Risk Assessment and Characterization in Tuna Species of the Canary Islands According to Their Metal Content
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Processing
2.2. Statistical Analysis
2.3. Risk Assessment
EDI = (C metal × Cons)/Bw
MoS = IDE/IDA
3. Results and Discussion
Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalman, Ö.; Demirak, A.; Balcı, A. Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the Southeastern Aegean Sea (Turkey) by atomic absorption spectrometry. Food Chem. 2006, 95, 157–162. [Google Scholar] [CrossRef]
- Topcuo, S. Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998–2000. Chemosphere 2003, 52, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Bilbao, E.; Lozano, G.; Jiménez, S.; Jurado-Ruzafa, A.; Hardisson, A.; Rubio, C.; Weller, D.-G.; Paz, S.; Gutiérrez, Á.J. Seasonal and ontogenic variations of metal content in the European pilchard (Sardina pilchardus) in northwestern African waters. Environ. Pollut. 2020, 266, 115113. [Google Scholar] [CrossRef] [PubMed]
- Anbuselvan, N.; Sridharan, M. Heavy metal assessment in surface sediments off Coromandel Coast of India: Implication on marine pollution. Mar. Pollut. Bull. 2018, 131, 712–726. [Google Scholar]
- Liu, X.; Xu, L.; Chen, Q.; Sun, L.; Wang, Y.; Yan, H.; Liu, Y. Chemosphere Historical change of mercury pollution in remote Yongle archipelago, South China Sea. Chemosphere 2012, 87, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tong, Y.; Chen, C.; Liu, X.; Lu, Y.; Zhang, W.; He, W.; Wang, X.; Zhao, S.; Lin, Y. Ecological risk assessment to marine organisms induced by heavy metals in China’s coastal waters. Mar. Pollut. Bull. 2018, 126, 349–356. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, X.; Zeng, J.; Shi, X.; Liao, Y.; Du, P.; Tang, Y.; Huang, W.; Chen, Q.; Shou, L. Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Mar. Pollut. Bull. 2019, 141, 215–226. [Google Scholar] [CrossRef]
- Dehn, L.-A.; Follmann, E.H.; Thomas, D.L.; Sheffield, G.G.; Rosa, C.; Duffy, L.K.; O’Hara, T.M. Trophic relationships in an Arctic food web and implications for trace metal transfer. Sci. Total Environ. 2006, 362, 103–123. [Google Scholar] [CrossRef]
- Kuijper, L.D.J.; Kooi, B.W.; Zonneveld, C.; Kooijman, S.A.L.M. Omnivory and food web dynamics. Ecol. Modell. 2003, 163, 19–32. [Google Scholar] [CrossRef]
- Pimm, S.L.; Lawton, J.H.; Cohen, J.E. Food web patterns and their consequences. Nature 1991, 350, 669–674. [Google Scholar] [CrossRef]
- Pringle, R.M.; Hutchinson, M.C. Resolving food-web structure. Annu. Rev. Ecol. Evol. Syst. 2020, 51, 55–80. [Google Scholar] [CrossRef]
- Almeida, C.; Vaz, S.; Cabral, H.; Ziegler, F. Environmental assessment of sardine (Sardina pilchardus) purse seine fishery in Portugal with LCA methodology including biological impact categories. Int. J. Life Cycle Assess. 2014, 19, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Guerra-García, J.M.; García-Gómez, J.C. Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications. J. Environ. Manag. 2005, 77, 1–11. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Alcázar-Treviño, J.; Alduán, M.; Lozano, G.; Hardisson, A.; Rubio, C.; González-Weller, D.; Paz, S.; Carrillo, M.; Gutiérrez, Á.J. Metal content in stranded pelagic vs deep-diving cetaceans in the Canary Islands. Chemosphere 2021, 285, 131441. [Google Scholar] [CrossRef] [PubMed]
