Effects of Defatting Pretreatment on Polysaccharide Extraction from Rambutan Seeds Using Subcritical Water: Optimization Using the Desirability Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material and Reagents
2.2. Apparatus
2.3. Feedstock Preparation and Characterization
2.4. Subcritical Water Extraction of RS and DRS
2.5. Analysis of Total Sugar Content in POLS
2.6. Size Distribution of POLS
2.7. Monosaccharide Profile of POLS
2.8. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis
3.2. Effect of Operating Parameters on POLS Yield
3.3. Effect of Operating Parameters on Total Sugar Content in POLS-RS and POLS-DRS
3.4. Process Optimization Using the Desirability Approach
3.5. Molecular Weight Distribution and Monosaccharide Profile of the Extracted POLS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaidech, P.; Matan, N. Cardamom oil-infused paper box: Enhancing rambutan fruit post-harvest disease control with reusable packaging. LWT 2023, 189. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Nee, S.S.; Norazlina, M.R.; Hasmadi, M.; Sharifudin, M.S.; Patricia, M.; Lee, J.S.; Shihabul, A.; Amir, H.M.S.; Jumardi, R.; et al. Changes in microstructures of rambutan seed and the quality of its fat during drying. SN Appl. Sci. 2020, 2, 841. [Google Scholar] [CrossRef]
- Solis-Fuentes, J.A.; Camey-Ortiz, G.; Hernandez-Medel Mdel, R.; Perez-Mendoza, F.; Duran-de-Bazua, C. Composition, phase behavior and thermal stability of natural edible fat from rambutan (Nephelium lappaceum L.) seed. Bioresour. Technol. 2010, 101, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Chai, K.F.; Mohd Adzahan, N.; Karim, R.; Rukayadi, Y.; Ghazali, H.M. Characteristics of fat, and saponin and tannin contents of 11 varieties of rambutan (Nephelium lappaceum L.) seed. Int. J. Food Prop. 2018, 21, 1091–1106. [Google Scholar] [CrossRef]
- Harahap, S.N.; Ramli, N.; Vafaei, N.; Said, M. Physicochemical and nutritional composition of rambutan anak sekolah (Nephelium lappaceum L.) seed and seed oil. Pak. J. Nutr. 2012, 11, 1073. [Google Scholar] [CrossRef]
- Manaf, Y.N.A.; Marikkar, J.M.N.; Long, K.; Ghazali, H.M. Physico-chemical characterisation of the fat from red-skin rambutan (Nephellium lappaceum L.) seed. J. Oleo Sci. 2013, 62, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Sirisompong, W.; Jirapakkul, W.; Klinkesorn, U. Response surface optimization and characteristics of rambutan (Nephelium lappaceum L.) kernel fat by hexane extraction. LWT 2011, 44, 1946–1951. [Google Scholar] [CrossRef]
- Winayanuwattikun, P.; Kaewpiboon, C.; Piriyakananon, K.; Tantong, S.; Thakernkarnkit, W.; Chulalaksananukul, W.; Yongvanich, T. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioenergy 2008, 32, 1279–1286. [Google Scholar] [CrossRef]
- Bhuiya, M.M.K.; Rasul, M.; Khan, M.; Ashwath, N.; Mofijur, M. Comparison of oil extraction between screw press and solvent (n-hexane) extraction technique from beauty leaf (Calophyllum inophyllum L.) feedstock. Ind. Crop. Prod. 2020, 144, 112024. [Google Scholar] [CrossRef]
- Moreira, R.C.; de Melo, R.P.F.; Martinez, J.; Marostica Junior, M.R.; Pastore, G.M.; Zorn, H.; Bicas, J.L. Supercritical CO2 as a Valuable Tool for Aroma Technology. J. Agric. Food Chem. 2023, 71, 9201–9212. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M.; Mongkonpaibool, K.; Butsaratrakool, T.; Chinmuang, T. Rambutan seed as a new promising unconventional source of specialty fat for cosmetics. Ind. Crop. Prod. 2016, 83, 149–154. [Google Scholar] [CrossRef]
- Nilmat, K.; Sakdasri, W.; Karnchanatat, A.; Sawangkeaw, R. Biocomposite film from Rambutan seed oil extracted by green extraction technologies. In Proceedings of the International Symposium on Green Chemistry, La Rochelle, France, 16–20 May 2022; National Center for Scientific Research (CNRS): Paris, France, 2022. [Google Scholar]
- Sakdasri, W.; Arnutpongchai, P.; Phonsavat, S.; Bumrungthaichaichan, E.; Sawangkeaw, R. Pressurized hot water extraction of crude polysaccharides, β-glucan, and phenolic compounds from dried gray oyster mushroom. LWT 2022, 168, 113895. [Google Scholar] [CrossRef]
