A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Gene Synthesizing, Cloning, and Expression
2.3. Purification and Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis of Recombinant AlFFase3
2.4. Enzyme Assay and Protein Determination
2.5. Characterization of the Recombinant β-D-Fructofuranosidase AlFFase3
2.6. Resistance of AlFFase3 to the Protease Hydrolysis
2.7. New Function of Producing Various FOSs of AlFFase3
2.8. Effect on Gel Properties of AlFFase3 during the Processing of Yogurt
3. Results and Discussion
3.1. Excavation, Cloning, and Expression of a β-D-Fructofuranosidase-Encoding Gene from A. luchuensis
3.2. Purification, SDS-PAGE Analysis, and Enzyme Assay of the Recombinant β-D-Fructofuranosidase AlFFase3
3.3. Characterization of Recombinant AlFFase3
3.4. Resistance of AlFFase3 to Proteases
3.5. New Function of Producing Various FOSs of AlFFase3
3.6. Effect on Gel Properties of AlFFase3 during the Processing of Yoghurt
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galanakis, C.M. Functionality of food components and emerging technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Ye, T.; Leng, S.; Pan, L.; Zeng, W.; Chen, G.; Liang, Z. Purification and biochemical characteristics of a novel fructosyltransferase with a high FOS transfructosylation activity from Aspergillus oryzae S719. Protein Expr. Purif. 2020, 167, 105549. [Google Scholar] [CrossRef] [PubMed]
- Hussien, H.; Abd-Rabou, H.S.; Saad, M.A. The impact of incorporating Lactobacillus acidophilus bacteriocin with inulin and FOS on yogurt quality. Sci. Rep. 2022, 12, 13401. [Google Scholar] [CrossRef]
- Smaali, I.; Jazzar, S.; Soussi, A.; Muzard, M.; Aubry, N.; Marzouki, M.N. Enzymatic synthesis of fructooligosaccharides from date by-products using an immobilized crude enzyme preparation of β-D-fructofuranosidase from Aspergillus awamori NBRC 4033. Biotechnol. Bioprocess Eng. 2012, 17, 385–392. [Google Scholar] [CrossRef]
- Guerrero-Urrutia, C.; Volke-Sepulveda, T.; Figueroa-Martinez, F.; Favela-Torres, E. Solid-state fermentation enhances inulinase and invertase production by Aspergillus brasiliensis. Process Biochem. 2021, 108, 169–175. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; da Silva, M.F.; Converti, A.; Porto, T.S. Biochemical characterization and kinetic/thermodynamic study of Aspergillus tamarii URM4634 β-fructofuranosidase with transfructosylating activity. Biotechnol. Prog. 2019, 35, e2879. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Liu, Y.; Yang, J.; Ma, X.; Zeng, F.; Zhang, Z.; Wang, S.; Han, H.; Qin, H.-M.; Lu, F. Cloning, expression and characterization of a novel fructosyltransferase from Aspergillus niger and its application in the synthesis of fructooligosaccharides. RSC Adv. 2019, 9, 23856–23863. [Google Scholar] [CrossRef]
- Fernández, R.C.; Maresma, B.G.; Juárez, A.; Martínez, J. Production of fructooligosaccharides by β-fructofuranosidase from Aspergillus sp 27H. J. Chem. Technol. Biotechnol. 2004, 79, 268–272. [Google Scholar] [CrossRef]
- Tódero, L.M.; Rechia, C.G.V.; Guimarães, L.H.S. Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus. J. Food Biochem. 2019, 43, e12937. [Google Scholar] [CrossRef]
- Ottoni, C.A.; Cuervo-Fernández, R.; Piccoli, R.M.; Moreira, R.; Guilarte-Maresma, B.; Sabino da Silva, E.; Rodrigues, M.F.A.; Maiorano, A.E. Media optimization for β-fructofuranosidase production by Aspergillus oryzae. Braz. J. Chem. Eng. 2012, 29, 49–59. [Google Scholar] [CrossRef]