- Rumbold, C.; Obenat, S.; Velazquez, S.N.; Gancedo, B.; Spivak, E. Seasonal variation of peracarid assemblages in natural and artificial marine environments of the Southwestern Atlantic Ocean. Mar. Biodivers 2018, 48, 1743–1754. [Google Scholar] [CrossRef]
- Agusa, T.; Kunito, T.; Yasunaga, G.; Iwata, H.; Subramanian, A.; Ismail, A.; Tanabe, S. Concentrations of trace elements in marine fish and its risk assessment in Malaysia. Mar. Pollut. Bull. 2005, 51, 896–911. [Google Scholar] [CrossRef]
- Capelli, R.; Das, K.; De Pellegrini, R.; Drava, G.; Lepoint, G.; Miglio, C.; Minganti, V.; Poggi, R. Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios. Sci. Total Environ. 2008, 390, 569–578. [Google Scholar] [CrossRef]
- Castro-González, M.I.; Méndez-Armenta, M. Heavy metals: Implications associated to fish consumption. Environ. Toxicol. Pharmacol. 2008, 26, 263–271. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Lozano, G.; Jiménez, S.; Jurado-Ruzafa, A.; Hardisson, A.; Rubio, C.; Weller, D.G.; Paz, S.; Gutiérrez, Á.J. Ontogenic and seasonal variations of metal content in a small pelagic fish (Trachurus picturatus) in northwestern African waters. Mar. Pollut. Bull. 2020, 156, 111251. [Google Scholar] [CrossRef]
- Copat, C.; Grasso, A.; Fiore, M.; Cristaldi, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. Trace elements in seafood from the Mediterranean sea: An exposure risk assessment. Food Chem. Toxicol. 2018, 115, 13–19. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Vighi, M.; Aguilar, A.; Tsangaris, C.; Digka, N.; Kaberi, H.; Borrell, A. Boops boops as a bioindicator of microplastic pollution along the Spanish Catalan coast. Mar. Pollut. Bull. 2019, 149, 110648. [Google Scholar] [CrossRef]
- Özden, Ö. Monitoring Programme on Toxic Metal in Bluefish (Pomatomus saltatrix), Anchovy (Engraulis encrasicolus) and Sardine (Sardina pilchardus) from Istanbul, Turkey: Levels and Estimated Weekly Intake. Bull. Environ. Contam. Toxicol. 2013, 90, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Özden, Ö.; Erkan, N.; Ulusoy, S. Determination of mineral composition in three commercial fish species (Solea solea, Mullus surmuletus, and Merlangius merlangus). Environ. Monit. Assess. 2010, 170, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Playle, R.C.; Dixon, D.G.; Burnison, K. Copper and cadmium binding to fish gills: Estimates of metal–gill stability constants and modelling of metal accumulation. Can. J. Fish. Aquat. Sci. 1993, 50, 2678–2687. [Google Scholar] [CrossRef]
- Playle, R.C. Modelling metal interactions at fish gills. Sci. Total Environ. 1998, 219, 147–163. [Google Scholar] [CrossRef]
- Uysal, K.; Emre, Y.; Köse, E. The determination of heavy metal accumulation ratios in muscle, skin and gills of some migratory fish species by inductively coupled plasma-optical emission spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey). Microchem. J. 2008, 90, 67–70. [Google Scholar] [CrossRef]
- Gleiber, M.R.; Sponaugle, S.; Cowen, R.K. Some like it hot, hungry tunas do not! Implications of temperature and plankton food web dynamics on growth and diet of tropical tuna larvae. ICES J. Mar. Sci. 2020, 77, 3058–3073. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Clemente, S.; Espinosa, J.M.; Jurado-Ruzafa, A.; Lozano, G.; Raimundo, J.; Hardisson, A.; Rubio, C.; González-Weller, D.; Jiménez, S.; et al. Inferring trophic groups of fish in the central-east Atlantic from eco-toxicological characterization. Chemosphere 2019, 229, 247–255. [Google Scholar] [CrossRef]
