Comparative Biological Half-Life of Penthiopyrad and Tebufenpyrad in Angelica Leaves and Establishment of Pre-Harvest Residue Limits (PHRLs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Field Trial
2.3. Standard Solutions and Calibration Curves
2.4. Analytical Conditions for LC–MS/MS
2.5. The Preparation Method
2.6. Method Validation
2.7. Dilution Effect of Penthiopyrad and Tebufenpyrad in Angelica Leaves
2.8. Calculation of Biological Half-Life and PHRL
3. Results and Discussion
3.1. The Established MRM Conditions and Method Validation
3.2. Temperature and Humidity in Field
3.3. Variations in Sample Weight over Date
3.4. Pesticide Residue Characteristics at the Pre-Harvest Phase of Angelica Leaves
3.5. Verifying Pesticide Dilution Effects from Increased Weight of Angelica Leaves
3.6. PHRL Calculation and Proposal
3.7. Confirmation of Pesticide Residues in Angelica Root
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korea Rural Economic Institute. 2022 Consumer Behavior Survey for Foods. Available online: https://library.krei.re.kr/pyxis-api/1/digital-files/50edf668-a79a-4dff-abd6-be30a5e4d16f (accessed on 19 April 2024).
- Jang, J.; Rahman, M.M.; Ko, A.Y.; Abd El-Aty, A.M.; Park, J.H.; Cho, S.K.; Shim, J.H. A matrix sensitive gas chromatography method for the analysis of pymetrozine in red pepper: Application to dissipation pattern and PHRL. Food Chem. 2014, 146, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jung, Y.M.; Oh, H.S.; Kang, S.T. Monitoring and Risk Assessment of Pesticide Residues in Commercial Environment-Friendly Agricultural Products Distributed Using LC-MS/MS in Seoul Metropolitan Area. Korean J. Food Sci. Technol. 2015, 47, 306–320. [Google Scholar] [CrossRef]
- Ban, S.W.; Oh, A.Y.; Chang, H.R. Risk Assessment of Azoxystrobin Residues in Fresh Crown Daisy from Farm to Fork. Korean J. Environ. Agric. 2023, 42, 131–138. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, H.M.; Lee, K.H.; Kim, K.Y.; Huang, D.S.; Kim, J.H.; Seong, R.S. Quantitative analysis of marker compounds in Angelica gigas, Angelica sinensis, and Angelica acutiloba by HPLC/DAD. Chem. Pharm. Bull. 2015, 63, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.J.; Lee, Y.H.; Kim, K.K.; Han, H.S. Investigation of the Antioxidant Effect of Angelicae Radix from Korea, China and Japan. J. Physiol. Pathol. Korean Med. 2017, 31, 182–187. [Google Scholar] [CrossRef]
- Kim, A.R.; Lee, J.J.; Lee, M.Y. Antioxidative Effect of Angelica acutiloba Kitagawa Ethanol Extract. J. Life Sci. 2009, 19, 117–122. [Google Scholar]
- Kim, W.M.; Oh, T.S.; Song, M.R.; Kim, K.H.; Lee, G.H. Physical Properties of Pan Bread Made with Various Amounts of Squeezed Danggui Leaf (Angelica acutiloba Kitagawa) Juice. J. Korean Soc. Food Sci. Nutr. 2017, 46, 971–978. [Google Scholar]
- Lee, S.W.; Lee, S.J.; Han, E.H.; Sin, E.C.; Cho, K.M.; Kim, Y.H. Current status on the development of molecular markers for differentiation of the origin of Angelica spp. J. Plant Biotechnol. 2017, 44, 12–18. [Google Scholar] [CrossRef]
- Park, Y.M.; Park, P.S.; Jeong, D.H.; Sim, S.J.; Kim, N.H.; Park, H.W.; Jeon, K.S.; Um, Y.R.; Kim, M.J. The Characteristics of the Growth and the Active Compounds of Angelica gigas Nakai in Cultivation Sites. Plants 2020, 9, 823. [Google Scholar] [CrossRef]
