Low-Level Clostridial Spores’ Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cheese Manufacturing and Experimental Design
2.2. Sampling
2.3. Chemical Analysis
2.4. Microbiological Analysis
2.5. Metagenomic Analysis
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garde, S.; Ávila, M.; Gomez, N.; Nuñez, M. Clostridium in late blowing defect of cheese: Detection, prevalence, effects, and control strategies. In Handbook on Cheese: Production, Chemistry and Sensory Properties; Castelli, H., du Vale, L., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2013; pp. 503–518. ISBN 978-1-62618-966-9. [Google Scholar]
- Brasca, M.; Morandi, S.; Silvetti, T. Clostridium spp. In Encyclopaedia of Dairy Science; McSweeney, P.L.H., McNamara, J.P., Eds.; Elsevier Academic Press: London, UK, 2022; pp. 431–438. [Google Scholar]
- Le Bourhis, A.G.; Dore, J.; Carlier, J.P.; Chamba, J.F.; Popoff, M.R.; Tholozan, J.L. Contribution of C. beijerinckii and C. sporogenes in association with C. tyrobutyricum to the butyric fermentation in Emmental type cheese. Int. J. Food Microbiol. 2007, 113, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Brändle, J.; Domig, K.J.; Kneifel, W. Relevance and analysis of butyric acid producing clostridia in milk and cheese. Food Control 2016, 67, 96–113. [Google Scholar] [CrossRef]
- Abeni, F.; Marino, R.; Petrera, F.; Segati, G.; Galli, A.; Carminati, D. Farm silage facilities and their management for the prevention of anaerobic bacteria spore contamination in raw milk. Dairy 2021, 2, 500–514. [Google Scholar] [CrossRef]
- Brändle, J.; Fraberger, V.; Berta, J.; Puglisi, E.; Jami, M.; Kneifel, W.; Domig, K.J. Butyric acid producing clostridia in cheese e Towards the completion of knowledge by means of an amalgamate of methodologies. Int. Dairy J. 2018, 86, 86–95. [Google Scholar] [CrossRef]
- Giraffa, G. The microbiota of Grana Padano Cheese. A Review. Foods 2021, 10, 2632. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Brasca, M. Content and spatial distribution of dairy-related Clostridium spores in Grana Padano cheese during the ripening period. LWT Food Sci. Technol. 2022, 167, 113850. [Google Scholar] [CrossRef]
- Tidona, F.; Bernardi, M.; Francolino, S.; Ghiglietti, R.; Hogenboom, J.A.; Locci, F.; Zambrini, V.; Carminati, D.; Giraffa, G. The impact of sodium chloride reduction on Grana-type cheese production and quality. J. Dairy Res. 2019, 86, 470–476. [Google Scholar] [CrossRef]
- IDF 27; Determination of the Ash Content of Processed Cheese Products. International Dairy Federation: Brussels, Belgium, 1964.
- IDF 17A; Determination of the Salt Content of Cheese. International Dairy Federation: Brussels, Belgium, 1972.
- ISO 5534—IDF 4; Cheese and Processed Cheese—Determination of the Total Solids Content (Reference Method). International Dairy Federation: Brussels, Belgium, 2004.
- ISO 8968-1—IDF 20-1; Milk and Milk Products. Determination of Nitrogen Content—Part 1: Kjeldahl Principle and Crude Protein Calculation. International Dairy Federation: Brussels, Belgium, 2014.
- ISO 19662—IDF 238; Milk. Determination of Fat Content. Acido-Butyrometric (Gerber Method). International Dairy Federation: Brussels, Belgium, 2018.