- Madigan, D.J.; Carlisle, A.B.; Dewar, H.; Snodgrass, O.E.; Litvin, S.Y.; Micheli, F.; Block, B.A. Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Sci. Rep. 2012, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Olson, R.J.; Popp, B.N.; Graham, B.S.; López-Ibarra, G.A.; Galván-Magaña, F.; Lennert-Cody, C.E.; Bocanegra-Castillo, N.; Wallsgrove, N.J.; Gier, E.; Alatorre-Ramírez, V. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna in the pelagic eastern Pacific Ocean. Prog. Oceanogr. 2010, 86, 124–138. [Google Scholar] [CrossRef]
- Sutton, S.G.; Ditton, R.B. Understanding catch-and-release behavior among US Atlantic bluefin tuna anglers. Hum. Dimens. Wildl. 2001, 6, 49–66. [Google Scholar] [CrossRef]
- Dewey, A.; Baughan, C.; Dean, T.P.; Higgins, B.; Johnson, I. Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst. Rev. 2007. [Google Scholar] [CrossRef] [PubMed]
- Rambjør, G.S.; Windsor, S.L.; Harris, W.S. Eicosapentaenoic acid is primarily responsible for hypotriglyceridemic effect of fish oil in humans. Lipids 1996, 31, S45–S49. [Google Scholar] [CrossRef] [PubMed]
- Afonso, A.; Gutiérrez, Á.J.; Lozano, G.; González-Weller, D.; Lozano-Bilbao, E.; Rubio, C.; Caballero, J.M.; Revert, C.; Hardisson, A. Metals in Diplodus sargus cadenati and Sparisoma cretense—A risk assessment for consumers. Environ. Sci. Pollut. Res. 2018, 25, 2630–2642. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Bilbao, E.; Jurado-Ruzafa, A.; Lozano, G.; Jiménez, S.; Hardisson, A.; Rubio, C.; Weller, D.G.; Paz, S.; Gutiérrez, Á.J. Development stage and season influence in the metal content of small pelagic fish in the North-West Africa. Chemosphere 2020, 261, 127692. [Google Scholar] [CrossRef]
- Has-Schön, E.; Bogut, I.; Strelec, I. Heavy metal profile in five fish species included in human diet, domiciled in the end flow of River Neretva (Croatia). Arch. Environ. Contam. Toxicol. 2006, 50, 545–551. [Google Scholar] [CrossRef]
- Sun, Y.-X.; Hao, Q.; Xu, X.-R.; Luo, X.-J.; Wang, S.-L.; Zhang, Z.-W.; Mai, B.-X. Persistent organic pollutants in marine fish from Yongxing Island, South China Sea: Levels, composition profiles and human dietary exposure assessment. Chemosphere 2014, 98, 84–90. [Google Scholar] [CrossRef]
- Li, N.; Hou, Y.; Ma, D.; Jing, W.; Dahms, H.-U.; Wang, L. Lead accumulation, oxidative damage and histopathological alteration in testes and accessory glands of freshwater crab, Sinopotamon henanense, induced by acute lead exposure. Ecotoxicol. Environ. Saf. 2015, 117, 20–27. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Espinosa, J.M.; Lozano, G.; Hardisson, A.; Rubio, C.; González-Weller, D.; Gutiérrez, Á.J. Determination of metals in Anemonia sulcata (Pennant, 1777) as a pollution bioindicator. Environ. Sci. Pollut. Res. 2020, 27, 21621–21627. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Adern, N.; Hardisson, A.; González-Weller, D.; Rubio, C.; Paz, S.; Pérez, J.A.; Zupa, R.; Gutiérrez, Á.J. Differences in macroelements, trace elements and toxic metals between wild and captive-reared greater amberjack (Seriola dumerili) from the Mediterranean Sea. Mar. Pollut. Bull. 2021, 170, 112637. [Google Scholar] [CrossRef]