- Noh, P.R.; Kim, W.J.; Yang, S.G.; Park, I.K.; Moon, B.C. Authentication of the Herbal Medicine Angelicae Dahuricae Radix Using an ITS Sequence-Based Multiplex SCAR Assay. Molecules 2018, 23, 2134. [Google Scholar] [CrossRef]
- Park, Y.A.; Lee, S.R.; Lee, J.W.; Koo, H.J.; Jang, S.A.; Yun, S.W.; Kim, H.J.; Woo, J.S.; Park, M.R.; Kang, S.C.; et al. Suppressive Effect of Fermented Angelica tenuissima Root Extract against Photoaging: Possible Involvement of Hemeoxygenase-1. J. Mirobiol. Biotechnol. 2018, 28, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Park, H.J.; Lee, D.H.; Kim, H.K. Development of Multiplex Polymerase Chain Reaction Assay for Identification of Angelica Species. Korean J. Med. Crop Sci. 2018, 26, 26–31. [Google Scholar] [CrossRef]
- Chol, J.W.; Lee, J.H.; Kim, W.B.; Kim, C.K.; Jung, H.K.; Hong, Y.P.; Kim, J.G. Changes in the Quality and Physiological Activity of Angelica acutiloba Leaves in Various Packaging Materials during Storage. Korean J. Plant Res. 2017, 30, 29–37. [Google Scholar]
- Park, S.J.; Yoon, J.H.; Kim, Y.E.; Yoon, W.B.; Kim, J.D. In vitro Antioxidant Activity of the Aqueous of Angelicae gigas Nakai Leaves. Korean J. Food Preserv. 2011, 18, 817–823. [Google Scholar] [CrossRef]
- Liu, Y.; Du, S.; Xu, X.; Qiu, L.; Hong, S.; Fu, B.; Xiao, Y.; Qin, Z. Synthesis and Biological Activities of Novel Pyrazole Carboxamides Containing an Aryloxypyridyl Ethylamine Module. J. Agric. Food Chem. 2024, 72, 3342–3353. [Google Scholar] [CrossRef] [PubMed]
- Sparks, T.C.; Storer, N.; Porter, A.; Slater, R.; Nauen, R. Insecticide resistance management and industry: The origins and evolution of the I nsecticide R esistance A ction C ommittee (IRAC) and the mode of action classification scheme. Pest Manag. Sci. 2021, 77, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Dekeyser, M.A. Acaricide mode of action. Pest Manag. Sci. 2005, 61, 103–110. [Google Scholar] [CrossRef]
- Diao, Z.; Di, S.; Liu, Z.; Cang, T.; Zhao, H.; Wang, Z.; Qi, P.; Zhang, C.; Xu, H.; Wang, X. Enantioselective Behaviors of Chiral Fungicide Penthiopyrad in Five Kinds of Crops and Whole-Age Dietary Risk Assessments. J. Agric. Food Chem. 2023, 71, 8859–8866. [Google Scholar] [CrossRef]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhao, M.; Chen, Z.; Gao, Z.; Song, H.; An, T.; Zheng, S.; Gu, F. Degradation pathways of penthiopyrad by δ-MnO 2 mediated processes: A combined density functional theory and experimental study. Environ. Sci.: Process. Impacts 2021, 23, 1977–1985. [Google Scholar]
- Sun, J.; Zhou, Y. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate. Molecules 2015, 20, 4383–4394. [Google Scholar] [CrossRef]
- Yanase, Y.; Katsuta, H.; Tomiya, K.; Enomoto, M.; Sakamoto, O. Development of a novel fungicide, penthiopyrad. J. Pestic. Sci. 2013, 38, 167–168. [Google Scholar] [CrossRef]
- Van Pottelberge, S.; Van Leeuwen, T.; Nauen, R.; Tirry, L. Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bull. Entomol. Res. 2009, 99, 23–31. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.S.; Lee, S.W.; Kim, G.H.; Ahn, Y.J. Toxicity of tebufenpyrad to Tetranychus urticae (Acari: Tetranychidae) and Amblyseius womersleyi (Acari: Phytoseiidae) under laboratory and field conditions. J. Econ. Entomol. 1999, 92, 187–192. [Google Scholar] [CrossRef]