- Bouzas, J.; Kantt, C.A.; Bodyfelt, F.; Torres, J.A. Simultaneous Determination of Sugars and Organic Acids in Cheddar Cheese by High Performance Liquid Chromatography. J. Food Sci. 1991, 56, 276–278. [Google Scholar] [CrossRef]
- Zucali, M.; Bava, L.; Colombini, S.; Brasca, M.; Decimo, M.; Morandi, S.; Tamburini, A.; Crovetto, G.M. Management practices and forage quality affecting the contamination of milk with anaerobic spore-forming bacteria. J. Sci. Food Agric. 2015, 95, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, B.; Wilrich, C.; Wilrich, P.-T. Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values. J. Appl. Microbiol. 2010, 109, 1660–1667. [Google Scholar] [CrossRef]
- Cremonesi, P.; Vanoni, L.; Silvetti, T.; Morandi, S.; Brasca, M. Identification of Clostridium beijerinckii, Cl. butyricum, Cl. sporogenes, Cl. tyrobutyricum isolated from silage, raw milk and hard cheese by a multiplex PCR assay. J. Dairy Res. 2012, 79, 318–323. [Google Scholar] [CrossRef]
- Zago, M.; Rossetti, L.; Bardelli, T.; Carminati, D.; Nazzicari, N.; Giraffa, G. Bacterial community of Grana Padano PDO cheese and generical hard cheeses: DNA metabarcoding and DNA metafingerprinting analysis to assess similarities and differences. Foods 2021, 10, 1826. [Google Scholar] [CrossRef]
- Zago, M.; Bardelli, T.; Rossetti, L.; Nazzicari, N.; Carminati, D.; Galli, A.; Giraffa, G. Evaluation of bacterial communities of Grana Padano cheese by DNA metabarcoding and DNA metafingerprinting analysis. Food Microbiol. 2021, 93, 103613. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, G.F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. R package, version 2.5-5; Vegan: Community Ecology Package; R Foundation: Vienna, Austria, 2019. [Google Scholar]
- De Mendiburu, F. Package ‘Agricolae.’ R Package Version 1.2-8. Available online: http://CRAN.R-project.org/package=agricolae (accessed on 4 July 2019).
- Borreani, G.; Ferrero, F.; Nucera, D.; Casale, M.; Piano, S.; Tabacco, E. Dairy farm management practices and the risk of contamination of tank milk from Clostridium spp. and Paenibacillus spp. spores in silage, total mixed ration, dairy cow feces, and raw milk. J. Dairy Sci. 2019, 102, 8273–8289. [Google Scholar] [CrossRef]
- Brändle, J.; Fraberger, V.; Schuller, K.; Zitz, U.; Kneifel, W.; Domig, K.J. A critical assessment of four most probable number procedures for routine enumeration of cheese-damaging clostridia in milk. Int. Dairy J. 2017, 73, 109–115. [Google Scholar] [CrossRef]
- Burtscher, J.; Hobl, L.; Kneifel, W.; Domig, K.J. Clostridial spore counts in vat milk of Alpine dairies. J. Dairy Sci. 2020, 103, 2111–2116. [Google Scholar] [CrossRef]
- Garde, S.; Arias, R.; Gaya, P.; Nuñez, M. Occurrence of Clostridium spp. in ovine milk and Manchego cheese with late blowing defect: Identification and characterization of isolates. Int. Dairy J. 2011, 21, 272–278. [Google Scholar] [CrossRef]
