Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procurement of Wheatgrass and Extraction of Wheatgrass Juice
2.2. Primary Fermentation Using S. cerevisiae
2.3. Secondary Fermentation Using Pedicococcus acidilactici BD16 (alaD+)
2.4. Biochemical Analyses of Wheatgrass Juices after Primary and Secondary Fermentation
2.4.1. Determination of Total Soluble Solids (TSS) and Moisture Content
2.4.2. Determination of Total Acids by Titration Method
2.4.3. Determination of Total Proteins
2.4.4. Determination of Ethanol Content
2.4.5. Determination of Total Phenol Content
2.4.6. Determination of Total Flavonoid Content
2.4.7. Estimation of Total Anthocyanin Content
2.4.8. Determination of Different Pigments
2.4.9. Determination of Colour Intensity
2.5. Study of Phenolic Biotransformations in Fermented Wheatgrass Juice by Untargeted LC-MS MALDI-TOF/TOF Technique
3. Results
3.1. Biochemical Analysis of Fermented Wheatgrass Juice
3.2. Phenolic Biotransformations in Fermented Wheatgrass Juice
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmad, S.; Khan, M.S.; Parveen, R.; Mishra, K.; Tulsawani, R. Chromatographic analysis of wheatgrass extracts. J. Pharm. Bioallied Sci. 2015, 7, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Mujoriya, R.; Bodla, R.B. A Study on Wheat Grass and its Nutritional Value. Food Sci. Qual. Manag. 2011, 2, 1–8. [Google Scholar]
- Hassan, N.; Siddique, M.S. Wheat Grass (Triticum aestivum L.) Benefits Health in a Pandemic Scenario. J. Res. Appl. Sci. Biotechnol. 2022, 1, 24–29. [Google Scholar] [CrossRef]
- Bálint, G.; Apathy, A.; Gaál, M.; Telekes, A.; Resetar, A.; Blazso, G.; Falkay, G.; Szende, B.; Paksy, A.; Ehrenfeld, M.; et al. Effect of Avemar®-A Fermented Wheat Germ Extract-on Rheumatoid Arthritis. Preliminary Data. Clin. Exp. Rheumatol. 2006, 24, 325–328. [Google Scholar]
- Singh, K.; Pannu, M.S.; Singh, P.; Singh, J. Effect of wheat grass tablets on the frequency of blood transfusions in Thalassemia Major. Indian J. Pediatr. 2010, 77, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Iyer, U. Impact of Wheatgrass (Triticum Aestivum L.) Supplementation on Atherogenic Lipoproteins and Menopausal Symptoms in Hyperlipidemic South Asian Women—A Randomized Controlled Study. J. Diet. Suppl. 2017, 14, 503–513. [Google Scholar] [CrossRef]
- Chiu, L.C.-M.; Kong, C.K.-L.; Ooi, V.E.-C. The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion. Int. J. Mol. Med. 2005, 16, 735–740. [Google Scholar]
- Wheat, J.; Currie, G. Herbal Medicine for Cancer Patients: An Evidence Based Review. Internet J. Altern. Med. 2008, 5, 1–20. [Google Scholar]
- Ben-Arye, E.; Goldin, E.; Wengrower, D.; Stamper, A.; Kohn, R.; Berry, E. Wheatgrass Juice in The Treatment of Active Distal Ulcerative Colitis: A Randomized Double-Blind Placebo-Controlled Trial. Scand. J. Gastroenterol. 2002, 37, 444–449. [Google Scholar]
- Singh, N.; Verma, P.; Pandey, B.R. Therapeutic Potential of Organic Triticum Aestivum Linn. (Wheatgrass) in Prevention and Treatment of Chronic Diseases. Int. J. Pharm. Sci. Drug Res. 2012, 4, 10–14. [Google Scholar]
- Sharma, A.; Gupta, G.; Ahmad, T.; Kaur, B.; Hakeem, K.R. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J. Microbiol. Methods 2020, 170, 105862. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Singh, R.S.; Gupta, G.; Ahmad, T.; Kaur, B. Metabolic Engineering of Enzyme-Regulated Bioprocesses. In Advances in Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 293–323. [Google Scholar]
- Sharma, A.; Gupta, G.; Ahmad, T.; Mansoor, S.; Kaur, B. Enzyme Engineering: Current Trends and Future Perspectives. Food Rev. Int. 2019, 37, 121–154. [Google Scholar]
- Sharma, A.; Noda, M.; Sugiyama, M.; Kaur, B.; Ahmad, A. Metabolic Engineering of Pediococcus acidilactici BD16 for Heterologous Expression of Synthetic alaD Gene Cassette and L-Alanine Production in the Recombinant Strain Using Fed-Batch Fermentation. Foods 2021, 10, 1964. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Noda, M.; Sugiyama, M.; Ahmad, A.; Kaur, B. Production of Functional Buttermilk and Soymilk Using Pediococcus acidilactici BD16 (alaD+). Molecules 2021, 26, 4671. [Google Scholar]
- Sharma, A.; Mehta, V.; Rani, S.; Noda, M.; Sugiyama, M.; Chander, H.; Kaur, B. Biomedical applications of L-alanine produced by Pediococcus acidilactici BD16 (alaD+). Appl. Microbiol. Biotechnol. 2022, 106, 1435–1446. [Google Scholar]
- Sharma, A.; Noda, M.; Sugiyama, M.; Kumar, B.; Kaur, B. Application of Pediococcus acidilactici BD16 (alaD+) expressing L-alanine dehydrogenase enzyme as a starter culture candidate for secondary wine fermentation. Biotechnol. Biotechnol. Equip. 2021, 35, 1643–1661. [Google Scholar]