- Zhong, L.K.; Sun, X.P.; Han, L.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Shi, J.J.; Liu, X.H. Design, Synthesis, Insecticidal Activity, and SAR of Aryl Isoxazoline Derivatives Containing Pyrazole-5-carboxamide Motif. J. Agric. Food Chem. 2023, 71, 14458–14470. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Lee, E.M.; Lin, Y.; Park, H.W.; Lee, H.R.; Riu, M.J.; Na, Y.R.; Noh, J.E.; Keum, Y.S.; Song, H.H.; et al. Establishment of Pre-Harvest Residue Limit (PHRL) of Insecticide Bifenthrin during Cultivation of Grape. Korean J. Pestic. Sci. 2009, 13, 241–248. [Google Scholar]
- Ahn, K.G.; Kim, G.H.; Kim, G.P.; Kim, M.J.; Hong, S.B.; Hwang, Y.S.; Kwon, C.H.; Son, Y.W.; Lee, Y.D.; Choung, M.G. Establishment of Pre-Harvest Residue Limit (PHRL) of the Fungicide Amisulbrom during Cultivation of Winter-Grown Cabbage. Korean J. Environ. Agric. 2015, 34, 120–127. [Google Scholar] [CrossRef]
- Hwang, E.J.; Park, J.E.; Kwon, C.H.; Kim, J.S.; Chang, H.R. Residue Dissipation Behavior of Bistrifluron and Cyenopyrafen in Peach for the Cultivation Periods under Field Conditions. Korean J. Environ. Agric. 2018, 37, 41–48. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Liang, H.; Li, L.; Shi, K.; Wang, J.; Zhu, Y.; Ma, C. Simultaneous determination of penthiopyrad enantiomers and its metabolite in vegetables, fruits, and cereals using ultra-high performance liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 2022, 45, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; James, K.J.; Picó, Y. Capabilities of different liquid chromatography tandem mass spectrometry systems in determining pesticide residues in food: Application to estimate their daily intake. J. Chromatogr. A 2007, 1157, 73–84. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed (SANTE/11312/2021). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 19 April 2024).
- Saini, R.K.; Shin, Y.; Ko, R.; Kim, J.; Lee, K.; An, D.; Chang, H.R.; Lee, J.H. Dissipation Kinetics and Risk Assessment of Spirodiclofen and Tebufenpyrad in Aster scaber Thunb. Foods 2023, 12, 242. [Google Scholar] [CrossRef]
- Sircu, R.; Pinzaru, I.; Opopol, N.; Scurtu, R. Health risk related to the intake of pesticides in the Republic of Moldova. Int. J. Adv. Res. 2015, 3, 628–633. [Google Scholar]
- Lee, J.; Jung, M.W.; Lee, J.; Lee, J.; Shin, Y.; Kim, J.H. Dissipation of the insecticide cyantraniliprole and its metabolite IN-J9Z38 in proso millet during cultivation. Sci. Rep. 2019, 9, 11648. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, E.; Zhang, W.; Baccarelli, A.A.; Gao, F. Predicting pesticide dissipation half-life intervals in plants with machine learning models. J. Hazard. Mater. 2022, 436, 129177. [Google Scholar] [CrossRef]
- An, D.; Ko, R.; Kim, J.; Kang, S.; Lee, K.; Lee, J. Dissipation behavior and dietary exposure risk of pesticides in Brussels sprout evaluated using LC–MS/MS. Sci. Rep. 2022, 12, 12726. [Google Scholar] [CrossRef]
- Kim, Y.J.; Song, J.W.; Choi, S.G.; Kim, J.H. Residual Characteristics of Fungicides Azoxystrobin, Fluxapyroxad, and Penthiopyrad on Peucedanum japonicum Thunb. Korean J. Pestic. Sci. 2021, 25, 415–424. [Google Scholar] [CrossRef]
- Leem, S.B.; Kim, J.Y.; Hur, K.J.; Kim, H.G.; Hur, J.H. Establishment of Pre-Harvest Residue Limits and Residue Characteristics of Penthiopyrad and Pyriofenone in Cucumber (Cucumis sativus L.) Under Greenhouse Condition. Korean J. Environ. Agric. 2017, 36, 43–49. [Google Scholar] [CrossRef]
