Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry
Abstract
:1. Introduction
2. Ultrasound Generation
3. Classification of Ultrasonication Application
4. Thermosonication (TS)
5. Basic Principle of TS
6. Advantages and Disadvantages of TS
6.1. Advantages
6.1.1. Increased Efficiency
6.1.2. Improved Quality
6.1.3. Environmentally Friendly
6.1.4. Cost-Effective
6.2. Disadvantages
6.2.1. Equipment Costs
6.2.2. Temperature Control
6.2.3. Limited Applicability
6.2.4. Safety Concerns
7. Impact of TS on the Quality of Food Items
7.1. Nutrient Retention
7.2. Texture
7.3. Shelf Life
7.4. Color
7.5. Flavor
8. Effects of TS on Inactivation Microorganisms in Food
8.1. Disruption of Cell Membranes
8.2. Denaturation of Proteins
8.3. Generation of Free Radicals
8.4. Cavitation
9. The Impact of TS on the Bioactive Compounds Present in Food
10. Effect of TS on Inactivation of Enzymes in Food
11. Utilizing Natural Antimicrobial Agents such as Ascorbic Acid, Nisin, and ϵ-polylysine (ϵ-PL) in Combination with TS
12. Conclusions and Future Remark
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ercan, S.S.; Soysal, C. Use of ultrasound in food preservation. Nat. Sci. 2013, 5, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Zhou, B.; Liang, W.; Feng, H.; Martin, S.E. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. J. Food Eng. 2009, 93, 354–364. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, M.; Cao, P.; Adhikari, B.; Yang, C. Microorganisms control and quality improvement of stewed pork with carrots using ZnO nanoparticels combined with radio frequency pasteurization. Food Biosci. 2019, 32, 100487. [Google Scholar] [CrossRef]
- Yang, S.; Yuan, Z.; Aweya, J.J.; Huang, S.; Deng, S.; Shi, L.; Zheng, M.; Zhang, Y.; Liu, G. Low-intensity ultrasound enhances the antimicrobial activity of neutral peptide TGH2 against Escherichia coli. Ultrason. Sonochem. 2021, 77, 105676. [Google Scholar] [CrossRef] [PubMed]
- Kadkhodaee, R.; Povey, M.J.W. Ultrasonic inactivation of Bacillus α-amylase. I. Effect of gas content and emitting face of probe. Ultrason. Sonochem. 2008, 15, 133–142. [Google Scholar] [CrossRef]
- Gao, S.; Hemar, Y.; Ashokkumar, M.; Paturel, S.; Lewis, G.D. Inactivation of bacteria and yeast using high-frequency ultrasound treatment. Water Res. 2014, 60, 93–104. [Google Scholar] [CrossRef]
- Villamiel, M.; de Jong, P. Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. J. Agric. Food Chem. 2000, 48, 472–478. [Google Scholar] [CrossRef]
- Wang, S.; Kang, J.; Zhang, X.; Guo, Z. Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field. Ultrasonics 2018, 83, 26–32. [Google Scholar] [CrossRef]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; de Jesus, A.L.T.; Almeida, F.D.L.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. High-intensity ultrasound processing of pineapple juice. Food Bioprocess Technol. 2013, 6, 997–1006. [Google Scholar] [CrossRef]
- Piyasena, P.; Mohareb, E.; McKellar, R.C. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Aadil, R.M.; Zeng, X.; Zhang, Z.; Wang, M.; Han, Z.; Jing, H.; Jabbar, S. Thermosonication: A potential technique that influences the quality of grapefruit juice. Int. J. Food Sci. Technol. 2015, 50, 1275–1282. [Google Scholar] [CrossRef]
- Alcántara-Zavala, A.E.; de Dios Figueroa-Cárdenas, J.; Pérez-Robles, J.F.; Arámbula-Villa, G.; Miranda-Castilleja, D.E. Thermosonication as an alternative method for processing, extending the shelf life, and conserving the quality of pulque: A non-dairy Mexican fermented beverage. Ultrason. Sonochem. 2021, 70, 105290. [Google Scholar] [CrossRef] [PubMed]
- Parreiras, P.M.; Nogueira, J.A.V.; da Cunha, L.R.; Passos, M.C.; Gomes, N.R.; Breguez, G.S.; Falco, T.S.; Bearzoti, E.; Menezes, C.C. Effect of thermosonication on microorganisms, the antioxidant activity and the retinol level of human milk. Food Control 2020, 113, 107172. [Google Scholar] [CrossRef]
- Park, J.J.; Olawuyi, I.F.; Lee, W.Y. Effect of combined UV-thermosonication and Ecklonia cava extract on advanced glycation end-products in soymilk. J. Food Process Eng. 2023, 46, e14208. [Google Scholar] [CrossRef]
- Yin, H.; Hao, J.; Zhu, Y.; Li, Y.; Wang, F.; Deng, Y. Thermosonication and inactivation of viable putative non-culturable Lactobacillus acetotolerans in beer. J. Inst. Brew. 2019, 125, 75–82. [Google Scholar] [CrossRef]
- Lyu, C.; Qi, X.; Ying, S.; Wang, J. Impact of Pulsed Electric Fields Combined with Thermosonication on the Physicochemical Properties of Chinese Rice Wine. Trans. ASABE 2021, 64, 1625–1633. [Google Scholar] [CrossRef]
- Xu, B.; Feng, M.; Chitrakar, B.; Cheng, J.; Wei, B.; Wang, B.; Zhou, C.; Ma, H. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103295. [Google Scholar] [CrossRef]
- Ibrahim, O.O. Thermal and nonthermal food processing technologies for food preservation and their effects on food chemistry and nutritional values. EC Nutr. 2020, 15, 88–105. [Google Scholar]