- Anderson, M.; Braak, C. Ter Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 2003, 73, 85–113. [Google Scholar] [CrossRef]
- Anderson, M.R. The Resource for the Power Industry Professional. Proc. ASME Power 2004, 32, 35–40. [Google Scholar] [CrossRef]
- Renwick, A.G. Safety factors and establishment of acceptable daily intakes. Food Addit. Contam. 1991, 8, 135–149. [Google Scholar] [CrossRef] [PubMed]
- AESAN. Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition (AESAN) Regarding Criteria for the Estimation of Concentrations for the Discussion Proposals for Migration Limits of Certain Heavy Metals and Other Elements from Ceramic; AESAN: Madrid, Spain, 2012. [Google Scholar]
- FESNAD. Ingestas Dietéticas de Referencia (IDR) para la Población Española. Act. Diet 2010, 14, 196–197. [Google Scholar]
- Lozano-Bilbao, E.; Domínguez, D.; González, J.A.; Lorenzo, J.M.; Lozano, G.; Hardisson, A.; Rubio, C.; Weller, D.G.; Paz, S.; Gutiérrez, Á.J. Risk assessment and study of trace/heavy metals in three species of fish of commercial interest on the island of El Hierro (Canary Islands, eastern-central Atlantic). J. Food Compos. Anal. 2021, 99, 103855. [Google Scholar] [CrossRef]
- de Lima, N.V.; Granja Arakaki, D.; Melo, E.S.d.P.; Machate, D.J.; do Nascimento, V.A. Assessment of trace elements supply in canned tuna fish commercialized for human consumption in Brazil. Int. J. Environ. Res. Public Health 2021, 18, 12002. [Google Scholar] [CrossRef]
- Measures, C.I.; Vink, S. On the use of dissolved aluminum in surface waters to estimate dust deposition to the ocean. Global Biogeochem. Cycles 2000, 14, 317–327. [Google Scholar] [CrossRef]
- Orians, K.J.; Bruland, K.W. The biogeochemistry of aluminum in the Pacific Ocean. Earth Planet. Sci. Lett. 1986, 78, 397–410. [Google Scholar] [CrossRef]
- Sackett, W.; Arrhenius, G. Distribution of aluminum species in the hydrosphere—I Aluminum in the ocean. Geochim. Cosmochim. Acta 1962, 26, 955–968. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Lozano, G.; Jiménez, S.; Jurado-Ruzafa, A.; Hardisson, A.; Rubio, C.; Weller, D.G.; Paz, S.; Gutiérrez, Á.J. Influence of Biometric and Seasonal Parameters on the Metal Content of Scomber colias in Northwestern African Waters. Biol. Trace Elem. Res. 2021, 199, 3886–3897. [Google Scholar] [CrossRef]
- Berg, D.J.; Burns, T.A. The distribution of aluminum in the tissues of three fish species. J. Freshw. Ecol. 1985, 3, 113–120. [Google Scholar] [CrossRef]
- Sparling, D.W.; Lowe, T.P.; Campbell, P.G.C. Ecotoxicology of aluminum to fish and wildlife. In Research Issues in Aluminum Toxicity; CRC: Boca Raton, FL, USA, 1997. [Google Scholar]
- Abouchami, W.; Galer, S.J.G.; de Baar, H.J.W.; Alderkamp, A.C.; Middag, R.; Laan, P.; Feldmann, H.; Andreae, M.O. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity. Earth Planet. Sci. Lett. 2011, 305, 83–91. [Google Scholar] [CrossRef]
- Conway, T.M.; John, S.G. Biogeochemical cycling of cadmium isotopes along a high-resolution section through the North Atlantic Ocean. Geochim. Cosmochim. Acta 2015, 148, 269–283. [Google Scholar] [CrossRef]