- Kim, H.N.; Kim, S.B.; Choi, E.; Woo, M.J.; Kim, J.Y.; Saravanan, M.; Hur, J.H. Establishment of Pre-Harvest Residue Limit for Buprofezin and Penthiopyrad during Cultivation of Oriental melon (Cucumis melon var. makuwa). Korean J. Pestic. Sci. 2014, 18, 123–129. [Google Scholar] [CrossRef]
- Al Mahmud, M.N.U.; Rahman, M.; Na, T.W.; Park, J.H.; Yang, A.; Park, K.H.; Abd El-Aty, A.M.; Nahar, N.; Shim, J.H. A QuEChERS-based extraction method for the residual analysis of pyraclofos and tebufenpyrad in perilla leaves using gas chromatography: Application to dissipation pattern. Biomed. Chromatogr. 2013, 27, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Farha, W.; Abd El-Aty, A.M.; Rahman, M.M.; Shin, H.C.; Shim, J.H. An overview on common aspects influencing the dissipation pattern of pesticides: A review. Environ. Monit. Assess. 2016, 188, 693. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Park, H.-W.; Keum, Y.-S.; Kown, C.-H.; Lee, Y.-D.; Kim, J.-H. Dissipation Pattern of Boscalid in Cucumber under Greenhouse Condition. Korean J. Pestic. Sci. 2008, 12, 67–73. [Google Scholar]
- Lee, H.D.; Ihm, Y.B.; Kwon, H.Y.; Kin, J.B.; Kyung, K.S.; Park, S.S.; Oh, B.Y.; Im, G.J.; Kim, J.E. Characteristics of Pesticide residue in/on cucurbitaceous fruit vegetables applied with foliar spraying under greenhouse. Korean J. Pestic. Sci. 2005, 9, 359–364. [Google Scholar]
- Chang, H.S.; Bae, H.R.; Son, Y.B.; Song, I.H.; Lee, C.H.; Choi, N.G.; Cho, K.K.; Lee, Y.G. Developing a web-based system for computing pre-harvest residue limits (PHRLs). Agribus. Inf. Manag. 2011, 3, 11–37. [Google Scholar]
- Chung, H.S.; Kabir, M.H.; Abd El-Aty, A.M.; Lee, H.S.; Rahman, M.M.; Chang, B.J.; Shin, H.C.; Shim, J.H. Dissipation kinetics and pre-harvest residue limit of pyriofenone in oriental melon (Cucumis melo Var. makuwa) grown under regulated climatic conditions. Biomed. Chromatogr. 2017, 31, 3965. [Google Scholar]
- Ministry of Food and Drug Safety (MFDS). Establishment of Pre-Harvest Residue Limit of Pesticides for Agricultural Commodities. Available online: https://scienceon.kisti.re.kr/commons/util/originalView.do?cn=TRKO202000029828&dbt=TRKO&rn= (accessed on 18 April 2024).
- Song, L.; Zhong, Z.; Han, Y.; Zheng, Q.; Qin, Y.; Wu, Q.; He, X.; Pan, C. Dissipation of sixteen pesticide residues from various applications of commercial formulations on strawberry and their risk assessment under greenhouse conditions. Ecotoxicol. Environ. Saf. 2020, 188, 109842. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G. Comparison of Activity of Angelica gigas and Angelica acutiloba from Kangwon. J. Physiol. Pathol. Korean Med. 2008, 22, 1158–1162. [Google Scholar]
- Kim, J.E.; Kim, T.H.; Kim, Y.H.; Lee, J.H.; Kim, J.S.; Paek, S.K.; Choi, S.Y.; Youn, Y.N.; Yu, Y.M. Residues of Tolclofos-methyl, Azoxystrobin and Difenoconazole in Ginseng Sprayed by Safe Use Guideline. Korean J. Med. Crop Sci. 2008, 16, 390–396. [Google Scholar]
- Kim, N.Y.; Kim, Y.S.; Kim, M.G.; Jung, H.R.; Kim, Y.S.; Kin, H.T.; Lee, S.W.; Chae, K.S.; Yoon, M.H. Survey of Multi Residual Pesticides in Materials of Korean Traditional Herbal Tea. Korean J. Pestic. Sci. 2012, 16, 28–34. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety (MFDS). Explanation on the Determination of Residual Pesticides Not Established Criteria for Medicinal Herb. Available online: https://www.mfds.go.kr/docviewer/skin/doc.html?fn=20200302013700598.pdf&rs=/docviewer/result/data0011/14475/1/202404 (accessed on 19 April 2024).