- Hiremath, L.; Nipun, S.; Sruti, O.; Kala, N.G.; Aishwarya, B.M. Sonochemistry: Applications in Biotechnology. In Sonochemical Reactions; IntechOpen: London, UK, 2020; ISBN 1838800026. [Google Scholar]
- Manbachi, A.; Cobbold, R.S.C. Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 2011, 19, 187–196. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Li, L. Piezopotential augmented photo-and photoelectro-catalysis with a built-in electric field. Chin. J. Catal. 2020, 41, 534–549. [Google Scholar] [CrossRef]
- Leadley, C.E.; Williams, A. Pulsed electric field processing, power ultrasound and other emerging technologies. Food Process. Handb. 2006, 201, 201–235. [Google Scholar]
- Mulet, A.; Carcel, J.; Benedito, J.; Rosselló, C.; Simal, S. Ultrasonic Mass Transfer Enhancement in Food Processing. In Transport Phenomena in Food Processing; CRC Press: Boca Raton, FL, USA, 2016; pp. 287–300. ISBN 0429118538. [Google Scholar]
- Mason, T.J. Power Ultrasound in Food Processing—The Way Forward. In Ultrasound in Food Processing; Blackie Academic and Professional: London, UK, 1998; pp. 105–126. [Google Scholar]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Awad, N.S.; Paul, V.; AlSawaftah, N.M.; Ter Haar, G.; Allen, T.M.; Pitt, W.G.; Husseini, G.A. Ultrasound-responsive nanocarriers in cancer treatment: A review. ACS Pharmacol. Transl. Sci. 2021, 4, 589–612. [Google Scholar] [CrossRef] [PubMed]
- Chandan, R.; Mehta, S.; Banerjee, R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomater. Sci. Eng. 2020, 6, 4731–4747. [Google Scholar] [CrossRef]
- Hamersky, S.J. Systematic Intervention Component Analysis: Dose-Response for Therapeutic Ultrasound. Ph.D. Thesis, North Dakota State University, Fargo, ND, USA, 2022. [Google Scholar]
- Huang, B.; Jiang, Y.; Zhang, L.; Yang, B.; Guo, Y.; Yang, X.; Gong, P. Low-intensity pulsed ultrasound promotes proliferation and myelinating genes expression of Schwann cells through NRG1/ErbB signaling pathway. Tissue Cell 2023, 80, 101985. [Google Scholar] [CrossRef] [PubMed]
- Rittmeier, L.; Rauter, N.; Mikhaylenko, A.; Lammering, R.; Sinapius, M. The Guided Ultrasonic Wave Oscillation Phase Relation between the Surfaces of Plate-like Structures of Different Material Settings. In Proceedings of the Acoustics; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2023; Volume 5, pp. 136–164. [Google Scholar]
- Dong, Z.; Delacour, C.; Mc Carogher, K.; Udepurkar, A.P.; Kuhn, S. Continuous ultrasonic reactors: Design, mechanism and application. Materials 2020, 13, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S.X.; Ni, D.; Wang, T. Deep learning in medical ultrasound analysis: A review. Engineering 2019, 5, 261–275. [Google Scholar] [CrossRef]
- Umar, A.; Atabo, S. A review of imaging techniques in scientific research/clinical diagnosis. MOJ Anat. Physiol. 2019, 6, 175–183. [Google Scholar]
- Delaney, L.J.; Isguven, S.; Eisenbrey, J.R.; Hickok, N.J.; Forsberg, F. Making waves: How ultrasound-targeted drug delivery is changing pharmaceutical approaches. Mater. Adv. 2022, 3, 3023–3040. [Google Scholar] [CrossRef]
- Abramowicz, J.S.; Basseal, J.M. World federation for ultrasound in medicine and biology position statement: How to perform a safe ultrasound examination and clean equipment in the context of COVID-19. Ultrasound Med. Biol. 2020, 46, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, J.; Fang, B.; Zhao, X.; Hao, N. Acoustics-actuated microrobots. Micromachines 2022, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Bi, H.; Yin, H.; Yu, J.; Dong, J.; Yang, M.; Ma, Y. Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. Ultrason. Sonochem. 2018, 40, 166–173. [Google Scholar] [CrossRef]
- Silva, F.V.M. Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci. Technol. 2020, 105, 402–415. [Google Scholar]
- Su, Y.; Jiang, L.; Chen, D.; Yu, H.; Yang, F.; Guo, Y.; Xie, Y.; Yao, W. In vitro and in silico approaches to investigate antimicrobial and biofilm removal efficacies of combined ultrasonic and mild thermal treatment against Pseudomonas fluorescens. Ultrason. Sonochem. 2022, 83, 105930. [Google Scholar] [CrossRef]
- Jafarpour, D. The effect of heat treatment and thermosonication on the microbial and quality properties of green olive. J. Food Meas. Charact. 2022, 16, 2172–2180. [Google Scholar] [CrossRef]
- Nunes, B.V.; da Silva, C.N.; Bastos, S.C.; de Souza, V.R. Microbiological inactivation by ultrasound in liquid products. Food Bioprocess Technol. 2022, 15, 2185–2209. [Google Scholar] [CrossRef]
- Boghossian, M.; Brassesco, M.E.; Miller, F.A.; Silva, C.L.M.; Brandão, T.R.S. Thermosonication Applied to Kiwi Peel: Impact on Nutritional and Microbiological Indicators. Foods 2023, 12, 622. [Google Scholar] [CrossRef]
- Dos Santos Rocha, C.; Magnani, M.; de Paiva Anciens Ramos, G.L.; Bezerril, F.F.; de Freitas, M.Q.; Cruz, A.G.; Pimentel, T.C. Emerging technologies in food processing: Impacts on sensory characteristics and consumer perception. Curr. Opin. Food Sci. 2022, 47, 100892. [Google Scholar] [CrossRef]