- de Baar, H.J.W.; Saager, P.M.; Nolting, R.F.; van der Meer, J. Cadmium versus phosphate in the world ocean. Mar. Chem. 1994, 46, 261–281. [Google Scholar] [CrossRef] [Green Version]
- Reglamento (CE) No 420/2011. Reglamento (CE) No 420/2011 de la Comisión de 29 de abril de 2011 que modifica el Reglamento (CE) no 1881/2006, por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. Diario Oficial de la Unión Europea 2011, L111, 3–6. [Google Scholar]
- Torres, P.; Rodrigues, A.; Soares, L.; Garcia, P. Metal Concentrations in Two Commercial Tuna Species from an Active Volcanic Region in the Mid-Atlantic Ocean. Arch. Environ. Contam. Toxicol. 2016, 70, 341–347. [Google Scholar] [CrossRef]
- Mugo, R.; SAITOH, S.; Nihira, A.; Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 2010, 19, 382–396. [Google Scholar] [CrossRef]
- Di, Y.U.; Chang-Feng, C.H.I.; Bin, W.; Guo-Fang, D.; Zhong-Rui, L.I. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis). Chin. J. Nat. Med. 2014, 12, 712–720. [Google Scholar]
- Chanto-García, D.A.; Saber, S.; Macías, D.; Sureda, A.; Hernández-Urcera, J.; Cabanellas-Reboredo, M. Species-specific heavy metal concentrations of tuna species: The case of Thunnus alalunga and Katsuwonus pelamis in the Western Mediterranean. Environ. Sci. Pollut. Res. 2022, 29, 1278–1288. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Espinosa, J.M.; Jurado-Ruzafa, A.; Lozano, G.; Hardisson, A.; Rubio, C.; Weller, D.G.; Gutiérrez, Á.J.; González Weller, D.; Gutiérrez, Á.J. Inferring Class of organisms in the Central-East Atlantic from eco-toxicological characterization. Reg. Stud. Mar. Sci. 2020, 35, 101190. [Google Scholar] [CrossRef]
- Jakimska, A.; Konieczka, P.; Skóra, K.; Namieśnik, J. Bioaccumulation of Metals in Tissues of Marine Animals, Part I: The Role and Impact of Heavy Metals on Organisms. Polish J. Environ. Stud. 2011, 20, 1117–1125. [Google Scholar]
- Stillman, M.J. Metallothioneins. Coord. Chem. Rev. 1995, 144, 461–511. [Google Scholar] [CrossRef]
- Jeandel, C. Cycles Biogéochimiques Océaniques du Chrome et du Vanadium; Doctoral Dissertation: Paris, France, 1987. [Google Scholar]
- Duraisamy, R.; Shamena, S.; Berekete, A.K. A review of bio-tanning materials for processing of fish skin into leather. Int. J. Eng. Trends Technol. 2016, 39, 10–20. [Google Scholar]
- Ozuni, E.; Dhaskali, L.; Beqiraj, D.; Abeshi, J.; Latifi, F.; Zogaj, M.; Haziri, I. Mercury, lead, cadmium and chrome concentration levels in fish for public consumption. Albanian J. Agric. Sci. 2011, 10, 1–5. [Google Scholar]
- Blossom, N. Copper in the ocean environment. Am. Chemet Corp 2007, 6, 1–8. [Google Scholar]
- Matsumoto, W.M.; Skillman, R.A.; Dizon, A.E. Synopsis of Biological Data on Skipjack Tuna, Katsuwonus Pelamis; National Oceanic and Atmospheric Administration, National Marine Fisheries: Washington, DC, USA, 1984. [Google Scholar]
- Taylor, H.H.; Anstiss, J.M. Copper and haemocyanin dynamics in aquatic invertebrates. Mar. Freshw. Res. 1999, 50, 907–931. [Google Scholar] [CrossRef]
- Bury, N.; Grosell, M. Iron acquisition by teleost fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 135, 97–105. [Google Scholar] [CrossRef]
- Lozano-Bilbao, E.; Raimundo, J.; Jurado-Ruzafa, A.; Lozano, G.; Jiménez, S.; Hardisson, A.; Rubio, C.; Weller, D.G.; Paz, S.; Gutiérrez, Á.J. Comparing Element Content in Small Pelagic Fish Species from Different Fishing Grounds in the Central-East Atlantic Ocean. Risk Assessment. Thalass. Int. J. Mar. Sci. 2021, 37, 861–869. [Google Scholar] [CrossRef]