- D’Incecco, P.; Faoro, F.; Silvetti, T.; Schrader, K.; Pellegrino, L. Mechanisms of Clostridium tyrobutyricum removal through natural creaming of milk: A microscopy study. J. Dairy Sci. 2015, 98, 5164–5172. [Google Scholar] [CrossRef]
- Garde, S.; Avila, M.; Gaya, P.; Arias, R.; Nuñez, M. Sugars and organic acids in raw and pasteurized milk Manchego cheeses with different degrees of late blowing defect. Int. Dairy J. 2012, 25, 87–91. [Google Scholar] [CrossRef]
- Cocolin, L.; Innocente, N.; Biasutti, M.; Comi, G. The late blowing in cheese: A new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int. J. Food Microbiol. 2004, 90, 83–91. [Google Scholar] [CrossRef]
- Vissers, M.M.M.; Driehuis, F.; Te Giffel, M.C.; De Jong, P.; Lankveld, J.M. Minimizing the level of butyric acid bacteria spores in farm tank milk. J. Dairy Sci. 2007, 90, 3278–3285. [Google Scholar] [CrossRef]
- Vissers, M.M.M.; Driehuis, F.; Te Giffel, M.C.; De Jong, P.; Lankveld, J.M.G. Quantification of the transmission of microorganisms to milk via dirt attached to the exterior of teats. J. Dairy Sci. 2007, 90, 3579–3582. [Google Scholar] [CrossRef]
Cheesemaking Trials | Vat Milk | Cheese | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Milk Quality 1 | Climatic Period 2 | Trial nr | ANSB 3 | BCS 3 | Butyric Clostridia Species 4 | ANSB | BCS | Butyric Clostridia Species | ||||||
log MPN L−1 | TYR | BUT | BEJ | SPOR | log MPN g−1 | TYR | BUT | BEJ | SPOR | |||||
L1 | C | 1 | 3.18 | 3.18 | - | + | - | - | −0.32 | −0.32 | - | - | - | - |
L1 | W | 3 | 4.66 | 1.68 | - | - | - | - | 1.63 | −0.32 | - | - | - | - |
L1 | W | 5 | 2.56 | 1.68 | - | - | - | - | 0.56 | 0.56 | + | - | - | - |
L1 | W | 7 | 3.63 | 1.68 | - | - | - | - | 0.96 | 0.96 | + | - | - | - |
L1 | C | 9 | 3.63 | 1.68 | - | - | - | - | 0.96 | 0.96 | - | - | - | + |
L1 | C | 11 | 3.36 | 1.68 | - | - | - | - | 0.56 | −0.32 | - | - | - | - |
Average | 3.50 A | 1.93 A | 0.73 A | 0.25 A | ||||||||||
SD | 0.69 | 0.61 | 0.65 | 0.65 | ||||||||||
L2 | C | 2 | 3.63 | 3.36 | + | - | - | - | 1.36 | 1.36 | + | - | - | - |
L2 | W | 4 | 2.96 | 1.68 | - | - | - | - | 4.66 | 4.66 | + | - | - | - |
L2 | W | 6 | 3.63 | 3.36 | + | - | - | + | 2.38 | 2.38 | + | - | - | - |
L2 | W | 8 | 2.96 | 2.96 | + | - | - | + | 5.04 | 5.04 | + | - | - | - |
L2 | C | 10 | 3.63 | 3.63 | + | + | - | - | 4.66 | 4.38 | + | - | - | - |
L2 | C | 12 | 3.18 | 2.96 | + | - | - | - | 3.38 | 3.38 | + | - | - | - |
average | 3.33 A | 2.99 B* | 3.58 B** | 3.53 B*** | ||||||||||
SD | 0.34 | 0.69 | 1.48 | 1.44 |
Item | ||||||||
Milk quality 1 | L1 | L2 | Standard error | Milk 3 effect (L1 vs. L2) | Climate 3 effect (C vs. H) | Interaction | ||
Climatic period 2 | C-L1 | W-L1 | C-L2 | W-L2 | ||||
Cheesemaking trials (nr) | n = 6 | n = 6 | n = 6 | n = 6 | ||||
Bulk milk (composition) | ||||||||
Fat (%) | 4.01 | 3.86 | 3.90 | 3.78 | 0.0219 | ** | *** | - |
Protein (%) | 3.37 | 3.26 | 3.51 | 3.35 | 0.0328 | ** | ** | - |
Fat-to-protein ratio | 1.19 | 1.18 | 1.11 | 1.13 | 0.0120 | *** | - | - |