- Mansour, F.S.; Abd-El-Aziz, S.A.; Helal, G.A. Effect of Fruit Heat Treatment in Three Mango Varieties on Incidence of Post Harvest Fungal Disease. J. Plant Path. 2006, 88, 141–148. [Google Scholar]
- Reid, D.S. Traditional Indirect Methods for Estimation of Water Content: Measurement of Brix. Curr. Protoc. Food Anal. Chem. 2003, 10, A1.4.1–A1.4.5. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Caputi, A.; Ueda, M.; Brown, T. Spectrophotometric Determination of Ethanol in Wine. Am. J. Enol. Vitic. 1968, 19, 160–165. [Google Scholar]
- Bhalodia, N.R.; Acharya, R.N.; Shukla, V.J. Evaluation of in vitro Antioxidant Activity of Hydroalcoholic Seed Extracts of Cassia Fistula Linn. Free Radic. Antioxid. 2011, 1, 68–76. [Google Scholar] [CrossRef]
- Bag, G.C.; Devi, P.G.; Bhaigyabati, T.H. Assessment of Total Flavonoid Content and Antioxidant Activity of Methanolic Rhizome Extract of Three Hedychium Species of Manipur Valley. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 154–159. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pagès, V.; Dun, E.A.; Pillot, J.-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.-C.; et al. Strigolactone inhibition of shoot branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ball, G.F. Fat-Soluble Vitamin Assays in Food Analysis: A Comprehensive Review; Elsevier Science Publishers Ltd.: Amsterdam, The Netherlands, 1988; p. 338. [Google Scholar]
- Glories, Y. La Couleur Des Vins Rouges. 2e Partie: Mesure, Origine et Interprétation. OENO One 1984, 18, 253. [Google Scholar]
- Narbad, A.; Gasson, M.J. Metabolism of Ferulic Acid via Vanillin Using a Novel CoA-Dependent Pathway in a Newly-Isolated Strain of Pseudomonas Fluorescens. Microbiology 1998, 144, 1397–1405. [Google Scholar] [CrossRef] [Green Version]
- Marulasiddaswamy, K.M.; Nuthan, B.R.; Channarayapatna-Ramesh, S.; Bajpe, S.N.; Kumara, K.K.S.; Sekhar, S.K.K. HRLC-MS Based Profiling of Phytochemicals from Methanol Extracts of Leaves and Bark of Myristica Dactyloides Gaertn. From Western Ghats of Karnataka, India. J. Appl. Biol. Biotechnol. 2021, 9, 124–135. [Google Scholar]
- Velić, D.; Klarić, D.A.; Velić, N.; Klarić, I.; Tominac, V.P.; Mornar, A. Chemical Constituents of Fruit Wines as Descriptors of their Nutritional, Sensorial and Health-Related Properties. In Descriptive Food Science; Diaz, A.V., Garcia-Gimeno, R.M., Eds.; IntechOpen: London, UK, 2018; pp. 59–91. [Google Scholar]
- Tvrdý, V.; Hrubša, M.; Jirkovský, E.; Biedermann, D.; Kutý, M.; Valentová, K.; Křen, V.; Mladěnka, P. Silymarin Dehydroflavonolignans Chelate Zinc and Partially Inhibit Alcohol Dehydrogenase. Nutrients 2021, 13, 4238. [Google Scholar] [CrossRef]
- Ciani, M.; Capece, A.; Comitini, F.; Canonico, L.; Siesto, G.; Romano, P. Yeast Interactions in Inoculated Wine Fermentation. Front. Microbiol. 2016, 7, 555. [Google Scholar] [CrossRef] [Green Version]
- Sudiarta, I.W.; Saputra, I.W.R.; Singapurwa, N.M.A.S.; Candra, I.P.; Semariyani, A.A.M. Ethanol and methanol levels of red dragon fruit wine (Hylocereus costaricensis) with the treatment of sugar and fermentation time. J. Phys. Conf. Ser. 2021, 1869, 012032. [Google Scholar] [CrossRef]
- Joshi, V.K.; Sharma, S.; Thakur, A.D. Wines: White, Red, Sparkling, Fortified, and Cider. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 353–406. [Google Scholar]
- Kim, J.K.; Park, S.U. Quercetin and its role in biological functions: An updated review. EXCLI J. 2018, 17, 856. [Google Scholar] [PubMed]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Rasul Suleria, H.A. Proanthocyanidins: A Comprehensive Review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- Aboulaghras, S.; Sahib, N.; Bakrim, S.; Benali, T.; Charfi, S.; Guaouguaou, F.-E.; El Omari, N.; Gallo, M.; Montesano, D.; Zengin, G.; et al. Health Benefits and Pharmacological Aspects of Chrysoeriol. Pharmaceuticals 2022, 15, 973. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, S.; Sekar, M.; Khattulanuar, F.S.; Gan, S.H.; Rani, N.N.I.M.; Ravi, S.; Subramaniyan, V.; Jeyabalan, S.; Begum, M.Y.; Chidambaram, K.; et al. Chemistry, Biosynthesis and Pharmacology of Viniferin: Potential Resveratrol-Derived Molecules for New Drug Discovery, Development and Therapy. Molecules 2022, 27, 5072. [Google Scholar] [CrossRef] [PubMed]
- Ignat, M.V.; Salanță, L.C.; Pop, O.L.; Pop, C.R.; Tofană, M.; Mudura, E.; Coldea, T.E.; Borșa, A.; Pasqualone, A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods 2020, 9, 1031. [Google Scholar] [CrossRef]