- Mandha, J.; Shumoy, H.; Matemu, A.O.; Raes, K. Characterization of fruit juices and effect of pasteurization and storage conditions on their microbial, physicochemical, and nutritional quality. Food Biosci. 2023, 51, 102335. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Cullen, P.J. Effect of sonication on retention of anthocyanins in blackberry juice. J. Food Eng. 2009, 93, 166–171. [Google Scholar] [CrossRef]
- Valero, M.; Recrosio, N.; Saura, D.; Muñoz, N.; Martí, N.; Lizama, V. Effects of ultrasonic treatments in orange juice processing. J. Food Eng. 2007, 80, 509–516. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Vieira, M.C.; Silva, C.L.M. Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innov. Food Sci. Emerg. Technol. 2008, 9, 483–488. [Google Scholar] [CrossRef]
- Rawson, A.; Tiwari, B.K.; Patras, A.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’Donnell, C. Effect of thermosonication on bioactive compounds in watermelon juice. Food Res. Int. 2011, 44, 1168–1173. [Google Scholar] [CrossRef]
- Wu, J.; Gamage, T.V.; Vilkhu, K.S.; Simons, L.K.; Mawson, R. Effect of thermosonication on quality improvement of tomato juice. Innov. Food Sci. Emerg. Technol. 2008, 9, 186–195. [Google Scholar] [CrossRef]
- Urango, A.C.M.; Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Thermosonication process design for recovering bioactive compounds from fennel: A comparative study with conventional extraction techniques. Appl. Sci. 2021, 11, 12104. [Google Scholar] [CrossRef]
- Rani, M.; Sood, M.; Bandral, J.D.; Bhat, A.; Gupta, I. Thermosonication technology and its application in food industry. Int. J. Chem. Stud. 2020, 8, 922–928. [Google Scholar] [CrossRef]
- Aadil, R.M.; Khalil, A.A.; Rehman, A.; Khalid, A.; Inam-ur-Raheem, M.; Karim, A.; Gill, A.A.; Abid, M.; Afraz, M.T. Assessing the impact of ultra-sonication and thermo-ultrasound on antioxidant indices and polyphenolic profile of apple-grape juice blend. J. Food Process. Preserv. 2020, 44, e14406. [Google Scholar] [CrossRef]
- Ye, L.; Zhu, X.; Liu, Y. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ultrason. Sonochem. 2019, 59, 104744. [Google Scholar] [CrossRef]
- Pandey, T.; Sandhu, A.; Sharma, A.; Ansari, M.J. Recent advances in applications of sonication and microwave. Ultrasound Microw. Food Process. 2023, 441–470. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Process Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Artés-Hernández, F. Thermal and Non-Thermal Treatments to Preserve and Encourage Bioactive Compounds in Fruit-and Vegetable-Based Products. Foods 2022, 11, 3400. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.; Natarajan, V.; Thangaraju, S.; Modupalli, N.; Rawson, A. Assessment of storage stability and quality characteristics of thermo-sonication assisted blended bitter gourd seed oil and sunflower oil. J. Food Process. Eng. 2022, e14070. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Yusaf, T.; Al-Juboori, R.A. Alternative methods of microorganism disruption for agricultural applications. Appl. Energy 2014, 114, 909–923. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Mobbs, T.; Barbosa-Cánovas, G.V. Ultrasound applications in food processing. Ultrasound Technol. Food Bioprocess. 2011, 65–105. [Google Scholar]
- Ravikumar, M.; Suthar, H.; Desai, C.; Gowda, S.A. Ultrasonication: An advanced technology for food preservation. Int. J. Pure Appl. Biosci. 2017, 5, 363–371. [Google Scholar] [CrossRef]
- Basumatary, B.; Nayak, P.K.; Chandrasekar, C.M.; Nath, A.; Nayak, M.; Kesavan, R.K. Impact of thermo sonication and pasteurization on the physicochemical, microbiological and anti-oxidant properties of pomelo (Citrus maxima) juice. Int. J. Fruit Sci. 2020, 20, S2056–S2073. [Google Scholar] [CrossRef]
- Oladunjoye, A.O.; Adeboyejo, F.O.; Okekunbi, T.A.; Aderibigbe, O.R. Effect of thermosonication on quality attributes of hog plum (Spondias mombin L.) juice. Ultrason. Sonochem. 2021, 70, 105316. [Google Scholar] [CrossRef]
- Kesavan, R.K.; Gogoi, S.; Nayak, P.K. Influence of thermosonication and pasteurization on the quality attributes of kutkura (Meyna spinosa) juice. Appl. Food Res. 2023, 3, 100268. [Google Scholar] [CrossRef]
- Gursoy, O.; Yilmaz, Y.; Gokce, O.; Ertan, K. Effect of ultrasound power on physicochemical and rheological properties of yoghurt drink produced with thermosonicated milk. Emir. J. Food Agric. 2016, 28, 235–241. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Granato, D.; Kerry, J.P.; Tiwari, B.K.; Burgess, C.M. Ultrasound for meat processing: Effects of salt reduction and storage on meat quality parameters. Appl. Sci. 2020, 11, 117. [Google Scholar] [CrossRef]
- Peña-Gonzalez, E.; Alarcon-Rojo, A.D.; Garcia-Galicia, I.; Carrillo-Lopez, L.; Huerta-Jimenez, M. Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrason. Sonochem. 2019, 53, 134–141. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Niemira, B.A. Pasteurization of Foods with Ultrasound: The Present and the Future. Appl. Sci. 2022, 12, 10416. [Google Scholar] [CrossRef]