Dry matter (%) | 13.35 | 13.10 | 13.37 | 13.05 | 0.0385 | - | *** | - |
Milk creaming process | ||||||||
Starting parameters: | ||||||||
Environment temperature (°C) | 19.43 | 22.20 | 21.43 | 22.70 | 0.5522 | - | ** | - |
Milk temperature (°C) | 10.47 | 9.78 | 10.35 | 10.22 | 0.2075 | - | - | - |
Milk pH | 6.71 | 6.64 | 6.74 | 6.70 | 0.0157 | ** | * | - |
Milk titratable acidity (°SH) | 3.30 | 3.27 | 3.27 | 3.10 | 0.0522 | - | - | - |
Final parameters: | ||||||||
Environment temperature (°C) | 19.73 | 23.43 | 21.28 | 23.15 | 0.5721 | - | *** | - |
Milk temperature (°C) | 14.35 | 15.25 | 15.57 | 15.65 | 0.5275 | - | - | - |
Milk pH | 6.71 | 6.67 | 6.75 | 6.67 | 0.0201 | - | * | - |
Milk titratable acidity (°SH) | 3.37 | 3.23 | 3.40 | 3.17 | 0.0262 | - | *** | - |
Creaming, duration (min) | 393.67 | 362.00 | 419.00 | 366.33 | 8.7568 | - | *** | - |
Separated cream, quantity (kg) | 32.19 | 34.37 | 38.92 | 41.42 | 1.2410 | *** | - | - |
Cream (composition) | ||||||||
Fat (%) | 21.60 | 20.93 | 20.81 | 19.96 | 0.4157 | * | - | - |
Protein (%) | 2.85 | 2.78 | 2.90 | 2.85 | 0.0260 | * | * | - |
Dry matter (%) | 29.36 | 28.60 | 28.63 | 27.71 | 0.3994 | * | * | - |
Item | ||||||||
Milk quality 1 | L1 | L2 | Standard error | Milk Effect 3 (L1 vs. L2) | Climate Effect 3 (C vs. W) | Interaction | ||
Climatic period 2 | C-L1 | W-L1 | C-L2 | W-L2 | ||||
Cheesemaking trials (nr) | n = 6 | n = 6 | n = 6 | n = 6 | ||||
Vat milk | ||||||||
Temperature (°C) | 14.80 | 14.00 | 13.98 | 14.08 | 0.3024 | - | - | - |
pH | 6.69 | 6.66 | 6.72 | 6.66 | 0.0194 | - | - | - |
Titratable acidity (°SH/50 mL) | 3.43 | 3.30 | 3.37 | 3.14 | 0.0315 | * | *** | - |
Fat (%) | 2.90 | 2.71 | 2.62 | 2.49 | 0.0472 | *** | ** | - |
Protein (%) | 3.41 | 3.29 | 3.53 | 3.38 | 0.0362 | ** | ** | - |
Fat-to-casein ratio | 1.09 | 1.06 | 0.94 | 0.95 | 0.0211 | *** | - | - |
Dry matter (%) | 12.35 | 12.07 | 12.19 | 11.90 | 0.0600 | ** | *** | - |
Technological parameters | ||||||||
Whey starter culture, pH | 3.41 | 3.29 | 3.35 | 3.37 | 0.0279 | - | - | * |
Whey starter culture, acidity (°SH) | 28.67 | 28.03 | 28.07 | 29.33 | 0.2532 | - | - | ** |
Whey starter culture, temperature (°C) | 20.60 | 22.60 | 21.10 | 23.47 | 0.2597 | * | *** | - |
Whey starter culture, quantity (g) | 1500.00 | 1500.00 | 1733.33 | 1516.67 | 57.0283 | * | - | - |
Vat milk after whey starter addition, pH | 6.44 | 6.42 | 6.45 | 6.42 | 0.0055 | - | *** | - |
Vat milk after whey starter addition, acidity (°SH) | 4.22 | 4.00 | 4.20 | 3.97 | 0.0506 | - | *** | - |
Vat milk after whey starter addition, temperature (°C) | 20.30 | 21.57 | 21.62 | 21.57 | 0.4149 | - | - | - |
Vat milk at time of rennet addition, pH | 6.40 | 6.41 | 6.41 | 6.41 | 0.0039 | - | - | - |
Vat milk at time of rennet addition, acidity (°SH) | 4.27 | 4.05 | 4.20 | 3.98 | 0.0444 | - | *** | - |
Vat milk at time of rennet addition, temperature (°C) | 33.38 | 33.25 | 33.15 | 33.27 | 0.0399 | * | - | ** |
Coagulation time (min) | 10.56 | 10.99 | 10.84 | 10.93 | 0.3351 | - | - | - |