- Fernandes, C.G.; Sonawane, S.K.; Arya, S.S. Cereal based functional beverages: A review. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 914–919. [Google Scholar] [CrossRef]
- Chauhan, M. A Pilot Study on Wheat Grass Juice for its Phytochemical, Nutritional and Therapeutic Potential on Chronic Diseases. Int. J. Chem. Stud. 2014, 2, 27–34. [Google Scholar]
- Sun, T.-Y.; Li, J.-S.; Chen, C. Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. J. Food Drug Anal. 2015, 23, 709–718. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, S.; Takino, M.; Daishima, S. Trace Level Determination of Phenols as Pentafluorobenzyl Derivatives by Gas Chromatography-Negative-Ion Chemical Ionization Mass Spectrometry. Analyst 2001, 126, 835–839. [Google Scholar] [CrossRef]
- Chukicheva, I.Y.; Krylova, M.V.; Buravlev, E.V.; Suponitskii, K.Y.; Kutchin, A.V. Alkylation of 2,4-Dimethylphenol with (+)-α- and (−)-β-Pinenes in the Presence of Aluminum Xylenolate. Russian J. Struct. Chem. 2014, 50, 589–595. [Google Scholar] [CrossRef]
- Pamplona, S.; Sá, P.; Lopes, D.; Costa, E.; Yamada, E.; Silva, C.E.; Arruda, M.; Souza, J.; Da Silva, M. In Vitro Cytoprotective Effects and Antioxidant Capacity of Phenolic Compounds from the Leaves of Swietenia macrophylla. Molecules 2015, 20, 18777–18788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychlicka, M.; Rot, A.; Gliszczyńska, A. Biological Properties, Health Benefits and Enzymatic Modifications of Dietary Methoxylated Derivatives of Cinnamic Acid. Foods 2021, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Tlhapi, D.B.; Ramaite, I.D.I.; Anokwuru, C.P. Metabolomic Profiling and Antioxidant Activities of Breonadia salicina Using 1H-NMR and UPLC-QTOF-MS Analysis. Molecules 2021, 26, 6707. [Google Scholar] [CrossRef] [PubMed]
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian J. Basic Med. Sci. 2019, 22, 225. [Google Scholar]
- Lyubchyk, S.; Shapovalova, O.; Lygina, O.; Oliveira, M.C.; Appazov, N.; Lyubchyk, A.; Charmier, A.J.; Lyubchik, S.; Pombeiro, A.J.L. Integrated Green Chemical Approach to the Medicinal Plant Carpobrotus Edulis Processing. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortelé, O.; Jörissen, J.; Spacova, I.; Lebeer, S.; van Nuijs, A.L.N.; Hermans, N. Demonstrating the Involvement of an Active Efflux Mechanism in the Intestinal Absorption of Chlorogenic Acid and Quinic Acid Using a Caco-2 Bidirectional Permeability Assay. Food Funct. 2021, 12, 417–425. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Zakharenko, A.M.; Gordeeva, E.I.; Shoeva, O.Y.; Antonova, E.V.; Pikula, K.S.; Koval, L.A.; Khlestkina, E.K.; Golokhvast, K.S. Phytochemical Analysis of Phenolics, Sterols, and Terpenes in Colored Wheat Grains by Liquid Chromatography with Tandem Mass Spectrometry. Molecules 2021, 26, 5580. [Google Scholar] [CrossRef]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Comp. Biol. Act. 2017, 8, 1–24. [Google Scholar]
- Pekkinen, J.; Rosa, N.N.; Savolainen, O.-I.; Keski-Rahkonen, P.; Mykkänen, H.; Poutanen, K.; Micard, V.; Hanhineva, K. Disintegration of Wheat Aleurone Structure Has an Impact on the Bioavailability of Phenolic Compounds and Other Phytochemicals as Evidenced by Altered Urinary Metabolite Profile of Diet-Induced Obese Mice. Nutr. Metab. 2014, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Hameed, A.; Liu, Z.; Wu, H.; Zhong, B.; Ciborowski, M.; Suleria, H.A.R. A Comparative and Comprehensive Characterization of Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022, 12, 271. [Google Scholar] [CrossRef]
- Ingole, A.; Kadam, M.; Dalu, A.P.; Kute, S.M.; Mange, P.R.; Theng, V.D.; Lahane, O.R.; Nikas, A.P.; Kawal, Y.V.; Nagrik, S.U.; et al. A Review of the Pharmacological Characteristics of Vanillic Acid. J. Drug Deliv. Ther. 2021, 11, 200–204. [Google Scholar] [CrossRef]
- Wyrepkowski, C.C.; Gomes da Costa, D.L.M.; Sinhorin, A.P.; Vilegas, W.; De Grandis, R.A.; Resende, F.A.; Varanda, E.A.; Dos Santos, L.C. Characterization and Quantification of the Compounds of the Ethanolic Extract from Caesalpinia ferrea Stem Bark and Evaluation of Their Mutagenic Activity. Molecules 2014, 19, 16039–16057. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-P.; Lee, I.-K.; Yun, B.-S.; Chung, S.-H.; Shim, G.-S.; Koshino, H.; Yoo, I.-D. Ellagic Acid Rhamnosides from the Stem Bark of Eucalyptus Globulus. Phytochemistry 2001, 57, 587–591. [Google Scholar] [CrossRef]