- Maresma, B.G.; Castillo, B.G.; Fernández, R.C.; Silva, E.S.D.; Maiorano, A.E.; Rodrigues, M.F.D.A. Mutagenesis of Aspergillus oryzae IPT-301 to improve the production of β-fructofuranosidase. Braz. J. Microbiol. 2010, 41, 186–195. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 277, 680–685. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Ávila-Fernández, Á.; Cuevas-Juárez, E.; Rodríguez-Alegría, M.E.; Olvera, C.; López-Munguía, A. Functional characterization of a novel β-fructofuranosidase from Bifidobacterium longum subsp. infantis ATCC 15697 on structurally diverse fructans. J. Appl. Microbiol. 2016, 121, 263–276. [Google Scholar] [CrossRef]
- Lincoln, L.; More, S.S.; Reddy, S.V. Purification and biochemical characterization of β-D-fructofuranosidase from Bacillus subtilis LYN12. J. Food Biochem. 2018, 42, e12592. [Google Scholar] [CrossRef]
- Lincoln, L.; More, S.S. Comparative evaluation of extracellular β-D-fructofuranosidase in submerged and solid-statefermentation produced by newly identified Bacillus subtilis strain. J. Appl. Microbiol. 2018, 125, 441–456. [Google Scholar] [CrossRef]
- Yoon, M.H.; Choi, W.Y.; Kwon, S.J.; Yi, S.H.; Lee, D.H.; Lee, J.S. Purification and properties of intracellular invertase from alkalophilic and thermophilic Bacillus cereus TA-11. J. Appl. Biol. Chem. 2007, 50, 196–201. [Google Scholar]
- Avila, T.L.; Toralles, R.P.; Jansen, E.T.; Ferreira, M.V.; Kuhn, C.R.; Ruiz, W.A. Extraction, purification and characterization of invertase from Candida guilliermondii isolated from peach solid wastes. Rev. Bras. Frutic. 2022, 44, e-849. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, J.; Huang, M.; Shen, C.; Xu, K.; Xiao, Y.; Pan, W.; Fang, Z. Identification of an invertase with high specific activity for raffinose hydrolysis and its application in soymilk treatment. Front. Microbiol. 2021, 12, 646801. [Google Scholar] [CrossRef]
- Rasbold, L.M.; Delai, V.M.; da Cruz Kerber, C.M.; Simões, M.R.; Heinen, P.R.; da Conceição Silva, J.L.; de Cássia Garcia Simão, R.; Kadowaki, M.K.; Maller, A. Production, immobilization and application of invertase from new wild strain Cunninghamella echinulata PA3S12MM. J. Appl. Microbiol. 2022, 132, 2832–2843. [Google Scholar] [CrossRef]
- Lincoln, L.; More, S.S. Purification and biochemical characterization of an extracellular β-D-fructofuranosidase from Aspergillus sp. 3 Biotech 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.N.; Guimarães, V.M.; Falkoski, D.L.; de Camargo, B.R.; Fontes-Sant’ana, G.C.; Maitan-Alfenas, G.P.; de Rezende, S.T. Purification and characterization of an invertase and a transfructosylase from Aspergillus terreus. J. Food Biochem. 2018, 42, e12551. [Google Scholar] [CrossRef]
- Kobayashi, T.; Uchimura, K.; Deguchi, S.; Horikoshi, K. Cloning and sequencing of inulinase and β-fructofuranosidase genes of a deep-sea Microbulbifer species and properties of recombinantenzymes. Appl. Environ. Microbiol. 2012, 78, 2493–2495. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yu, S.; Liu, Q.; Zhang, T.; Jiang, B.; Mu, W. Enzymatic production of melibiose from raffinose by the levansucrase from Leuconostoc mesenteroides B-512 FMC. J. Agric. Food Chem. 2017, 65, 3910–3918. [Google Scholar] [CrossRef]
- Fernandes, M.L.P.; Jorge, J.A.; Guimarães, L.H.S. Characterization of an extracellular β-D-fructofuranosidase produced by Aspergillus niveus during solid-state fermentation (SSF) of cassava husk. J. Food Biochem. 2018, 42, e12443. [Google Scholar] [CrossRef]
- Kirsch, F.; Luo, Q.; Lu, X.; Hagemann, M. Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 2018, 164, 1220–1228. [Google Scholar] [CrossRef]