- Desphande, V. Effect of Thermosonication on Viscosity of Milk Concentrates and Milk Quality and Shelf Life. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2020. [Google Scholar]
- Kutlu, N.; Pandiselvam, R.; Kamiloglu, A.; Saka, I.; Sruthi, N.U.; Kothakota, A.; Socol, C.T.; Maerescu, C.M. Impact of ultrasonication applications on color profile of foods. Ultrason. Sonochem. 2022, 89, 106109. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, M.; Dadan, M.; Janowicz, M.; Wiktor, A.; Witrowa-Rajchert, D.; Mandal, R.; Pratap-Singh, A.; Janiszewska-Turak, E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5097–5144. [Google Scholar] [CrossRef]
- Raso, J.; Álvarez Lanzarote, I. Aplicación de Ultrasonidos en el Cocinado de Alimentos. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2018. [Google Scholar]
- Chitgar, M.F.; Aalami, M.; Milani, E.; Maghsoudlo, Y. Effect of TS on quality properties of barberry (Berberis vulgaris) juice. Iran. Food Sci. Technol. Res. J. 2017, 13, 627–636. [Google Scholar]
- Santhirasegaram, V.; Razali, Z.; Somasundram, C. Effects of thermal treatment and sonication on quality attributes of Chokanan mango (Mangifera indica L.) juice. Ultrason. Sonochem. 2013, 20, 1276–1282. [Google Scholar] [CrossRef]
- Lee, H.S.; Coates, G.A. Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT-Food Sci. Technol. 2003, 36, 153–156. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Muthukumarappan, K.; O’donnell, C.P.; Cullen, P.J. Colour degradation and quality parameters of sonicated orange juice using response surface methodology. LWT Food Sci. Technol. 2008, 41, 1876–1883. [Google Scholar] [CrossRef]
- Chen, B.H.; Peng, H.Y.; Chen, H.E. Changes of carotenoids, color, and vitamin A contents during processing of carrot juice. J. Agric. Food Chem. 1995, 43, 1912–1918. [Google Scholar] [CrossRef]
- Ibarz, A.; Pagán, J.; Panadés, R.; Garza, S. Photochemical destruction of color compounds in fruit juices. J. Food Eng. 2005, 69, 155–160. [Google Scholar] [CrossRef]
- Menis-Henrique, M.E.C. Methodologies to advance the understanding of flavor chemistry. Curr. Opin. Food Sci. 2020, 33, 131–135. [Google Scholar] [CrossRef]
- Salehi, F. Physico-chemical properties of fruit and vegetable juices as affected by ultrasound: A review. Int. J. Food Prop. 2020, 23, 1748–1765. [Google Scholar] [CrossRef]
- Bui, A.T.H.; Cozzolino, D.; Zisu, B.; Chandrapala, J. Effects of high and low frequency ultrasound on the production of volatile compounds in milk and milk products—A review. J. Dairy Res. 2020, 87, 501–512. [Google Scholar]
- Hashemi, S.M.B.; Jafarpour, D.; Soto, E.R.; Barba, F.J. Ultrasound-Assisted Lactic Acid Fermentation of Bakraei (Citrus reticulata cv. Bakraei) Juice: Physicochemical and Bioactive Properties. Fermentation 2023, 9, 37. [Google Scholar] [CrossRef]
- Ragab, E.S.; Zhang, S.; Korma, S.A.; Buniowska-Olejnik, M.; Nasser, S.A.A.; Esatbeyoglu, T.; Lv, J.; Nassar, K.S. Physicochemical and Rheological Properties of Stirred Yoghurt during Storage Induced from High-Intensity Thermosonicated Goat and Cow Milk. Fermentation 2023, 9, 42. [Google Scholar] [CrossRef]
- Cao, X.; Cai, C.; Wang, Y.; Zheng, X. The inactivation kinetics of polyphenol oxidase and peroxidase in bayberry juice during thermal and ultrasound treatments. Innov. Food Sci. Emerg. Technol. 2018, 45, 169–178. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Scudino, H.; Ramos, G.L.P.A.; Oliveira, G.A.R.; Margalho, L.P.; Costa, L.E.O.; Freitas, M.Q.; Duarte, M.C.K.H.; Sant’Ana, A.S.; Cruz, A.G. Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Curr. Opin. Food Sci. 2021, 42, 140–147. [Google Scholar] [CrossRef]
- Meroni, D.; Djellabi, R.; Ashokkumar, M.; Bianchi, C.L.; Boffito, D.C. Sonoprocessing: From concepts to large-scale reactors. Chem. Rev. 2021, 122, 3219–3258. [Google Scholar] [CrossRef] [PubMed]
- Scudino, H.; Guimarães, J.T.; Moura, R.S.; Ramos, G.L.P.A.; Pimentel, T.C.; Cavalcanti, R.N.; Sobral, L.A.; Silva, M.C.; Mársico, E.T.; Esmerino, E.A. Thermosonication as a pretreatment of raw milk for Minas frescal cheese production. Ultrason. Sonochem. 2023, 92, 106260. [Google Scholar] [CrossRef] [PubMed]
- Oner, M.E. The effect of high-pressure processing or thermosonication in combination with nisin on microbial inactivation and quality of green juice. J. Food Process. Preserv. 2020, 44, e14830. [Google Scholar] [CrossRef]
- Yang, S.; Piao, Y.; Li, X.; Mu, D.; Ji, S.; Wu, R.; Wu, J. A new decontamination method for Bacillus subtilisin pasteurized milk: Thermosonication treatment. Food Res. Int. 2023, 163, 112291. [Google Scholar] [CrossRef] [PubMed]
- Demir, H.; Kılınç, A. Effect of batch and continuous thermosonication on the microbial and physicochemical quality of pumpkin juice. J. Food Sci. Technol. 2019, 56, 5036–5045. [Google Scholar] [CrossRef]
- Tahi, A.A.; Sousa, S.; Madani, K.; Silva, C.L.M.; Miller, F.A. Ultrasound and heat treatment effects on Staphylococcus aureus cell viability in orange juice. Ultrason. Sonochem. 2021, 78, 105743. [Google Scholar] [CrossRef]