- Rooker, J.R.; Alvarado Bremer, J.R.; Block, B.A.; Dewar, H.; De Metrio, G.; Corriero, A.; Kraus, R.T.; Prince, E.D.; Rodríguez-Marín, E.; Secor, D.H. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 2007, 15, 265–310. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 4002. [Google Scholar]
- EFSA (European Food Safety Authority). Statement on tolerable weekly intake for cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- EFSA (European Food Safety Authority). Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2010, 8, 1570. [Google Scholar]
- Tittlemier, S.A.; Fisk, A.T.; Hobson, K.A.; Norstrom, R.J. Examination of the bioaccumulation of halogenated dimethyl bipyrroles in an Arctic marine food web using stable nitrogen isotope analysis. Environ. Pollut. 2002, 116, 85–93. [Google Scholar] [CrossRef] [PubMed]
- DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495–506. [Google Scholar] [CrossRef]
- Domi, N.; Bouquegneau, J.-M.; Das, K. Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis. Mar. Environ. Res. 2005, 60, 551–569. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Ding, J.; Wang, Y.-F.; Zhu, Y.-G. Effects of Trophic Level and Land Use on the Variation of Animal Antibiotic Resistome in the Soil Food Web. Environ. Sci. Technol. 2022, 56, 14937–14947. [Google Scholar] [CrossRef]
- Dauby, P.; Khomsi, A.; Bouquegneau, J.-M. Trophic relationships within intertidal communities of the Brittany coasts: A stable carbon isotope analysis. J. Coast. Res. 1998, 14, 1202–1212. [Google Scholar]
- Jardine, T.D.; McGeachy, S.A.; Paton, C.M.; Savoie, M.; Cunjak, R.A. Stable Isotopes in Aquatic Systems: Sample Preparation, Analysis and Interpretation; Citeseer: Princeton, NJ, USA, 2003; Volume 2656. [Google Scholar]
- Gupta, S.K.; Singh, J. Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: A review. IIOAB J. 2011, 2, 49–57. [Google Scholar]
- Olson, R.J.; Young, J.W.; Ménard, F.; Potier, M.; Allain, V.; Goñi, N.; Logan, J.M.; Galván-Magaña, F. Chapter Four-Bioenergetics, Trophic Ecology, and Niche Separation of Tunas. In Advances in Marine Biology; Curry, B.E., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 74, pp. 199–344. ISBN 0065-2881. Available online: https://www.sciencedirect.com/science/article/pii/S0065288116300049 (accessed on 15 December 2022).
- Martins, K.; Pelage, L.; Justino, A.K.S.; Frédou, F.L.; Júnior, T.V.; Le Loc’h, F.; Travassos, P. Assessing trophic interactions between pelagic predatory fish by gut content and stable isotopes analysis around Fernando de Noronha Archipelago (Brazil), Equatorial West Atlantic. J. Fish Biol. 2021, 99, 1576–1590. [Google Scholar] [CrossRef] [PubMed]
- Felizardo, N.N.; Knoff, M.; Torres, E.J.L.; Pimenta, E.G.; de Amorim, A.F.; Gomes, D.C. Hirudinella ventricosa (trematoda) parasitizing makaira nigricans and acanthocybium solandri from neotropical region, Brazil. Neotrop. Helminthol. 2013, 7, 75–82. [Google Scholar]