- Hunsub, P.; Ngamprasertsith, S.; Prichapan, N.; Sakdasri, W.; Karnchanatat, A.; Sawangkeaw, R. Production of Protein Hydrolysates from Spent Coffee Ground via Microwave, Enzymatic, Subcritical Water Extractions, and Their Combination. Biol. Life Sci. Forum 2023, 26, 43. [Google Scholar] [CrossRef]
- Nilmat, K.; Ngamprasertsith, S.; Sakdasri, W.; Jirukkalul, P.; Karnchanatat, A.; Sawangkeaw, R. Polysaccharide extraction of defatted rambutan seed by hot water and subcritical water extractions. Biol. Life Sci. Forum 2023, 26, 75. [Google Scholar] [CrossRef]
- Luo, X.; Duan, Y.; Yang, W.; Zhang, H.; Li, C.; Zhang, J. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydr. Polym. 2017, 157, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N.; Ramu Ganesan, A.; Velmurugan, K.; Sathishkumar, P.; Jayakumar, R.; Seedevi, P. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits—A comprehensive review. Carbohydr. Polym. 2020, 238, 116185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical Water Extraction of Natural Products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, S.; Udayakumar, G.P.; Narala, V.R. Recent advances in the extraction and characterization of seed polysaccharides, and their bioactivities: A review. Bioact. Carbohydr. Diet. Fibre 2021, 26, 100276. [Google Scholar] [CrossRef]
- Song, Q.; Jiang, L.; Yang, X.; Huang, L.; Yu, Y.; Yu, Q.; Chen, Y.; Xie, J. Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L.) and its antioxidant activity. Int. J. Biol. Macromol. 2019, 138, 874–880. [Google Scholar] [CrossRef]
- Huang, H.; Huang, G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef]
- Stat-Ease Team. Handbook for Experimenters; Stat-Ease, Inc.: Minneapolis, MN, USA, 2019; p. 55413. [Google Scholar]
- Das Purkayastha, M.; Barthakur, A.; Mahanta, C.L. Production of vegetable protein from rapeseed press-cake using response surface methodology, weighted multivariate index, and desirability function: A way to handle correlated multiple responses. Int. J. Food Prop. 2014, 18, 1248–1271. [Google Scholar] [CrossRef]
- Ngamprasertsith, S.; Sukaead, W.; Camy, S.; Condoret, J.-S.; Sawangkeaw, R. Recovery of Moringa oleifera oil from seed cake by supercritical carbon dioxide extraction. Eng. J. 2021, 25, 67–74. [Google Scholar] [CrossRef]
- Nilmat, K.; Ngamprasertsith, S.; Sakdasri, W.; Karnchanatat, A.; Sawangkeaw, R. Sequential process to valorisation of rambutan seed waste by supercritical CO2-ethanol and subcritical water extractions. Chem. Eng. Trans. 2023; in press. [Google Scholar]
- Horowitz, W.; Latimer, G. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2006; p. 18. [Google Scholar]
- Ji, H.-Y.; Dai, K.-Y.; Liu, C.; Yu, J.; Liu, A.-J.; Chen, Y.-F. The ethanol-extracted polysaccharide from Cynanchum paniculatum: Optimization, structure, antioxidant and antitumor effects. Ind. Crop. Prod. 2022, 175, 114243. [Google Scholar] [CrossRef]
- Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll. 2019, 87, 237–244. [Google Scholar] [CrossRef]
- Watchararuji, K.; Goto, M.; Sasaki, M.; Shotipruk, A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresour. Technol. 2008, 99, 6207–6213. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.G.; Mammucari, R.; Foster, N.R. A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 2011, 172, 1–17. [Google Scholar] [CrossRef]
- de Oliveira, L.G.; de Paiva, A.P.; Balestrassi, P.P.; Ferreira, J.R.; da Costa, S.C.; da Silva Campos, P.H. Response surface methodology for advanced manufacturing technology optimization: Theoretical fundamentals, practical guidelines, and survey literature review. J. Adv. Manuf. Technol. 2019, 104, 1785–1837. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; You, X.; Li, C.; Zhang, E.; Li, Z.; Chen, G.; Peng, H. Phenolics and polysaccharides in major tropical fruits: Chemical compositions, analytical methods and bioactivities. Anal. Methods 2011, 3, 2212–2220. [Google Scholar] [CrossRef]