- Liu, J.; Tong, L.; Li, D.; Meng, W.; Sun, W.; Zhao, Y.; Yu, Z. Comparison of two extraction methods for the determination of 135 pesticides in Corydalis Rhizoma, Chuanxiong Rhizoma and Angelicae Sinensis Radix by liquid chromatography-triple quadrupole-mass spectrometry. Application to the roots and rhizomes of Chinese herbal medicines. J. Chromatogr. B 2016, 1017, 233–240. [Google Scholar]
Pesticide | tR (min) | Monoisotopic Mass | Ionization Type | Precursor Ion > Product Ion (CE, V) | |
---|---|---|---|---|---|
Quantifier | Qualifier | ||||
Penthiopyrad | 3.69 | 359.1 | [M+H]+ | 360.1 > 276.2 (−14) | 360.1 > 177.1 (−32) |
Tebufenpyrad | 5.03 | 333.2 | [M+H]+ | 334.2 > 117.1 (−37) | 334.2 > 132.2 (−40) |
Pesticide | Study | Concentration (mg/kg) | Storage Period (Days) | Accuracy (%) | RSD (1) (n = 3) (%) |
---|---|---|---|---|---|
Penthiopyrad | Recovery | 0.01 | - | 104.1 | 1.7 |
0.1 | 94.5 | 2.0 | |||
15 | 99.6 | 2.0 | |||
Storage stability | 1 | 25 | 97.0 | 9.1 | |
Tebufenpyrad | Recovery | 0.01 | - | 107.1 | 1.4 |
0.1 | 108.1 | 1.1 | |||
1 | 104.1 | 2.6 | |||
20 | 111.4 | 2.0 | |||
Storage stability | 1 | 17 | 105.5 | 3.2 |
Pesticide | Day after Treatment (DAT) | Concentration (mg/kg) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Field 1 | Field 2 | Field 3 | Field 1–3 Integration (Mean ± SD) | |||||||||||
Rep. 1 | Rep. 2 | Rep. 3 | Mean ± SD (1) | Rep. 1 | Rep. 2 | Rep. 3 | Mean ± SD | Rep. 1 | Rep. 2 | Rep. 3 | Mean ± SD | |||
Penthiopyrad | 0 | 9.49 | 9.75 | 10.08 | 9.77 ± 0.30 | 8.82 | 8.92 | 10.55 | 9.43 ± 0.97 | 11.81 | 9.25 | 11.99 | 11.02 ± 1.53 | 10.07 ± 1.17 |
1 | 6.76 | 7.37 | 9.17 | 7.77 ± 1.25 | 5.61 | 5.35 | 6.37 | 5.78 ± 0.53 | 11.43 | 10.85 | 9.31 | 10.53 ± 1.10 | 8.03 ± 2.25 | |
2 | 5.45 | 5.44 | 5.86 | 5.58 ± 0.24 | 5.53 | 4.76 | 5.63 | 5.31 ± 0.47 | 7.60 | 8.49 | 6.27 | 7.45 ± 1.11 | 6.11 ± 1.18 | |
3 | 5.12 | 4.78 | 5.29 | 5.06 ± 0.26 | 4.24 | 4.52 | 5.36 | 4.71 ± 0.58 | 6.95 | 5.59 | 7.02 | 6.52 ± 0.81 | 5.43 ± 0.98 | |
5 | 4.36 | 4.45 | 4.73 | 4.51 ± 0.20 | 2.41 | 1.83 | 1.91 | 2.05 ± 0.32 | 3.87 | 3.50 | 3.69 | 3.69 ± 0.19 | 3.42 ± 1.11 | |
7 | 1.87 | 1.86 | 2.21 | 1.98 ± 0.20 | 1.02 | 1.09 | 0.95 | 1.02 ± 0.07 | 2.24 | 2.46 | 2.69 | 2.46 ± 0.22 | 1.82 ± 0.65 | |
10 | 1.78 | 1.73 | 1.84 | 1.78 ± 0.06 | 0.78 | 0.74 | 0.69 | 0.74 ± 0.05 | 0.98 | 0.88 | 1.20 | 1.02 ± 0.17 | 1.18 ± 0.48 | |
Tebufenpyrad | 0 | 18.80 | 15.02 | 13.65 | 15.82 ± 2.66 | 14.73 | 16.76 | 15.35 | 15.61 ± 1.04 | 14.99 | 18.33 | 19.48 | 17.60 ± 2.33 | 16.35 ± 2.07 |
