abc | 65.94 ± 0.16 d | 70.19± 2.62 ef | 23.78 ± 0.82 cd |
MP-10+ | 49.25 ± 0.43 abc | 64.71 ± 0.55 bc | 62.85 ± 1.79 cd | 22.78 ± 1.56 bcd |
MP-11+ | 48.30± 0.22 a | 62.37± 0.12 a | 53.35± 2.02 a | 17.45 ± 1.27 a |
Samples (%) | MP | MP-9 | MP-10 | MP-11 | MP-9+ | MP-10+ | MP-11+ |
---|---|---|---|---|---|---|---|
Aspartate | 9.98 ± 0.03 d | 9.63 ± 0.08 b | 9.78 ± 0.07 c | 10.2 ± 0.05 d | 9.88 ± 0.04 e | 9.88 ± 0.02 cd | 9.49 ± 0.03 a |
Threonine | 6.31 ± 0.05 d | 6.08 ± 0.09 ab | 6 ± 0.06 a | 6.13 ± 0.02 abc | 6.13 ± 0.03 abc | 6.27 ± 0.06 cd | 6.2 ± 0.04 bcd |
Serine | 4.97 ± 0.05 b | 4.84 ± 0.10 ab | 4.9 ± 0.09 ab | 4.99 ± 0.03 b | 4.93 ± 0.02 ab | 4.81 ± 0.04 a | 4.88 ± 0.03 ab |
Glutamic acid | 15.39 ± 0.11 cd | 15.1 ± 0.03 ab | 15.23 ± 0.09 bc | 15.46 ± 0.06 d | 15.25 ± 0.05 bc | 15.04 ± 0.04 a | 15.32 ± 0.03 cd |
Glycine | 3.6 ± 0.03 ab | 3.67 ± 0.02 b | 3.68 ± 0.07 b | 3.51 ± 0.04 a | 3.58 ± 0.08 ab | 3.53 ± 0.03 a | 3.53 ± 0.04 a |
Alanine | 5.38 ± 0.04 cd | 5.15 ± 0.07 ab | 5.17 ± 0.05 ab | 5.27 ± 0.03 bc | 5.24 ± 0.06 bc | 5.07 ± 0.07 a | 5.42 ± 0.04 d |
Cystine | 0.79 ± 0.05 c | 0.72 ± 0.04 bc | 0.68 ± 0.03 ab | 0.71 ± 0.02 abc | 0.65 ± 0.03 ab | 0.70 ± 0.05 abc | 0.61 ± 0.04 a |
Valine | 4.51 ± 0.05 bcd | 4.35 ± 0.03 a | 4.52 ± 0.04 cd | 4.53 ± 0.04 cd | 4.58 ± 0.04 d | 4.45 ± 0.04 abc | 4.39 ± 0.05 ab |
Methionine | 4.09 ± 0.07 bc | 4.21 ± 0.04 c | 3.96 ± 0.08 ab | 3.92 ± 0.03 a | 4.05 ± 0.03 ab | 3.99 ± 0.02 ab | 3.94 ± 0.04 a |
Isoleucine | 6.49 ± 0.05 a | 7.83 ± 0.04 d | 6.75 ± 0.05 b | 6.66 ± 0.03 b | 6.66 ± 0.04 b | 6.91 ± 0.05 c | 6.77 ± 0.01 c |
Proline | 1.19 ± 0.01 d | 0.96 ± 0.03 ab | 1.08 ± 0.02 c | 0.88 ± 0.06 a | 0.93 ± 0.04 ab | 1.02 ± 0.01 bc | 0.86 ± 0.05 a |
Leucine | 8.49 ± 0.09 a | 8.82 ± 0.08 c | 8.66 ± 0.07 bc | 8.54 ± 0.04 b | 8.48 ± 0.03 a | 8.73 ± 0.03 c | 8.7 ± 0.04 bc |
Tyrosine | 5.01 ± 0.05 a | 5.04 ± 0.06 ab | 5.00 ± 0.04 a | 5.01 ± 0.05 ab | 5.03 ± 0.04 ab | 5.11 ± 0.06 ab | 5.14 ± 0.03 b |
Phenylalanine | 4.84 ± 0.09 a | 4.75 ± 0.04 a | 5.01 ± 0.05 b | 5.02 ± 0.07 b | 5.03 ± 0.03 b | 5.02 ± 0.06 b | 5.05 ± 0.03 b |
Histidine | 3.37 ± 0.04 ab | 3.27 ± 0.02 a | 3.37 ± 0.05 ab | 3.34 ± 0.03 ab | 3.33 ± 0.03 ab | 3.29 ± 0.05 a | 3.42 ± 0.04 b |
Lysine | 9.31 ± 0.04 a | 9.34 ± 0.03 a | 9.54 ± 0.05 c | 9.46 ± 0.04 bc | 9.7 ± 0.03 d | 9.54 ± 0.03 c | 9.41 ± 0.05 ab |
Arginine | 7.44 ± 0.05 a | 7.18 ± 0.08 a | 7.76 ± 0.04 c | 7.27 ± 0.05 a | 7.48 ± 0.04 b | 7.67 ± 0.05 c | 7.64 ± 0.05 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Du, G.; Li, K.; Wang, Y.; Shi, P.; Li, J.; Bai, Y. Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field. Foods 2024, 13, 1988. https://doi.org/10.3390/foods13131988
Chen B, Du G, Li K, Wang Y, Shi P, Li J, Bai Y. Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field. Foods. 2024; 13(13):1988. https://doi.org/10.3390/foods13131988
Chicago/Turabian StyleChen, Bo, Gaoang Du, Ke Li, Yu Wang, Panpan Shi, Junguang Li, and Yanhong Bai. 2024. "Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field" Foods 13, no. 13: 1988. https://doi.org/10.3390/foods13131988
APA StyleChen, B., Du, G., Li, K., Wang, Y., Shi, P., Li, J., & Bai, Y. (2024). Properties of Myofibrillar Protein in Frozen Pork Improved through pH-Shifting Treatments: The Impact of Magnetic Field. Foods, 13(13), 1988. https://doi.org/10.3390/foods13131988