- Gardana, C.; Del Bo’, C.; Quicazán, M.C.; Corrrea, A.R.; Simonetti, P. Nutrients, Phytochemicals and Botanical Origin of Commercial Bee Pollen from Different Geographical Areas. J. Food Compos. Anal. 2018, 73, 29–38. [Google Scholar] [CrossRef]
- Alday, E.; Valencia, D.; Carreño, A.L.; Picerno, P.; Piccinelli, A.L.; Rastrelli, L.; Robles-Zepeda, R.; Hernandez, J.; Velazquez, C. Apoptotic Induction by Pinobanksin and Some of Its Ester Derivatives from Sonoran Propolis in a B-Cell Lymphoma Cell Line. Chem.-Biol. Interact. 2015, 242, 35–44. [Google Scholar] [CrossRef]
- Olalere, O.A.; Abdurahman, N.H.; Yunus, R.b.M.; Alara, O.R.; Kabbashi, N.A. Chemical Fingerprinting of Biologically Active Compounds and Morphological Transformation during Microwave Reflux Extraction of Black Pepper. Chem. Data Collect. 2018, 17–18, 339–344. [Google Scholar] [CrossRef]
- Kaur, B.; Kumar, B.; Kaur, G.; Chakraborty, D.; Kaur, K. Application of Recombinant Pediococcus Acidilactici BD16 (Fcs+/Ech+) in Malolactic Fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 3015–3028. [Google Scholar] [CrossRef]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Nastić, N.; Borrás-Linares, I.; Lozano-Sánchez, J.; Švarc-Gajić, J.; Segura-Carretero, A. Comparative Assessment of Phytochemical Profiles of Comfrey (Symphytum officinale L.) Root Extracts Obtained by Different Extraction Techniques. Molecules 2020, 25, 837. [Google Scholar] [CrossRef] [Green Version]
- Aydin, R. Conjugated linoleic acid: Chemical structure, sources and biological properties. Turkish J. Vet. Animal Sci. 2005, 29, 189–195. [Google Scholar]
- Zolkeflee, N.K.Z.; Ramli, N.S.; Azlan, A.; Abas, F. In Vitro Anti-Diabetic Activities and UHPLC-ESI-MS/MS Profile of Muntingia calabura Leaves Extract. Molecules 2022, 27, 287. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-X.; Xia, W.; Yue, W.; Peng, C.; Rahman, K.; Zhang, H. Rhein: A Review of Pharmacological Activities. Evid.-Based Complement. Altern. Med. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Zhang, B.; Yang, J.; Li, S.; Xu, J.; Yao, Z.; Zhang, X.; Gonzalez, F.J.; Yao, X. The Efflux Mechanism of Fraxetin-O-Glucuronides in UGT1A9-Transfected HeLa Cells: Identification of Multidrug Resistance-Associated Proteins 3 and 4 (MRP3/4) as the Important Contributors. Front. Pharmacol. 2019, 10, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Screening of Phenolic Compounds in Australian Grown Berries by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Antioxidants 2021, 10, 26. [Google Scholar] [CrossRef]
- Khan, A.K.; Rashid, R.; Fatima, N.; Mahmood, S.; Mir, S.; Khan, S.; Jabeen, N.; Murtaza, G. Pharmacological Activities of Protocatechuic Acid. Acta Pol. Pharm. 2015, 72, 643–650. [Google Scholar]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic Profiles of Leaves, Grapes and Wine of Grapevine Variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.K. Biological Importance, Therapeutic Benefit, and Medicinal Importance of Flavonoid, Cirsiliol for the Development of Remedies against Human Disorders. Curr. Bioact. Compd. 2022, 18, 2–10. [Google Scholar] [CrossRef]
- Aguilar, T.; Loyola, C.; de Bruijn, J.; Bustamante, L.; Vergara, C.; von Baer, D.; Mardones, C.; Serra, I. Effect of Thermomaceration and Enzymatic Maceration on Phenolic Compounds of Grape Must Enriched by Grape Pomace, Vine Leaves and Canes. Eur. Food Res. Technol. 2015, 242, 1149–1158. [Google Scholar] [CrossRef]
- Du, J.; Zhong, B.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS Profiling and Antioxidant Activity of Phenolics from Custard Apple Fruit and By-Products. Separations 2021, 8, 62. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Identification of Phenolic Compounds in Australian Grown Dragon Fruits by LC-ESI-QTOF-MS/MS and Determination of Their Antioxidant Potential. Arab. J. Chem. 2021, 14, 103151. [Google Scholar] [CrossRef]
- Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [Green Version]
- Felhi, S.; Baccouch, N.; Ben Salah, H.; Smaoui, S.; Allouche, N.; Gharsallah, N.; Kadri, A. Nutritional Constituents, Phytochemical Profiles, in Vitro Antioxidant and Antimicrobial Properties, and Gas Chromatography–Mass Spectrometry Analysis of Various Solvent Extracts from Grape Seeds (Vitis vinifera L.). Food Sci. Biotechnol. 2016, 25, 1537–1544. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, S.; He, Y.; Peng, C.; Wang, Z.; Tang, Q. Phytochemical Profile and Antidepressant Effect of Ormosia henryi Prain Leaf Ethanol Extract. Int. J. Mol. Sci. 2019, 20, 3396. [Google Scholar] [CrossRef] [Green Version]