- Lafarga, T.; Ruiz-Aguirre, I.; Abadias, M.; Viñas, I.; Bobo, G.; Aguiló-Aguayo, I. Effect of thermosonication on the bioaccessibility of antioxidant compounds and the microbiological, physicochemical, and nutritional quality of an anthocyanin-enriched tomato juice. Food Bioprocess Technol. 2019, 12, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Tremarin, A.; Canbaz, E.A.; Brandão, T.R.S.; Silva, C.L.M. Modelling Alicyclobacillus acidoterrestris inactivation in apple juice using thermosonication treatments. LWT 2019, 102, 159–163. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Xu, B.; Khan, S.; Shukat, R.; Ahmad, N.; Imran, M.; Rehman, A.; Karrar, E.; Aadil, R.M.; Korma, S.A. Impact of high-intensity thermosonication treatment on spinach juice: Bioactive compounds, rheological, microbial, and enzymatic activities. Ultrason. Sonochem. 2021, 78, 105740. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Donsi, F.; Yildiz, S.; Candoğan, K.; Pokhrel, P.R.; Guadarrama-Lezama, A.Y. Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in foods. Food Eng. Rev. 2022, 14, 63–99. [Google Scholar] [CrossRef]
- Wani, M.Y.; Ganie, N.A.; Wani, D.M.; Wani, A.W.; Dar, S.Q.; Khan, A.H.; Khan, N.A.; Manzar, M.S.; Dehghani, M.H. The phenolic components extracted from mulberry fruits as bioactive compounds against cancer: A review. Phyther. Res. 2023, 37, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, W.; Soladoye, O.P. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. LWT 2021, 150, 111968. [Google Scholar] [CrossRef]
- Sanjaya, Y.A.; Tola, P.S.; Rahmawati, R. Ultrasound-assisted Extraction as a Potential Method to Enhanced Extraction of Bioactive Compound. Nusant. Sci. Technol. Proc. 2022, 191–198. [Google Scholar]
- Starek, A.; Kobus, Z.; Sagan, A.; Chudzik, B.; Pawłat, J.; Kwiatkowski, M.; Terebun, P.; Andrejko, D. Influence of ultrasound on selected microorganisms, chemical and structural changes in fresh tomato juice. Sci. Rep. 2021, 11, 3488. [Google Scholar] [CrossRef]
- Gavahian, M.; Manyatsi, T.S.; Morata, A.; Tiwari, B.K. Ultrasound-assisted production of alcoholic beverages: From fermentation and sterilization to extraction and aging. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5243–5271. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Rayaguru, K.; Nayak, P.K. Effect of Ohmic Heating and TS on the Physio-Chemical, Antioxidant, Microbial and Sensory Properties of Mango Juice. Indian J. Nutr. Diet. 2022, 59, 275–284. [Google Scholar] [CrossRef]
- Yildiz, G.; Feng, H. Sonication of cherry juice: Comparison of different sonication times on color, antioxidant activity, total phenolic and ascorbic acid content. Lat. Am. Appl. Res. Int. J. 2019, 49, 255–260. [Google Scholar] [CrossRef]
- Xia, T.; Shi, S.; Wan, X. Impact of ultrasonic-assisted extraction on the chemical and sensory quality of tea infusion. J. Food Eng. 2006, 74, 557–560. [Google Scholar] [CrossRef]
- Qin, Y.; Yuan, Z.; Yang, F.; Yu, Y. Development of a new type of Anhua black tea and its application: Black tea wine. J. Food Process. Preserv. 2022, 46, e15862. [Google Scholar] [CrossRef]
- Raghunath, S.; Mallikarjunan, K. Optimization of ultrasound-assisted extraction of cold-brewed black tea using response surface methodology. J. Food Process Eng. 2020, 43, e13540. [Google Scholar] [CrossRef]
- Gouda, M.; Bekhit, A.E.-D.; Tang, Y.; Huang, Y.; Huang, L.; He, Y.; Li, X. Recent innovations of ultrasound green technology in herbal phytochemistry: A review. Ultrason. Sonochem. 2021, 73, 105538. [Google Scholar] [CrossRef] [PubMed]
- Pudziuvelyte, L.; Jakštas, V.; Ivanauskas, L.; Laukevičienė, A.; Ibe, C.F.D.; Kursvietiene, L.; Bernatoniene, J. Different extraction methods for phenolic and volatile compounds recovery from Elsholtzia ciliata fresh and dried herbal materials. Ind. Crops Prod. 2018, 120, 286–294. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Alcántara, C.; Žugčić, T.; Abdelkebir, R.; Collado, M.C.; García-Pérez, J.V.; Jambrak, A.R.; Gavahian, M.; Barba, F.J.; Lorenzo, J.M. Impact of ultrasound-assisted extraction and solvent composition on bioactive compounds and in vitro biological activities of thyme and rosemary. Food Res. Int. 2020, 134, 109242. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Fang, L.; Lin, T.; Li, J.; Zhang, Y.; Zhou, A.; Xie, J. Ultrasonicated sour Jujube seed flavonoids extract exerts ameliorative antioxidant capacity and reduces Aβ-induced toxicity in Caenorhabditis elegans. J. Ethnopharmacol. 2019, 239, 111886. [Google Scholar] [CrossRef] [PubMed]
- Jha, M.; Ansari, S.; Shimpi, N.G. Ultrasonic assisted green synthesis of Ag: CdO nanocubes and nanospheres using Citrus limon leaves for efficient degradation of organic dyes. J. Ind. Eng. Chem. 2019, 69, 269–284. [Google Scholar] [CrossRef]
- Strieder, M.M.; Neves, M.I.L.; Belinato, J.R.; Silva, E.K.; Meireles, M.A.A. Impact of thermosonication processing on the phytochemicals, fatty acid composition and volatile organic compounds of almond-based beverage. LWT 2022, 154, 112579. [Google Scholar] [CrossRef]