- Zhou, J.; He, L.; Gao, Y.; Han, N.; Zhang, R.; Wu, Q.; Li, J.; Tang, X.; Xu, B.; Ding, J.; et al. Characterization of a novel low-temperature-active, alkaline and sucrose-tolerant invertase. Sci. Rep. 2016, 6, 32081. [Google Scholar] [CrossRef]
- Kumar, C.; Wagh, J.; Archana, G.; Kumar, G.N. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases. World J. Microbiol. Biotechnol. 2016, 32, 194. [Google Scholar] [CrossRef]
- Ryan, S.M.; Fitzgerald, G.F.; Van Sinderen, D. Transcriptional regulation and characterization of a novel β-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl. Environ. Microb. 2005, 71, 3475–3482. [Google Scholar] [CrossRef]
- Ehrmann, M.A.; Korakli, M.; Vogel, R.F. Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140T and characterization of the enzyme expressed in Escherichia coli. Curr. Microbiol. 2003, 46, 391–397. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, G.; Jiang, X.; Shao, K.; Tang, X.; Gao, G. Identification and immobilization of an invertase with high specific activity and sucrose tolerance ability of Gongronella sp. w5 for high fructose syrup preparation. Front. Microbiol. 2020, 11, 633. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Guo, X.N.; Zhu, K.X. Inhibitory mechanism of sodium hexametaphosphate on enzymatic browning in yellow alkaline noodles. Food Chem. 2023, 412, 135533. [Google Scholar] [CrossRef]
- Chen, Z.; Zaky, A.A.; Liu, Y.; Chen, Y.; Liu, L.; Li, S.; Jia, Y. Purification and characterization of a new xylanase with excellent stability from Aspergillus flavus and its application in hydrolyzing pretreated corncobs. Protein Expr. Purif. 2019, 154, 91–97. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zaky, A.A.; Liu, L.; Chen, Y.; Li, S.; Jia, Y. Characterization of a novel xylanase from Aspergillus flavus with the unique properties in production of xylooligosaccharides. J. Basic Microb. 2019, 59, 351–358. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Liu, L.; Chen, Y.; Li, S.; Jia, Y. Purification and characterization of a novel β-glucosidase from Aspergillus flavus and its application in saccharification of soybean meal. Prep. Biochem. Biotech. 2019, 49, 671–678. [Google Scholar] [CrossRef]
- Sánchez, O.; Guio, F.; Garcia, D.; Silva, E.; Caicedo, L. Fructooligosaccharides production by Aspergillus sp. N74 in a mechanically agitated airlift reactor. Food Bioprod. Process. 2008, 86, 109–115. [Google Scholar] [CrossRef]
- Gao, X.; Feng, T.; Liu, E.; Shan, P.; Zhang, Z.; Liao, L.; Ma, H. Ougan juice debittering using ultrasound-aided enzymatic hydrolysis: Impacts on aroma and taste. Food Chem. 2021, 345, 128767. [Google Scholar] [CrossRef]
Purification Step | Total Activity | Protein | Specific Activity | Purification | Recovery |
---|---|---|---|---|---|
(U) a | (mg) b | (U/mg) | Factor (-Fold) | (%) | |
crude supernatant | 20381.1 | 147.4 | 138.2 | 1.0 | 100.0% |
Ni-IDA | 8032.2 | 10.4 | 771.2 | 5.6 | 39.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Shen, Y.; Xu, J. A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing. Foods 2023, 12, 1704. https://doi.org/10.3390/foods12081704
Chen Z, Shen Y, Xu J. A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing. Foods. 2023; 12(8):1704. https://doi.org/10.3390/foods12081704
Chicago/Turabian StyleChen, Zhou, Yimei Shen, and Jiangqi Xu. 2023. "A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing" Foods 12, no. 8: 1704. https://doi.org/10.3390/foods12081704
APA StyleChen, Z., Shen, Y., & Xu, J. (2023). A Strategy for Rapid Acquisition of the β-D-Fructofuranosidase Gene through Chemical Synthesis and New Function of Its Encoded Enzyme to Improve Gel Properties during Yogurt Processing. Foods, 12(8), 1704. https://doi.org/10.3390/foods12081704