- Melo, I.S.; Santos, S.N.; Rosa, L.H.; Parma, M.M.; Silva, L.J.; Queiroz, S.C.N.; Pellizari, V.H. Isolation and Biological Activities of an Endophytic Mortierella Alpina Strain from the Antarctic Moss Schistidium Antarctici. Extremophiles 2013, 18, 15–23. [Google Scholar] [CrossRef]
- Mukai, R. Prenylation Enhances the Biological Activity of Dietary Flavonoids by Altering Their Bioavailability. Biosci. Biotechnol. Biochem. 2018, 82, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Azam, F.; Chaudhry, B.A.; Ijaz, H.; Qadir, M.I. Caffeoyl-β-d-Glucopyranoside and 1,3-Dihydroxy-2-Tetracosanoylamino-4-(E)-Nonadecene Isolated from Ranunculus Muricatus Exhibit Antioxidant Activity. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Abourashed, E.A.; El-Alfy, A.T. Chemical Diversity and Pharmacological Significance of the Secondary Metabolites of Nutmeg (Myristica Fragrans Houtt.). Phytochem. Rev. Proc. Phytochem. Soc. Eur. 2016, 15, 1035–1056. [Google Scholar] [CrossRef] [Green Version]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and Biological Activity of Wild Blueberry (Vaccinium Angustifolium) Polyphenols during Simulated in Vitro Gastrointestinal Digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef]
- Untergehrer, M.; Kiermaier, J.; Reintjes, S.; Heilmann, J.; Jürgenliemk, G. Identification of Phase-II Metabolites from Human Serum Samples after Oral Intake of a Willow Bark Extract. Phytomedicine 2019, 57, 396–402. [Google Scholar] [CrossRef]
- Ślusarczyk, S.; Cieślak, A.; Yanza, Y.R.; Szumacher-Strabel, M.; Varadyova, Z.; Stafiniak, M.; Wojnicz, D.; Matkowski, A. Phytochemical Profile and Antioxidant Activities of Coleus amboinicus Lour. Cultivated in Indonesia and Poland. Molecules 2021, 26, 2915. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.R.; Souza, A.B.; Soares, S.; Bianchi, T.C.; de Souza Eugênio, D.; Lemes, D.C.; Martins, C.H.G.; da Silva Moraes, T.; Tavares, D.C.; Ferreira, N.H.; et al. Ent-Kaurenoic Acid-Rich Extract from Mikania Glomerata: In Vitro Activity against Bacteria Responsible for Dental Caries. Fitoterapia 2016, 112, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.A.; Karaman, R. The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins 2019, 11, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leyva-Jiménez, F.J.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Diez-Echave, P.; Vezza, T.; Hidalgo-García, L.; Lozano-Sánchez, J.; Arráez-Román, D.; Cenis, J.L.; Lozano-Pérez, A.A.; et al. Comparative Study of the Antioxidant and Anti-Inflammatory Effects of Leaf Extracts from Four Different Morus alba Genotypes in High Fat Diet-Induced Obesity in Mice. Antioxidants 2020, 9, 733. [Google Scholar] [CrossRef] [PubMed]
- Scholz, E.; Heinrich, M.; Hunkler, D. Caffeoylquinic Acids and Some Biological Activities OfPluchea Symphytifolia. Planta Med. 1994, 60, 360–364. [Google Scholar] [CrossRef]
- Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant Activity of Phenolic Acids and Their Metabolites: Synthesis and Antioxidant Properties of the Sulfate Derivatives of Ferulic and Caffeic Acids and of the Acyl Glucuronide of Ferulic Acid. J. Agric. Food Chem. 2012, 60, 12312–12323. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- De Beer, D.; Schulze, A.E.; Joubert, E.; De Villiers, A.; Malherbe, C.J.; Stander, M.A. Food Ingredient Extracts of Cyclopia subternata (Honeybush): Variation in Phenolic Composition and Antioxidant Capacity. Molecules 2012, 17, 14602–14624. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.I.; Fareed, M.I.; Rashid, H.; Aziz, H.; Ehsan, N.; Khalid, S.; Ghaffar, I.; Ali, R.; Gul, A.; Hakeem, K.R. Flavonoids and Their Biological Secrets. Plant Hum. Health 2019, 2, 579–605. [Google Scholar]
- Karthikeyan, G.; Rajendran, L.; Sendhilvel, V.; Prabakar, K.; Raguchander, T. Diversity and Functions of Secondary Metabolites Secreted by Epi-Endophytic Microbes and Their Interaction with Phytopathogens. Biocontrol Agents and Secondary Metabolites 2021, 495–517. [Google Scholar]
- Miras-Moreno, B.; Sabater-Jara, A.B.; Pedreño, M.A.; Almagro, L. Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures. J. Agric. Food Chem. 2016, 64, 7049–7058. [Google Scholar] [CrossRef]
- Ho, M.-L.; Chen, P.-N.; Chu, S.-C.; Kuo, D.-Y.; Kuo, W.-H.; Chen, J.-Y.; Hsieh, Y.-S. Peonidin 3-Glucoside Inhibits Lung Cancer Metastasis by Downregulation of Proteinases Activities and MAPK Pathway. Nutr. Cancer 2010, 62, 505–516. [Google Scholar] [CrossRef]