Manual cutting of coagulum, time (sec) | 41.17 | 57.33 | 46.33 | 48.00 | 8.1320 | - | - | - |
Mechanical cutting of coagulum, time (sec) | 76.33 | 62.33 | 78.00 | 82.83 | 5.6151 | - | - | - |
Curd cooking, temperature (°C) | 53.30 | 53.45 | 53.42 | 53.70 | 0.0621 | ** | ** | - |
Curd cooking, time (min) | 5.09 | 5.33 | 5.09 | 5.12 | 0.1059 | - | - | - |
Curd under whey, time (min) | 67.67 | 67.67 | 66.83 | 71.17 | 1.9713 | - | - | - |
Cheese whey after cooking, pH | 6.30 | 6.32 | 6.31 | 6.30 | 0.0062 | - | - | * |
Cheese whey after cooking, acidity (°SH) | 2.93 | 2.70 | 2.77 | 2.75 | 0.0514 | - | * | * |
Cheese whey after cooking, temperature (°C) | 53.22 | 53.37 | 53.28 | 53.72 | 0.1648 | - | - | - |
Cheese whey after curd extraction, pH | 6.17 | 6.09 | 6.10 | 6.09 | 0.0461 | - | - | - |
Cheese whey after curd extraction, acidity (°SH) | 3.23 | 3.07 | 3.03 | 3.02 | 0.0569 | * | - | - |
Cheese whey after curd extraction, temperature (°C) | 49.88 | 50.83 | 50.50 | 51.20 | 0.3740 | - | * | - |
Curd drainage, time (min) | 42.67 | 31.33 | 33.67 | 32.50 | 3.5538 | - | - | - |
Curd molding, first turning time (min) | 147.33 | 174.67 | 157.17 | 175.83 | 13.3804 | - | - | - |
Curd molding, second turning time (min) | 170.00 | 170.00 | 175.00 | 172.50 | 4.3661 | - | - | - |
Curd, brine salting time (d) | 23.33 | 20.50 | 23.33 | 20.50 | 1.1643 | - | * | - |
Curd yield before salting (%) | 8.93 | 8.52 | 8.85 | 8.41 | 0.1058 | - | *** | - |
Curd yield after salting (%) | 8.64 | 8.26 | 8.52 | 8.15 | 0.1061 | - | *** | - |
Residual cheese whey (composition) | ||||||||
Fat (%) | 0.56 | 0.55 | 0.51 | 0.41 | 0.0516 | - | - | - |
Protein (%) | 0.95 | 0.91 | 0.99 | 0.96 | 0.0116 | *** | * | - |
Dry matter (%) | 7.75 | 7.70 | 7.66 | 7.58 | 0.0603 | - | - | - |
Curd (composition) | ||||||||
pH | 5.41 | 5.43 | 5.28 | 5.29 | 0.0745 | - | - | - |
Fat (%) | 26.76 | 26.16 | 24.12 | 24.41 | 0.3930 | *** | - | - |
Protein (%) | 31.04 | 30.62 | 32.24 | 31.84 | 0.4467 | * | - | - |
Dry matter (%) | 60.94 | 59.66 | 59.02 | 59.41 | 0.5197 | - | - | - |
Fat-to-DM ratio | 0.44 | 0.44 | 0.41 | 0.41 | 0.0060 | *** | - | - |
Protein-to-DM ratio | 0.51 | 0.51 | 0.55 | 0.54 | 0.0050 | *** | - | - |
Fat-to-protein ratio | 0.87 | 0.85 | 0.75 | 0.77 | 0.0184 | *** | - | - |
Item | ||||||||
Milk quality 1 | L1 | L2 | Standard error | Milk effect 3 | Climate effect 3 | Interaction | ||
Climatic period 2 | C-L1 | W-L1 | C-L2 | W-L2 | ||||
Cheesemaking trials (nr) | n = 3 | n = 3 | n = 3 | n = 3 | (L1 vs. L2) | (C vs. W) | ||
Cheese | ||||||||
Ripening time (months) | 8.83 | 10.67 | 8.33 | 10.50 | 1.3307 | - | - | - |
Dry matter (%) | 66.56 | 67.04 | 65.18 | 66.85 | 0.4738 | - | - | - |
Ash (%) | 4.58 | 4.59 | 4.83 | 4.61 | 0.1353 | - | - | - |
Fat (%) | 29.08 | 29.04 | 26.45 | 27.91 | 0.5081 | ** | - | - |
Protein (%) | 31.06 | 31.57 | 32.10 | 32.52 | 0.3122 | * | - | - |
Fat-to-DM ratio | 0.44 | 0.43 | 0.41 | 0.42 | 0.0060 | ** | - | - |