- De Pinho Ferreira Guiné, R.; Barroca, M.J. Influence of processing and storage on fruit juices phenolic compounds. Int. J. Med. Biol. Front. 2014, 20, 45. [Google Scholar]
- Chen, T.; Li, B.; Shu, C.; Tian, J.; Zhang, Y.; Gao, N.; Cheng, Z.; Xie, X.; Wang, J. Combined effect of thermosonication and high hydrostatic pressure on bioactive compounds, microbial load, and enzyme activities of blueberry juice. Food Sci. Technol. Int. 2022, 28, 169–179. [Google Scholar] [CrossRef]
- Dabir, M.P.; Ananthanarayan, L. Effect of thermosonication on peroxidase, pectin methylesterase activities and on bioactive compounds in custard apple juice. J. Food Meas. Charact. 2017, 11, 1623–1629. [Google Scholar] [CrossRef]
- Lepaus, B.M.; de Oliveira Santos, A.K.P.; Spaviero, A.F.; Daud, P.S.; de São José, J.F.B. Thermosonication of Orange-Carrot Juice Blend: Overall Quality during Refrigerated Storage, and Sensory Acceptance. Molecules 2023, 28, 2196. [Google Scholar] [CrossRef]
- Patel, A.K.; Dong, C.-D.; Chen, C.-W.; Pandey, A.; Singhania, R.R. Production, Purification, and Application of Microbial Enzymes. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 25–57. [Google Scholar]
- Dhar, R.; Basak, S.; Chakraborty, S. Pasteurization of fruit juices by pulsed light treatment: A review on the microbial safety, enzymatic stability, and kinetic approach to process design. Compr. Rev. Food Sci. Food Saf. 2022, 21, 499–540. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Jabeen, S.; Ke, Z.; Jabbar, S.; Javed, F.; Abid, M.; Khan, K.R.; Ji, Y.; Korma, S.A.; El-Saadony, M.T. Thermal treatment alternatives for enzymes inactivation in fruit juices: Recent breakthroughs and advancements. Ultrason. Sonochem. 2022, 86, 105999. [Google Scholar] [CrossRef]
- Urango, A.C.M.; Strieder, M.M.; Silva, E.K.; Meireles, M.A.A. Impact of thermosonication processing on food quality and safety: A review. Food Bioprocess Technol. 2022, 15, 1700–1728. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of high-intensity ultrasound to improve food processing efficiency: A review. Foods 2022, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of ultrasound on microbial growth and enzyme activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef]
- Islam, M.N.; Zhang, M.; Adhikari, B. The inactivation of enzymes by ultrasound—A review of potential mechanisms. Food Rev. Int. 2014, 30, 1–21. [Google Scholar] [CrossRef]
- Vercet, A.; Sánchez, C.; Burgos, J.; Montañés, L.; Buesa, P.L. The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. J. Food Eng. 2002, 53, 273–278. [Google Scholar] [CrossRef]
- Vercet, A.; Lopez, P.; Burgos, J. Inactivation of heat-resistant pectinmethylesterase from orange by manothermosonication. J. Agric. Food Chem. 1999, 47, 432–437. [Google Scholar] [CrossRef]
- Mukhtar, K.; Nabi, B.G.; Arshad, R.N.; Roobab, U.; Yaseen, B.; Ranjha, M.M.; Aadil, R.M.; Ibrahim, S.A. Potential Impact of Ultrasound, Pulsed Electric Field, High-Pressure Processing, Microfludization Against Thermal Treatments Preservation Regarding Sugarcane Juice (Saccharum officinarum). Ultrason. Sonochem. 2022, 90, 106194. [Google Scholar] [CrossRef]
- Manas, P.; Munoz, B.; Sanz, D.; Condon, S. Inactivation of lysozyme by ultrasonic waves under pressure at different temperatures. Enzym. Microb. Technol. 2006, 39, 1177–1182. [Google Scholar] [CrossRef]
- Ramteke, S.P.; Desale, R.J.; Kankhare, D.H.; Fulpagare, Y.G. Thermosonication technology in the dairy industry: A review. Int. J. Adv. Res. Biol. Sci. 2020, 7, 82–89. [Google Scholar]
- Kar, S.; Sutar, P.P. Enhancing the efficacy of microwave blanching-cum-black mould inactivation of whole garlic (Allium sativum L.) bulbs using ultrasound: Higher inactivation of peroxidase, polyphenol oxidase, and aspergillus niger at lower processing temperatures. Food Bioprocess Technol. 2022, 15, 635–655. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.M.S.; Vieira, M.C.; Silva, C.L.M. Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). J. Food Eng. 2006, 72, 8–15. [Google Scholar] [CrossRef]
- Illera, A.E.; Sanz, M.T.; Benito-Román, O.; Varona, S.; Beltrán, S.; Melgosa, R.; Solaesa, A.G. Effect of thermosonication batch treatment on enzyme inactivation kinetics and other quality parameters of cloudy apple juice. Innov. Food Sci. Emerg. Technol. 2018, 47, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Terefe, N.S.; Gamage, M.; Vilkhu, K.; Simons, L.; Mawson, R.; Versteeg, C. The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chem. 2009, 117, 20–27. [Google Scholar] [CrossRef]
- Baltacıoğlu, H. Thermosonication of peach juice: Investigation of PPO and POD activities, physicochemical and bioactive compounds changes, and development of FT-IR–based chemometric models for the evaluation of quality. Int. J. Food Sci. Technol. 2022, 57, 1688–1697. [Google Scholar] [CrossRef]