- Fernandes, C.P.; Corrêa, A.L.; Lobo, J.F.R.; Caramel, O.P.; de Almeida, F.B.; Castro, E.S.; Souza, K.F.C.S.; Burth, P.; Amorim, L.M.F.; Santos, M.G.; et al. Triterpene Esters and Biological Activities from Edible Fruits of Manilkara Subsericea(Mart.) Dubard, Sapotaceae. BioMed Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zahr, A.; Alcaide, P.; Yang, J.; Jones, A.; Gregory, M.; dela Paz, N.G.; Patel-Hett, S.; Nevers, T.; Koirala, A.; Luscinskas, F.W.; et al. Endomucin Prevents Leukocyte–Endothelial Cell Adhesion and Has a Critical Role under Resting and Inflammatory Conditions. Nature Commun. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Denaro, M.; Smeriglio, A.; Trombetta, D. Antioxidant and Anti-Inflammatory Activity of Citrus Flavanones Mix and Its Stability after In Vitro Simulated Digestion. Antioxidants 2021, 10, 140. [Google Scholar] [CrossRef]
- Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: A Novel Natural Compound with Versatile Pharmacological and Biological Activities. BioMed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.B.; Manfredini, S.; Vertuani, S. Synthesis, Antioxidant and Antimicrobial Activity of a New Phloridzin Derivative for Dermo-Cosmetic Applications. Molecules 2012, 17, 13275–13289. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Liang, H.; Guo, Y.; Yang, D. Cyanidin 3-O-galactoside: A Natural Compound with Multiple Health Benefits. Int. J. Mol. Sci. 2021, 22, 2261. [Google Scholar] [CrossRef]
- Guimarães, R.; Barros, L.; Dueñas, M.; Calhelha, R.C.; Carvalho, A.M.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Nutrients, Phytochemicals and Bioactivity of Wild Roman Chamomile: A Comparison between the Herb and Its Preparations. Food Chem. 2013, 136, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Qamar, M.; Akhtar, S.; Ismail, T.; Wahid, M.; Barnard, R.T.; Esatbeyoglu, T.; Ziora, Z.M. The Chemical Composition and Health-Promoting Effects of the Grewia Species—A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 4565. [Google Scholar] [CrossRef]
- Valadares, Y.M.; Brandão, G.C.; Kroon, E.G.; Souza Filho, J.D.; Oliveira, A.B.; Braga, F.C. Antiviral Activity of Solanum Paniculatum Extract and Constituents. Z. Naturforsch. 2009, 64, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Semwal, D.K.; Semwal, R.B.; Combrinck, S.; Viljoen, A. Myricetin: A Dietary Molecule with Diverse Biological Activities. Nutrients 2016, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sari, D.R.T.; Cairns, J.R.K.; Safitri, A.; Fatchiyah, F. Virtual Prediction of the Delphinidin-3-O-Glucoside and Peonidin-3-O-Glucoside as Anti-Inflammatory of TNF-α Signaling. Acta Inform. Med. 2019, 27, 152. [Google Scholar] [CrossRef] [PubMed]
- Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U.M.; Gülçin, İ.; Alwasel, S.H. Antioxidant Activity of Taxifolin: An Activity–Structure Relationship. J. Enzyme Inhib. Med. Chem. 2015, 31, 674–683. [Google Scholar] [CrossRef]
- Bao-Qing, W. Salvia Miltiorrhiza: Chemical and Pharmacological Review of a Medicinal Plant. J. Med. Plants Res. 2010, 4, 2813–2820. [Google Scholar]
- Metzger, J.D. Comparison of Biological Activities of Gibberellins and Gibberellin-Precursors Native to Thlaspi Arvense L. Plant Physiol. 1990, 94, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell. Longev. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Murillo, A.G.; Hu, S.; Fernandez, M.L. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants 2019, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Papastamoulis, Y.; Richard, T.; Nassra, M.; Badoc, A.; Krisa, S.; Harakat, D.; Monti, J.-P.; Mérillon, J.-M.; Waffo-Teguo, P. Viniphenol A, a Complex Resveratrol Hexamer FromVitis ViniferaStalks: Structural Elucidation and Protective Effects against Amyloid-β-Induced Toxicity in PC12 Cells. J. Nat. Prod. 2014, 77, 213–217. [Google Scholar] [CrossRef]
- Walters, D.; Meurer-Grimes, B.; Rovira, I. Antifungal Activity of Three Spermidine Conjugates. FEMS Microbiol. Lett. 2001, 201, 255–258. [Google Scholar] [CrossRef]
- Karapandzova, M.; Stefkov, G.; Cvetkovikj, I.; Stanoeva, J.P.; Stefova, M.; Kulevanova, S. Flavonoids and Other Phenolic Compounds in Needles of Pinus Peuce and Other Pine Species from the Macedonian Flora. Nat. Prod. Commun. 2015, 10, 987–990. [Google Scholar] [CrossRef] [Green Version]
- Carlsen, S.C.K.; Peersen, H.A.; Spliid, N.H.; Fomsgaard, I.S. Fate in Soil of Flavonoids Released from White Clover (Trifolium Repens L.). Appl. Environ. Soil Sci. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hazrati, H.; Fomsgaard, I.S.; Kudsk, P. Targeted Metabolomics Unveil Alteration in Accumulation and Root Exudation of Flavonoids as a Response to Interspecific Competition. J. Plant Interact. 2021, 16, 53–63. [Google Scholar] [CrossRef]