- Vanderklift, M.A.; Ponsard, S. Sources of variation in consumer-diet δ15N enrichment: A meta-analysis. Oecologia 2003, 136, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Ruelas-Inzunza, J.; Soto-Jimenez, M.F.; Ruiz-Fernández, A.C.; Ramos-Osuna, M.; Mones-Saucedo, J.; Paez-Osuna, F. 210Po, Cd and Pb distribution and biomagnification in the yellowfin tuna Thunnus albacares and skipjack tuna Katsuwonus pelamis from the Eastern Pacific. Mar. Pollut. Bull. 2014, 87, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Coletto, J.L.; Botta, S.; Fischer, L.G.; Newsome, S.D.; Madureira, L.S.P. Isotope-based inferences of skipjack tuna feeding ecology and movement in the southwestern Atlantic Ocean. Mar. Environ. Res. 2021, 165, 105246. [Google Scholar] [CrossRef] [PubMed]
- Sardenne, F.; Bodin, N.; Chassot, E.; Amiel, A.; Fouché, E.; Degroote, M.; Hollanda, S.; Pethybridge, H.; Lebreton, B.; Guillou, G. Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids. Prog. Oceanogr. 2016, 146, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Estrada, J.A.; Lutcavage, M.; Thorrold, S.R. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar. Biol. 2005, 147, 37–45. [Google Scholar] [CrossRef]
- Henry, F.; Amara, R.; Courcot, L.; Lacouture, D.; Bertho, M.-L. Heavy metals in four fish species from the French coast of the Eastern English Channel and Southern Bight of the North Sea. Environ. Int. 2004, 30, 675–683. [Google Scholar] [CrossRef]
- Kwaansa-Ansah, E.E.; Nti, S.O.; Opoku, F. Heavy metals concentration and human health risk assessment in seven commercial fish species from Asafo Market, Ghana. Food Sci. Biotechnol. 2019, 28, 569–579. [Google Scholar] [CrossRef] [PubMed]
- REGLAMENTO (CE) No 1881/2006. REGLAMENTO (CE) No 1881/2006 DE LA COMISIÓN de 19 de diciembre de 2006 por el que se fija el contenido máximo de determinados contaminantes en los productos alimenticios. 2006. [Google Scholar]
- Chen, C.-Y.; Chen, Y.-T.; Chen, K.-S.; Hsu, C.-C.; Liu, L.-L.; Chen, H.-S.; Chen, M.-H. Arsenic and five metal concentrations in the muscle tissue of bigeye tuna (Thunnus obesus) in the Atlantic and Indian Oceans. Mar. Pollut. Bull. 2018, 129, 186–193. [Google Scholar] [CrossRef]
- Hellou, J.; Fancey, L.L.; Payne, J.F. Concentrations of twenty-four elements in bluefin tuna, Thunnus thynnus from the Northwest Atlantic. Chemosphere 1992, 24, 211–218. [Google Scholar] [CrossRef]
- Licata, P.; Trombetta, D.; Cristani, M.; Naccari, C.; Martino, D.; Caló, M.; Naccari, F. Heavy Metals in Liver and Muscle of Bluefin Tuna (Thunnus thynnus) Caught in the Straits of Messina (Sicily, Italy). Environ. Monit. Assess. 2005, 107, 239–248. [Google Scholar] [CrossRef]
- Mol, S.; Karakulak, F.S.; Ulusoy, S. Potential health risks due to heavy metal uptake via consumption of Thunnus thynnus from the northern Levantine Sea. Toxin Rev. 2018, 37, 56–61. [Google Scholar] [CrossRef]
- Sadeghi, P.; Loghmani, M.; Frokhzad, S. Human health risk assessment of heavy metals via consumption of commercial marine fish (Thunnus albacares, Euthynnus affinis, and Katsuwonus pelamis) in Oman Sea. Environ. Sci. Pollut. Res. 2020, 27, 14944–14952. [Google Scholar] [CrossRef] [PubMed]
- Pragnya, M.; Dinesh Kumar, S.; Solomon Raju, A.J.; Murthy, L.N. Bioaccumulation of heavy metals in different organs of Labeo rohita, Pangasius hypophthalmus, and Katsuwonus pelamis from Visakhapatnam, India. Mar. Pollut. Bull. 2020, 157, 111326. [Google Scholar] [CrossRef] [PubMed]