1 | 13.32 | 12.20 | 11.78 | 12.43 ± 0.80 | 8.67 | 9.82 | 10.57 | 9.69 ± 0.96 | 15.35 | 15.34 | 17.61 | 16.10 ± 1.31 | 12.74 ± 2.93 | |
2 | 10.50 | 9.56 | 9.06 | 9.71 ± 0.73 | 5.96 | 6.90 | 6.83 | 6.56 ± 0.53 | 10.24 | 14.50 | 13.12 | 12.62 ± 2.17 | 9.63 ± 2.87 | |
3 | 9.34 | 8.56 | 7.19 | 8.36 ± 1.09 | 4.02 | 4.27 | 4.46 | 4.25 ± 0.22 | 10.43 | 8.24 | 9.23 | 9.30 ± 1.10 | 7.30 ± 2.45 | |
5 | 7.16 | 6.25 | 6.01 | 6.47 ± 0.61 | 2.23 | 2.31 | 1.64 | 2.06 ± 0.37 | 6.95 | 8.24 | 6.35 | 7.18 ± 0.97 | 5.24 ± 2.48 | |
7 | 4.68 | 3.70 | 4.69 | 4.36 ± 0.57 | 1.80 | 1.54 | 1.50 | 1.61 ± 0.16 | 3.42 | 2.44 | 2.56 | 2.81 ± 0.53 | 2.93 ± 1.26 | |
10 | 3.05 | 3.51 | 3.62 | 3.40 ± 0.30 | 1.30 | 1.64 | 1.48 | 1.47 ± 0.17 | 1.31 | 1.13 | 1.12 | 1.18 ± 0.11 | 2.02 ± 1.06 | |
14 | 1.20 | 1.37 | 1.44 | 1.34 ± 0.13 | 1.02 | 1.37 | 1.11 | 1.17 ± 0.18 | 1.20 | 1.04 | 1.06 | 1.10 ± 0.09 | 1.20 ± 0.16 |
Pesticide | Field | Dissipation Regression Equation (1) | Regression Coefficient | 95% CI (2) for Regression Coefficient (3) | Dissipation Rate Constant |
---|---|---|---|---|---|
Penthiopyrad | 1 (Sancheong) | y = 8.9487e−0.1751x (r2 = 0.9353) | 0.1751 | 0.1221–0.2280 | 0.1221 |
2 (Jeonju) | y = 8.6264e−0.2655x (r2 = 0.9658) | 0.2655 | 0.2081–0.3230 | 0.2081 | |
3 (Jecheon) | y = 12.4510e−0.2425x (r2 = 0.9911) | 0.2425 | 0.2162–0.2689 | 0.2162 | |
1 to 3 (integrated) | y = 9.9338e−0.2209x (r2 = 0.9905) | 0.2209 | 0.1960–0.2457 | 0.1960 | |
Tebufenpyrad | 1 (Sancheong) | y = 14.5963e−0.1646x (r2 = 0.9861) | 0.1646 | 0.1451–0.1842 | 0.1451 |
2 (Jeonju) | y = 9.1288e−0.1810x (r2 = 0.8189) | 0.1810 | 0.0960–0.2660 | 0.0960 | |
3 (Jecheon) | y = 18.2393e−0.2274x (r2 = 0.9448) | 0.2274 | 0.1725–0.2823 | 0.1725 | |
1 to 3 (integrated) | y = 14.0617e−0.1891x (r2 = 0.9768) | 0.1891 | 0.1600–0.2182 | 0.1600 |
Pesticide | Pre-Harvest Residue Limit (mg/kg) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days before Harvesting | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 (MRL) | Dissipation Rate Constant | |
Penthiopyrad | Field 1 | 50.87 | 45.02 | 39.84 | 35.26 | 31.21 | 27.62 | 24.45 | 21.64 | 19.15 | 16.95 | 15.00 | 0.1221 |
Field 2 | 120.17 | 97.60 | 79.26 | 64.37 | 52.28 | 42.46 | 34.48 | 28.00 | 22.74 | 18.47 | 15.00 | 0.2081 | |
Field 3 | 130.31 | 104.98 | 84.57 | 68.13 | 54.88 | 44.21 | 35.62 | 28.69 | 23.11 | 18.62 | 15.00 | 0.2162 | |
1–3 (integrated) | 106.44 | 87.50 | 71.93 | 59.13 | 48.61 | 39.96 | 32.85 | 27.00 | 22.20 | 18.25 | 15.00 | 0.1960 | |