- Zheng, J.; Ding, C.; Wang, L.; Li, G.; Shi, J.; Li, H.; Wang, H.; Suo, Y. Anthocyanins Composition and Antioxidant Activity of Wild Lycium Ruthenicum Murr. From Qinghai-Tibet Plateau. Food Chem. 2011, 126, 859–865. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Deng, J.; Li, H.; Lu, J. Phenolic Concentrations and Antioxidant Properties of Wines Made from North American Grapes Grown in China. Molecules 2012, 17, 3304–3323. [Google Scholar] [CrossRef] [Green Version]
Parameters | Wheatgrass Juice | After Primary Fermentation | After Secondary Fermentation |
---|---|---|---|
Total solid content (%) | 22.9 | 6.3 | 6.2 |
Moisture content (%) | 77.1 | 93.7 | 93.7 |
Total acids (%) | 0.2 ± 0.01 | 1.08 ± 0.66 | 0.65 ± 0.06 |
Ethanol content (%) | 0.0 | 3.4 ± 0.004 | 3.7 ± 0.005 |
Total proteins (mg/mL) | 4.6 ± 0.10 | 4.07 ± 0.32 | 4.52 ± 0.30 |
Total phenols (mg GAE/mL) | 0.41 ± 0.01 | 1.45 ± 0.04 | 1.36 ± 0.03 |
Total flavonoids (mg QE/L) | 0.39 ± 0.010 | 0.17 ± 0.011 | 0.169 ± 0.015 |
Total anthocyanins (mg Cy3G/L) | 0.97 ± 0.16 | 3.50 ± 0.67 | 4.53 ± 0.05 |
Total carotenoids (mg/L) | 0.25 ± 0.017 | 0.31 ± 0.014 | 0.31 ± 0.09 |
Beta-carotenes (mg/L) | 0.35 ± 0.01 | 0.71 ± 0.019 | 0.73 ± 0.021 |
Lycopenes (mg/L) | 0.28 ± 0.003 | 0.33 ± 0.017 | 0.34 ± 0.015 |
Tint of wine | 2.757 ± 0.023 | 0.020 ± 0.003 | 0.110 ± 0.016 |
Brilliance of wine (%) | 6.6 ± 0.057 | 42.2 ± 0.121 | 55.0 ± 0.551 |
Sr. No. | Secondary Metabolites | Class | WGJ | WGJ-PF | WGJ-SF |
---|---|---|---|---|---|
1 | 1-(2,6-Dihydroxyphenyl)-9-(4-hydroxy-3-methoxyphenyl) | Phenol derivative | + | − | − |
2 | 1-O-Caffeoyl-β-D-glucose | Hydroxycinnamic acid glycoside | − | + * | − |
3 | 1-O-Sinapoyl-β-D-glucose | Hydroxycinnamic acid glycoside | − | + * | − |
4 | 2-Methyl-4,6-dinitrophenol | Phenol derivative | + | − | + ^ |
5 | 2,4-Dimethylphenol | Phenol derivative | − | − | + ^ |
6 | 3-Caffeoyl quinic acid | Quinic acid & derivatives | − | + * | + |
7 | 3-or 4-hydroxyphenyl propionic acid sulphate | Hydroxymono-carboxylic acid | + | − | − |
8 | 3-p-Coumaroyl quinic acid | Quinic acid & derivatives | − | + * | − |
9 | 6-C-hexosyl-chrysoeriol-O-rhamnoside-O-hexoside | Flavonoid | − | + * | − |
10 | 8-Prenyl naringenin | Prenylflavonoid | − | + * | − |
11 | β-Amyrin | Triterpenoid | − | + * | − |
12 | Ampelosin D | Stilbenes | + | + | − |
13 | Apigenin-6-O-glucoside | Flavonoid glucoside | + | − | − |
14 | Apigenin-7-O-glucoside | Flavonoid glucoside | + | − | + ^ |
15 | Austrabailignan-7 | Lignan | + | + | + |
16 | Avenasterol | Stigmastane | + | − | + ^ |
17 | Betanin (red pigment) | Tyrosine derivative | − | + * | − |
18 | 5-Campestenone | Sterol | + | + | − |
19 | Carnosic acid | Diterpenoid | + | − | − |
20 | Catechin | Flavonoid | − | + * | − |
21 | Catechin gallate | Flavans | + | − | − |
22 | Chrysoeriol-C-hexoside-C-pentoside | Flavonoid glucoside | − | + * | − |
23 | Chlorogenic acid | Quinic acid & derivatives | − | + * | + |
24 | Cinnamic acid | Cinnamic acid | + | − | − |
25 | Cirsiliol | Flavonoid derivative | + | + | − |
26 | Deoxyschisandrin (pigment) | Tannin | − | + × | − |
27 | Delphinidin-3-glucoside | Polyphenol | + | + | + |
28 | Dihydrocaffeic acid-3-O-glucuronide | Phenolic glycosides | − | + * | − |
29 | Dihydroferulic acid sulphate | Phenyl sulphates | − | + * | − |
30 | Dihydroguaiaretic acid | Lignan | + | − | − |
31 | Docosenoic acid | Unsat. fatty acid derivative | + | + | + |
32 | Ellagic acid | Polyphenol | − | + * | − |
33 | Epicatechin | Flavonoid | + | − | − |
34 | Epicatechin gallate | Flavonoid | + | − | − |
35 | Esculin | Coumarin glucoside | − | + * | − |
36 | Eugenol | Allylbenzene | + | − | − |
37 | Ferulic acid | Hydroxycinnamic acid | + | + | + |
38 | Fragransin D1 | Lignan | − | − | + ^ |
39 | Fraxetin-7-O-sulfate | Hydroxycoumarin derivative | + | − | + ^ |
40 | Fucosterol | Sterol | + | − | + ^ |
41 | Gibberellin acid 8-hexose-gibberellin | Diterpenoid | − | + * | + |
42 | Gallic acid | Phenolic acid | + | − | − |
43 | Gallic acid 4-O-glucoside | Phenolic acid derivative | + | − | − |
44 | 2-Hydroxy-4-methoxy-3,6-dimethylbenzoic acid | Benzoic acid derivative | + | − | + ^ |
45 | Kaempferol-rha-xyl-gal | Flavonoid glucoside | − | + * | − |
46 | Laricitrin-3-O-rutinose | Flavonoid glucoside | − | + * | − |
47 | Linoleic acid isomer 1or 2 | Unsat. fatty acid | − | + * | − |