- Amador-Espejo, G.G.; Chávez-Ocegueda, J.; Cruz-Cansino, N.; Suárez-Jacobo, A.; Gutiérrez-Martínez, P.; Valencia-Flores, D.; Velázquez Estrada, R. Thermosonication parameter effects on physicochemical changes, microbial and enzymatic inactivation of fruit smoothie. J. Food Sci. Technol. 2020, 57, 1680–1688. [Google Scholar] [CrossRef]
- De Medeiros, J.K.; Sarkis, J.R.; Jaeschke, D.P.; Mercali, G.D. Thermosonication for peroxidase inactivation in sugarcane juice. LWT 2021, 140, 110730. [Google Scholar] [CrossRef]
- Wahia, H.; Zhou, C.; Sarpong, F.; Mustapha, A.T.; Liu, S.; Yu, X.; Li, C. Simultaneous optimization of Alicyclobacillus acidoterrestris reduction, pectin methylesterase inactivation, and bioactive compounds enhancement affected by thermosonication in orange juice. J. Food Process. Preserv. 2019, 43, e14180. [Google Scholar] [CrossRef]
- Singh, S.; Shalini, R. Effect of hurdle technology in food preservation: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 641–649. [Google Scholar] [CrossRef]
- Gastélum, G.G.; Avila-Sosa, R.; López-Malo, A.; Palou, E. Listeria innocua multi-target inactivation by TS and vanillin. Food Bioprocess Technol. 2012, 5, 665–671. [Google Scholar] [CrossRef]
- Park, J.J.; Olawuyi, I.F.; Lee, W.Y. Influence of TS and ascorbic acid treatment on microbial inactivation and shelf-life extension of soft persimmon (Diospyros kaki T.) juice. Food Bioprocess Technol. 2021, 14, 429–440. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, L.; Yang, Y.; Yang, W.; Wang, H.; Lan, T.; Zhang, Q.; Sun, X. Ultrasound-combined sterilization technology: An effective sterilization technique ensuring the microbial safety of grape juice and significantly improving its quality. Foods 2020, 9, 1512. [Google Scholar] [CrossRef]
- Mok, J.H.; Pyatkovskyy, T.; Yousef, A.; Sastry, S.K. Synergistic effects of shear stress, moderate electric field, and nisin for the inactivation of Escherichia coli K12 and Listeria innocua in clear apple juice. Food Control 2020, 113, 107209. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, Q.; Gao, C.; Wang, X.; Zhu, B.; Wang, J.; Sun, X.; Ma, T. Thermosonication combined with natural antimicrobial nisin: A potential technique ensuring microbiological safety and improving the quality parameters of orange juice. Foods 2021, 10, 1851. [Google Scholar] [CrossRef]
- Lin, L.; Xue, L.; Duraiarasan, S.; Haiying, C. Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life 2018, 17, 134–141. [Google Scholar] [CrossRef]
- Na, S.; Kim, J.-H.; Jang, H.-J.; Park, H.J.; Oh, S.-W. Shelf life extension of Pacific white shrimp (Litopenaeus vannamei) using chitosan and ε-polylysine during cold storage. Int. J. Biol. Macromol. 2018, 115, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhao, Q.; Yuan, Q.; Gao, C.; Ge, Q.; Li, C.; Liu, X.; Ma, T. Thermosonication combined with ε-polylysine (TSε): A novel technology to control the microbial population and significantly improve the overall quality attributes of orange juice. Food Control 2022, 141, 109200. [Google Scholar] [CrossRef]
Microorganism | Inactivation Conditions | Food Matrix | Findings | References |
---|---|---|---|---|
Aerobic Mesophilic (AMB) Lactic Acid Bacteria (LAB) Aerobic Psychrotrophic (APB) | 20 kHz, power (160, 400, and 640 W), 72–75 °C for 15 s | Minas chees | 2.22 and 2.35 log CFU/g reduction for AMB 3.30 and 3.85 log CFU/g reduction for APB 3.65 log CFU/g reduction for LAB | [89] |
Escherichia coli (E.coli) | intensity 37.87 W/cm2, acoustic energy density 0.57 W/mL at 60 °C for 6 min | green juice | 7.42 log reduction | [90] |
Bacillus subtilis | 40 kHz, 240 W, 25 min | pasteurized milk | 4.09 log CFU/mL reduction | [91] |
E. coli.K-12 | (40, 50, 60) °C, 37 kHz, 150 W | pumpkin juice | 6.62 ± 0.00 log cfu/mL reduction For batch TS; 6.23 ± 0.34 cfu/mL reduction for continuous TS | [92] |
Staphylococcus aureus | frequency of 20 kHz, 80% amplitude at 50 and 60 °C ± 2 °C | orange juice | 5 log cfu/mL reduction after 1 and 25 min | [93] |
Total bacterial count (TBC) mold and yeast (Y&M) | (40 kHz, 400 W at 40, 50 and 60 °C each for 5, 10, 20 and 30 min) | hog plum juice | TBC reduced from 3.75 to 1.01 log CFU/mL, while Y&M reduced from 4.17 to 3.64 log CFU/mL at 40 °C. No detectable growth in the bacterial count at 50 and 60 °C, while reduced Y&M at 50 °C from 3.36 to 1.93 log CFU/mL, with no detectable growth at 60 °C. | [65] |
Total aerobic mesophilic | 60 °C at either 35 or 130 kHz for 5 min at | Anthocyanin-Enriched Tomato Juice | higher microbial inactivation compared to thermal pasteurisation at 80 °C for 1 min | [94] |
Alicyclobacillus acidoterrestris spores | 120–480 W power levels and 35 kHz frequency at 70, 80, 85, 90 and 95 °C for different times. | apple juice | spores decreased by 4.8, 4.7 and 5.5 log-cycles (at 85, 90 and 95 °C, respectively) after 90, 60 and 20 min. | [95] |
total plate count (TPC) E. coli/coliforms Y&M | 200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 min | spinach juice | Y&M, E.coli/coliform, and TPC in the TS3 sample were reduced up to 4 log CFU/mL at 600 W, 30 kHz, 60 °C for 20 min | [96] |
Type of Food | Treatment | Relevant Chemical Substances | Findings | References |