Tebufenpyrad | Field 1 | 4.27 | 3.69 | 3.19 | 2.76 | 2.39 | 2.07 | 1.79 | 1.55 | 1.34 | 1.16 | 1.00 | 0.1451 |
Field 2 | 2.61 | 2.37 | 2.15 | 1.96 | 1.78 | 1.62 | 1.47 | 1.33 | 1.21 | 1.10 | 1.00 | 0.0960 | |
Field 3 | 5.61 | 4.72 | 3.97 | 3.34 | 2.81 | 2.37 | 1.99 | 1.68 | 1.41 | 1.19 | 1.00 | 0.1725 | |
1–3 (integrated) | 4.95 | 4.22 | 3.60 | 3.06 | 2.61 | 2.23 | 1.90 | 1.62 | 1.38 | 1.17 | 1.00 | 0.1600 |
Pesticide | Concentration (mg/kg) | Accuracy (%) | |||
---|---|---|---|---|---|
Rep.1 | Rep.2 | Rep.3 | Mean ± RSD | ||
Penthiopyrad | 0.1 | 103.6 | 102.0 | 98.4 | 101.3 ± 2.6 |
Tebufenpyrad | 0.1 | 89.5 | 103.2 | 108.9 | 100.5 ± 9.9 |
Pesticide | Accuracy (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Field 1 (Sancheong) | Field 2 (Jeonju) | Field 3 (Jecheon) | ||||||||||
Rep.1 | Rep.2 | Rep.3 | Mean ± RSD | Rep.1 | Rep.2 | Rep.3 | Mean ± RSD | Rep.1 | Rep.2 | Rep.3 | Mean ± RSD | |
Penthiopyrad | 0.50 | 0.51 | 0.53 | 0.51 ± 0.01 | 0.30 | 0.31 | 0.37 | 0.33 ± 0.04 | 1.59 | 1.58 | 1.54 | 1.57 ± 0.03 |
Tebufenpyrad | 0.80 | 0.89 | 0.72 | 0.81 ± 0.09 | 0.11 | 0.14 | 0.16 | 0.14 ± 0.02 | 0.30 | 0.31 | 0.41 | 0.34 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Lee, Y.-H.; Jeong, M.-J.; Lee, Y.-J.; Eun, H.-R.; Kim, S.-M.; Baek, J.-W.; Noh, H.H.; Shin, Y.; Choi, H. Comparative Biological Half-Life of Penthiopyrad and Tebufenpyrad in Angelica Leaves and Establishment of Pre-Harvest Residue Limits (PHRLs). Foods 2024, 13, 1742. https://doi.org/10.3390/foods13111742
Kim S-H, Lee Y-H, Jeong M-J, Lee Y-J, Eun H-R, Kim S-M, Baek J-W, Noh HH, Shin Y, Choi H. Comparative Biological Half-Life of Penthiopyrad and Tebufenpyrad in Angelica Leaves and Establishment of Pre-Harvest Residue Limits (PHRLs). Foods. 2024; 13(11):1742. https://doi.org/10.3390/foods13111742
Chicago/Turabian StyleKim, So-Hee, Yoon-Hee Lee, Mun-Ju Jeong, Ye-Jin Lee, Hye-Ran Eun, Su-Min Kim, Jae-Woon Baek, Hyun Ho Noh, Yongho Shin, and Hoon Choi. 2024. "Comparative Biological Half-Life of Penthiopyrad and Tebufenpyrad in Angelica Leaves and Establishment of Pre-Harvest Residue Limits (PHRLs)" Foods 13, no. 11: 1742. https://doi.org/10.3390/foods13111742
APA StyleKim, S.-H., Lee, Y.-H., Jeong, M.-J., Lee, Y.-J., Eun, H.-R., Kim, S.-M., Baek, J.-W., Noh, H. H., Shin, Y., & Choi, H. (2024). Comparative Biological Half-Life of Penthiopyrad and Tebufenpyrad in Angelica Leaves and Establishment of Pre-Harvest Residue Limits (PHRLs). Foods, 13(11), 1742. https://doi.org/10.3390/foods13111742