48 | Luteolin-8-C-glucoside | Flavonoid | − | − | + ^ |
49 | Malabaricone B | Diarylnonanoids | − | + * | − |
50 | Malvidin-3-(6-O-acetyl)glucoside | Flavonoid glucoside | + | − | − |
51 | Malvidin-3-O-glucoside-4-vinylphenol | Flavonoid glucoside | + | − | − |
52 | Malvidin-3-O-rutinoside | Flavonoid glucoside | − | + * | + |
53 | Monotropein | Monoterpenoid | + | − | − |
54 | Malvidin-3-glucoside-4-vinyl(epi) catechin (pigment) | Flavanol-anthocyanin adduct | − | − | + ^ |
55 | Myricetin | Flavonoid | + | + | − |
56 | Myricetin-3-O-glucoside | Flavonoid glucoside | + | + | + |
57 | Myricetin-3-O-rhamnoside | Flavonoid glucoside | − | − | + ^ |
58 | Myricetin-7-O-pentoside | Flavonoid glucoside | − | − | + ^ |
59 | Naringenin glucuronide sulfate | Flavanone glucuronide | − | + * | + |
60 | Naringenin sulfate | Flavanone | − | + * | − |
61 | Neotigogenin acetate | Triterpenoid | − | − | + ^ |
62 | Neoeriocitrin | Flavanone | − | + * | − |
63 | Pallidol (Resveratrol dimer) | Stilbenoid | + | − | − |
64 | p-Coumaroyl-hexose-methylglutarate | Hydroxycinnamic acid derivative | − | + * | + |
65 | Pelarogonidin (pigment) | Flavonoid | + | + | − |
66 | Pentacosanoic acid | Sat. Fatty acid | − | + * | − |
67 | Pentahydroxydimethoxy flavone | Flavonoid | − | + * | − |
68 | Peonidin | Flavonoid | + | + | − |
69 | Peonidin-3-O-glucoside (pigment) | Flavonoid glucoside | + | + | − |
70 | Peonidin-3-O-rutinoside-5-glucoside (pigment) | Flavonoid glucoside | + | + | − |
71 | Peonidin-3-O-sambioside-5-O-glucoside (pigment) | Flavonoid glucoside | − | − | + ^ |
72 | Peonidin-3-O-rutinoside (pigment) | Flavonoid glucoside | + | − | − |
73 | Pentahydroxytrimethoxyflavones | Flavonoid | + | + | − |
74 | Petunidin-3-O-glucoside | Flavonoid glucoside | − | + * | − |
75 | Phlorizin | Flavonoid glucoside | + | + | − |
76 | Phloretin-3’, 5’-di-C-β-glucoside | Diarylpropanoid | + | + | + |
77 | Pinobanksin arabinose | Lignan glycoside | − | + * | − |
78 | Pinocembrin-O-arabirosyl-glucoside | Flavonoid glycoside | − | + * | − |
79 | Piperyline | Alkaloid | + | − | − |
80 | Procyanidin B1 | Flavonoid | + | − | − |
81 | Procyanidin B2 | Flavonoid | + | − | − |
82 | Procyanidin dimer gallate | Flavonoid | + | + | − |
83 | Prodelphinidin A-type | Flavonoid | + | − | − |
84 | Protocatechuic acid-4-O-glucoside | Hydroxybenzoic acid derivative | − | + * | − |
85 | Quercetin | Flavonoid | + | + | + |
86 | Quercetin-7-O-malonynyl-hexoside | Flavonoid glucoside | − | + * | − |
87 | Quinic acid | Quinic acid | − | + * | − |
88 | Riboflavin | Vitamin B2 | + | + | − |
89 | Rhein | Anthraquinone | − | − | + ^ |
90 | Salviaflaside derivative | Phenylpropanoid | − | + * | − |
91 | Salvianolic acid B isomer 1or 2 | Flavonoid | − | + * | − |
92 | Spermidine-N1,10-di-caffeicacid-N5-p-coumaric acid | Polyamine-quinic acid adduct | − | − | + ^ |
93 | Spermidine-N5,10-di-p-coumaric acid-N1-caffeic acid | Polyamine-quinic acid adduct | − | − | + ^ |
94 | Syringetin | Flavonoid | + | − | - |
95 | Syringetin 3-O-hexoside | Flavonoid glucoside | + | + | + |
96 | Taxifolin | Flavonoid | + | + | - |
97 | Taxifolin-O-pentoside | Flavonoid glucoside | + | + | + |
98 | Taxifolin-3-O-glucoside | Flavonoid glucoside | − | + * | − |
99 | Taxifolin-3-O-rhamnoside | Flavonoid glucoside | + | + | + |
100 | trans-Scirpusin A | Stilbene | − | + * | − |
101 | Tricin | Flavonoid | + | - | − |
102 | Trihydroxy-ent-kauranoic acid | Diterpene derivative | − | + * | − |
103 | Viniferal | Hydroxystilbenoid | + | − | − |
104 | α-Viniferin | Stilbene | + | + | − |
105 | Vanillic acid 4-sulfate | Hydroxybenzoic acid derivative | − | + * | + |
106 | Violanone | Flavonoid | − | + * | − |
107 | Vebonol | Steroid | − | + * | + |
108 | Zeaxanthin (pigment) | Carotenoid | − | + * | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, B.; Kumar, B.; Sirhindi, G.; Guleria, N.; Kaur, J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods 2023, 12, 1624. https://doi.org/10.3390/foods12081624
Kaur B, Kumar B, Sirhindi G, Guleria N, Kaur J. Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods. 2023; 12(8):1624. https://doi.org/10.3390/foods12081624
Chicago/Turabian StyleKaur, Baljinder, Balvir Kumar, Geetika Sirhindi, Nidhi Guleria, and Jashandeep Kaur. 2023. "Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation" Foods 12, no. 8: 1624. https://doi.org/10.3390/foods12081624
APA StyleKaur, B., Kumar, B., Sirhindi, G., Guleria, N., & Kaur, J. (2023). Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation. Foods, 12(8), 1624. https://doi.org/10.3390/foods12081624