---|---|---|---|---|
watermelon juice | 20 kHz, temperature (25–45 °C), amplitude (24.4–61.0 μm) and processing time (2–10 min) | Lycopene (LC) ascorbic acid (AA) phenolic content (TP) | The levels of AA, LC, and TP decreased significantly when the amplitude levels were increased and when the processing time reached its maximum limit. | [50] |
Citrus limon | 20 kHz, 250 W, 29 min | Phytochemical mixture | In this study, efficient nano-cubes and nanospheres of a photocatalyst were created using ultrasound with the help of C. limon LE and Ag: CdO. | [112] |
almond-based beverage | three levels of acoustic power (4.6, 8.5, 14.5 W) holding time 5, 10, and 15 min,50 °C | flavonoid | The number of flavonoids present in the sample increased as a result of the TS treatments. | [113] |
Apple juice | ultrasound in-bath (25 kHz, 30 min, 0.06 W cm−3) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm3) at 20, 40 and 60 °C | TP flavonoids flavonols | At a temperature of 60 °C, the ultrasound with probe method was found to be more effective than ultrasound in-bath in retaining the total phenolic, flavonoid, and flavonol content. | [114] |
Blueberry juice | 40 kHz and 240 W, 25 °C and 45 °C for 15 min | TP Total anthocyanins (TA) | TS at 45 °C significantly increased the TA and TP. | [115] |
custard apple juice | (20 kHz, 67.84 W/cm2) from 0 to 40 min | TP vitamin C | Compared to the untreated juice, TS showed a rise of around 15% in TP, and the processing aid successfully maintained the vitamin C level in the juice. | [116] |
grapefruit juice | (20, 30, 40, 50 and 60 °C), (28 kHz), (70%, 420 W), time (30 and 60 min) | total carotenoids (TC) | All TS treatments resulted in a significant increase compared to the control group. However, the highest increase in TC was observed in the samples processed at 60 °C for 60 min, compared to the control group. | [12] |
orange-carrot juice blend | 110 W, 40 kHz, 40, 50, and 60 °C, 5 and 10 min. | TP TC | All of the treatments succeeded in preserving the (TC) and TP of the juice blend. | [117] |
Enzymes | Treatment | Food Matrix | Findings | References |
---|---|---|---|---|
Peroxidase | 20 kHz, 50% of power, temperatures above 85 °C | Watercress | Temperatures above 85 °C and with the same blanching duration resulted in more effective enzyme deactivation compared to heat-based blanching methods. | [131] |
Polyphenol oxidases Pectinmethylesterase | 20 kHz, temperatures (from 44 to 67 °C), amplitude (25–100%) | Cloudy apple juice | The use of TS caused a greater deactivation of enzymes and notably improved the way particles were distributed in cloudy apple juice. | [132] |
Pectin methylesterase (PME) & Polygalacturonase (PG) | 20 kHz, amplitude of 65 μm and temperatures between 50 and 75 °C | Tomato juice | When temperatures were in the range of 60–75 °C, the rate at which (PME) was inactivated increased by 1.5 to 6 times, and the rate at which (PG) was inactivated increased by 2.3 to 4 times. | [133] |
Polyphenol oxidase (PPO) peroxidase (POD) | Amplitude 60%, 80%, and 100% (125, 170, and 210 μm); temperatures (40, 50, and 60 °C); different times (10, 20, and 30 min). | Peach juice | Enzyme inactivation at a temperature of 60 °C, which is lower than the temperature required for complete inactivation through thermal treatment (which is 70 °C). | [134] |
PME & PPO | 20 kHz,1500 W, 70–85 amplitude, 40–55 °C | Fruit smoothie | The best processing conditions was found to be 77.5% amplitude, 20 min, and 47.5 C, controlling both enzymatic activities | [135] |
POD | 20 kHz, 50 W/cm2, amplitude 152 140 µm, 50–80 °C for 25 20 min | Sugarcane juice | TS was more effective than conventional treatments in enzyme inactivation at higher rates (77.3%) when temperatures of 70 and 75 °C were used. | [136] |
PPO & POD | amplitude (20%, 40%, 60%, 80% and 100%) and time (1–12 min), intensity levels 90, 181, 271, 362 and 452 W/cm2 | Bayberry juice | Inactivation rate of PPO and POD was lower when ultrasound was used with cooling compared to ultrasound treatment. | [86] |
PPO | (20, 40, 60) kHz, (20, 30, 40) min, (45, 60, 75) °C, 100% of power (300 W) | Orange juice | TS was able to inactivate PPO enzymes by up to 56.17% compared to untreated juice not only due to changes in the active site of the enzyme but also to the overall structural adjustments made to the PPO enzyme. | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulstar, A.R.; Altemimi, A.B.; Al-Hilphy, A.R. Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry. Foods 2023, 12, 1459. https://doi.org/10.3390/foods12071459
Abdulstar AR, Altemimi AB, Al-Hilphy AR. Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry. Foods. 2023; 12(7):1459. https://doi.org/10.3390/foods12071459
Chicago/Turabian StyleAbdulstar, Alaa R., Ammar B. Altemimi, and Asaad R. Al-Hilphy. 2023. "Exploring the Power of Thermosonication: A Comprehensive Review of Its Applications and Impact in the Food Industry" Foods 12, no. 7: 1459. https://doi.org/10.3390/foods12071459