Protein-to-DM ratio | 0.47 | 0.47 | 0.49 | 0.49 | 0.0054 | ** | - | - |
Fat-to-protein ratio | 0.94 | 0.92 | 0.82 | 0.86 | 0.0226 | ** | - | - |
Salt (%) | 1.70 | 1.62 | 1.93 | 1.62 | 0.1390 | - | - | - |
Salt, outer zone (%) | 1.91 | 1.81 | 2.08 | 1.82 | 0.1178 | - | - | - |
Salt, inner zone (%) | 1.23 | 1.29 | 1.26 | 1.16 | 0.2011 | - | - | - |
pH | 5.30 | 5.38 | 5.37 | 5.51 | 0.0418 | - | * | - |
pH, outer zone | 5.32 | 5.39 | 5.31 | 5.42 | 0.0255 | - | ** | - |
pH, inner zone | 5.32 | 5.42 | 5.55 | 5.73 | 0.0961 | * | - | - |
Lactic acid (g-to-kg DM) | 25.18 | 24.33 | 24.22 | 22.82 | 0.9464 | - | - | - |
Lactic acid, outer zone (g-to-kg DM) | 23.71 | 24.08 | 24.58 | 23.53 | 0.8231 | - | - | - |
Lactic acid, inner zone (g-to-kg DM) | 25.03 | 22.96 | 18.04 | 15.32 | 31.407 | * | - | - |
Butyric acid (g-to-kg DM) | 0.00 | 0.00 | 0.69 | 0.93 | 0.3563 | - | - | - |
Butyric acid, outer zone (g-to-kg DM) | 0.00 | 0.00 | 0.00 | 0.00 | 0.0000 | - | - | - |
Butyric acid, inner zone (g-to-kg DM) | 0.00 | 0.50 | 3.79 | 4.13 | 12.950 | * | - | - |
Propionic acid (g-to-kg DM) | 0.00 | 0.00 | 0.10 | 0.08 | 0.0632 | - | - | - |
Propionic acid, outer zone (g-to-kg DM) | 0.00 | 0.00 | 0.00 | 0.00 | 0.0000 | - | - | - |
Propionic acid, inner zone (g-to-kg DM) | 0.00 | 0.00 | 0.58 | 0.74 | 0.3013 | - | - | - |
Acetic acid (g-to-kg DM) | 1.61 | 2.08 | 1.87 | 2.05 | 0.1255 | - | * | - |
Acetic acid, outer zone (g-to-kg DM) | 1.52 | 1.99 | 1.79 | 1.98 | 0.0916 | - | ** | - |
Acetic acid, inner zone (g-to-kg DM) | 1.49 | 1.98 | 1.44 | 1.70 | 0.2564 | - | - | - |
Succinic acid (g-to-kg DM) | 0.92 | 0.94 | 0.89 | 0.87 | 0.0523 | - | - | - |
Pyroglutamic acid (g-to-kg DM) | 3.50 | 4.01 | 3.27 | 4.02 | 0.5037 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carminati, D.; Bonvini, B.; Francolino, S.; Ghiglietti, R.; Locci, F.; Tidona, F.; Mariut, M.; Abeni, F.; Zago, M.; Giraffa, G. Low-Level Clostridial Spores’ Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese. Foods 2023, 12, 1880. https://doi.org/10.3390/foods12091880
Carminati D, Bonvini B, Francolino S, Ghiglietti R, Locci F, Tidona F, Mariut M, Abeni F, Zago M, Giraffa G. Low-Level Clostridial Spores’ Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese. Foods. 2023; 12(9):1880. https://doi.org/10.3390/foods12091880
Chicago/Turabian StyleCarminati, Domenico, Barbara Bonvini, Salvatore Francolino, Roberta Ghiglietti, Francesco Locci, Flavio Tidona, Monica Mariut, Fabio Abeni, Miriam Zago, and Giorgio Giraffa. 2023. "Low-Level Clostridial Spores’ Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese" Foods 12, no. 9: 1880. https://doi.org/10.3390/foods12091880
APA StyleCarminati, D., Bonvini, B., Francolino, S., Ghiglietti, R., Locci, F., Tidona, F., Mariut, M., Abeni, F., Zago, M., & Giraffa, G. (2023). Low-Level Clostridial Spores’ Milk to Limit the Onset of Late Blowing Defect in Lysozyme-Free, Grana-Type Cheese. Foods, 12(9), 1880. https://doi.org/10.3390/foods12091880