- Feng, S.; Tang, M.; Jiang, Z.; Ruan, Y.; Liu, L.; Kong, Q.; Xiang, Z.; Chen, T.; Zhou, L.; Yang, H.; et al. Optimization of extraction process, structure characterization, and antioxidant activity of polysaccharides from different parts of Camellia oleifera abel. Foods 2022, 11, 3185. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Luo, H.; Gao, A.; Zhu, M. Ultrasound-assisted extraction of polysaccharides from litchi (Litchi chinensis Sonn.) seed by response surface methodology and their structural characteristics. Innov. Food Sci. Emerg. Technol. 2011, 12, 305–309. [Google Scholar] [CrossRef]
Run No. | Temperature (°C), X1 | Time (min), X2 | Liquid–Solid Ratio (w/w), X3 | POLS Extraction Yield (g POLS/100 g Feedstock), (Y1) | Total Sugar (g Sugar/100 g POLS), (Y2) | ||
---|---|---|---|---|---|---|---|
RS (+1) | DRS (−1) | RS (+1) | DRS (−1) | ||||
1 | 120 (−1) | 15 (−1) | 20 (0) | 14.172 | 57.079 | 42.464 | 42.673 |
2 | 180 (+1) | 15 (−1) | 20 (0) | 23.075 | 31.862 | 49.810 | 92.621 |
3 | 120 (−1) | 60 (+1) | 20 (0) | 23.833 | 53.641 | 59.271 | 69.285 |
4 | 180 (+1) | 60 (+1) | 20 (0) | 7.281 | 41.887 | 41.117 | 74.731 |
5 | 120 (−1) | 38 (0) | 10 (−1) | 21.340 | 49.990 | 68.174 | 69.696 |
6 | 180 (+1) | 38 (0) | 10 (−1) | 13.621 | 13.255 | 35.886 | 93.591 |
7 | 120 (−1) | 38 (0) | 30 (+1) | 21.036 | 35.480 | 73.183 | 55.422 |
8 | 180 (+1) | 38 (0) | 30 (+1) | 30.091 | 21.937 | 78.982 | 95.293 |
9 | 150 (0) | 15 (−1) | 10 (−1) | 40.528 | 54.955 | 49.715 | 82.964 |
10 | 150 (0) | 60 (+1) | 10 (−1) | 28.033 | 28.641 | 86.475 | 99.511 |
11 | 150 (0) | 15 (−1) | 30 (+1) | 32.659 | 43.219 | 77.603 | 87.209 |
12 | 150 (0) | 60 (+1) | 30 (+1) | 39.606 | 46.246 | 90.284 | 84.374 |
13 | 150 (0) | 38 (0) | 20 (0) | 37.374 | 48.984 | 92.610 | 71.515 |
14 | 150 (0) | 38 (0) | 20 (0) | 33.051 | 47.156 | 89.285 | 64.409 |
Source | Moisture (g/100 g) | Lipid (g/100 g) | Protein (g/100 g) | Carbohydrate (g/100 g) | Crude Fiber (g/100 g) | Ash (g/100 g) |
---|---|---|---|---|---|---|
RS | 6.30 ± 0.05 a | 30.48 ± 0.49 a | 11.90 ± 0.14 a | 42.96 ± 0.15 b | 6.60 ± 0.25 a | 1.72 ± 0.02 a |
DRS | 1.87 ± 0.02 b | 18.80 ± 0.20 b | 10.04 ± 0.22 a | 61.63 ± 0.74 a | 5.79 ± 0.11 a | 1.87 ± 0.01 a |
Sample | Retention Time (min) | MWeq (kDa) |
---|---|---|
POLS-RS | 18.45 | 434.84 ± 3.07 |
20.43 | 162.57 ± 0.00 | |
23.01 | 45.15 ±0.48 | |
23.76 | 30.29 ± 0.75 | |
POLS-DRS | 18.53 | 413.70 ± 8.77 |
20.89 | 126.36 ± 4.02 | |
23.01 | 43.72 ± 1.54 | |
24.25 | 25.80 ± 2.37 | |
33.20 | 0.28 ± 0.00 | |
34.20 | 0.17 ± 0.00 |
Sample | Monosaccharide Content (mg/g POLS-RS) | ||||
---|---|---|---|---|---|
Glu | Gal | Man | Rham | Ara | |
POLS-RS | 919.07 ± 0.70 b | 64.63 ± 1.81 b | N/D | 3.60 ± 1.24 a | 12.70 ± 0.86 a |
POLS-DRS | 922.34 ± 4.51 a | 66.87 ± 1.19 a | N/D | 2.65 ± 1.13 b | 8.14 ± 2.42 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nilmat, K.; Hunsub, P.; Ngamprasertsith, S.; Sakdasri, W.; Karnchanatat, A.; Sawangkeaw, R. Effects of Defatting Pretreatment on Polysaccharide Extraction from Rambutan Seeds Using Subcritical Water: Optimization Using the Desirability Approach. Foods 2024, 13, 1967. https://doi.org/10.3390/foods13131967
Nilmat K, Hunsub P, Ngamprasertsith S, Sakdasri W, Karnchanatat A, Sawangkeaw R. Effects of Defatting Pretreatment on Polysaccharide Extraction from Rambutan Seeds Using Subcritical Water: Optimization Using the Desirability Approach. Foods. 2024; 13(13):1967. https://doi.org/10.3390/foods13131967
Chicago/Turabian StyleNilmat, Kamonthip, Panusorn Hunsub, Somkiat Ngamprasertsith, Winatta Sakdasri, Aphichart Karnchanatat, and Ruengwit Sawangkeaw. 2024. "Effects of Defatting Pretreatment on Polysaccharide Extraction from Rambutan Seeds Using Subcritical Water: Optimization Using the Desirability Approach" Foods 13, no. 13: 1967. https://doi.org/10.3390/foods13131967
APA StyleNilmat, K., Hunsub, P., Ngamprasertsith, S., Sakdasri, W., Karnchanatat, A., & Sawangkeaw, R. (2024). Effects of Defatting Pretreatment on Polysaccharide Extraction from Rambutan Seeds Using Subcritical Water: Optimization Using the Desirability Approach. Foods, 13(13), 1967. https://doi.org/10.3390/foods13131967