- Jinadasa, B.K.K.K.; Mahaliyana, A.S.; Liyanage, N.P.P.; Jayasinghe, G.D.T.M. Trace metals in the muscle tissues of skipjack tuna (Katsuwonus pelamis) in Sri Lanka. Cogent Food Agric. 2015, 1, 1038975. [Google Scholar] [CrossRef]
- Ruelas-Inzunza, J.; Soto-Jiménez, M.F.; Ruiz-Fernández, A.C.; Bojórquez-Leyva, H.; Pérez-Bernal, H.; Páez-Osuna, F. 210Po Activity and Concentrations of Selected Trace Elements (As, Cd, Cu, Hg, Pb, Zn) in the Muscle Tissue of Tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean. Biol. Trace Elem. Res. 2012, 149, 371–376. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Cedeño-Macias, L.A. Heavy metals in yellowfin tuna (Thunnus albacares) and common dolphinfish (Coryphaena hippurus) landed on the Ecuadorian coast. Sci. Total Environ. 2016, 541, 149–154. [Google Scholar] [CrossRef]
Wavelengths (nm) | Limit of D Etection (LOD) (mg/L) |
Limit of Quantification (LOQ) (mg/L) |
---|---|---|
Al (167.0) | 0.004 | 0.012 |
Cd (226.5) | 0.0003 | 0.001 |
Cr (267.7) | 0.003 | 0.008 |
Cu (327.3) | 0.004 | 0.012 |
Fe (259.9) | 0.003 | 0.009 |
Li (670.8) | 0.005 | 0.013 |
Pb (220.3) | 0.0003 | 0.001 |
Zn (206.2) | 0.002 | 0.007 |
Species | Description | Al | Cd | Cr | Cu | Fe | Li | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
Acanthocybium solandri | Mean | 0.515 | 0.007 | 0.118 | 0.301 | 4.639 | 0.009 | 0.009 | 9.192 |
deviation | 0.214 | 0.003 | 0.065 | 0.074 | 1.489 | 0.003 | 0.003 | 7.357 | |
Minimum | 0.326 | 0.000 | 0.055 | 0.195 | 2.398 | 0.006 | 0.006 | 4.171 | |
Maximum | 0.949 | 0.010 | 0.218 | 0.395 | 6.616 | 0.016 | 0.014 | 25.42 | |
Katsuwonus pelamis | Mean | 4.743 | 0.014 | 0.049 | 1.207 | 16.88 | 0.427 | 0.006 | 5.057 |
deviation | 0.450 | 0.004 | 0.011 | 0.392 | 7.124 | 0.080 | 0.002 | 0.486 | |
Minimum | 4.161 | 0.010 | 0.034 | 0.702 | 7.705 | 0.324 | 0.003 | 4.430 | |
Maximum | 5.039 | 0.019 | 0.056 | 1.490 | 21.97 | 0.483 | 0.007 | 5.376 | |
Thunnus albacares | Mean | 0.641 | 0.009 | 0.190 | 0.485 | 16.26 | 0.011 | 0.012 | 22.01 |
deviation | 0.261 | 0.003 | 0.118 | 0.224 | 8.157 | 0.005 | 0.004 | 17.20 | |
Minimum | 0.283 | 0.006 | 0.065 | 0.282 | 6.330 | 0.006 | 0.005 | 3.920 | |
Maximum | 0.959 | 0.017 | 0.360 | 0.929 | 29.94 | 0.020 | 0.017 | 50.86 | |
Thunnus obesus | Mean | 9.361 | 0.006 | 0.127 | 0.640 | 11.99 | 1.180 | 0.010 | 5.159 |
deviation | 2.915 | 0.003 | 0.044 | 0.148 | 3.939 | 0.873 | 0.004 | 0.545 | |
Minimum | 6.006 | 0.004 | 0.095 | 0.453 | 6.761 | 0.211 | 0.005 | 4.434 | |
Maximum | 13.96 | 0.014 | 0.240 | 0.866 | 19.23 | 3.177 | 0.018 | 6.369 | |
Thunnus thynnus | Mean | 19.56 | 0.051 | 0.913 | 1.526 | 137.8 | 1.033 | 0.280 | 14.75 |
deviation | 11.33 | 0.039 | 1.263 | 1.114 | 100.9 | 0.890 | 0.188 | 12.02 | |
Minimum | 6.265 | 0.009 | 0.209 | 0.520 | 21.24 | 0.000 | 0.062 | 1.904 | |
Máximo | 44.23 | 0.139 | 5.396 | 4.539 | 323.4 | 3.449 | 0.683 | 44.47 |
Species | δ13C (‰) | δ15N (‰) | References |
---|---|---|---|
Acanthocybium solandri | −16.71 ± 0.48 | 11.18 ± 1.04 | [85] |
Katsuwonus pelamis | −17.6 ± 0.4 | 9.7 ± 1.5 | [89] |
Thunnus albacares | −17.06 ± 0.34 | 10.46 ± 0.34 | [85] |
Thunnus obesus | −17.6–−16.5 | 11.6–14.2 | [90] |
Thunnus thynnus | −17.75 | 14.5 | [91] |
Atlantic Ocean | Mediterranean Sea | Indian Ocean | Pacific Ocean | ||||||
---|---|---|---|---|---|---|---|---|---|
Canary Islands (Spain) | Ghana | Azores (Portugal) | Spain | Iran | India | Sri Lanka | Mexico | ||
Metal | K pelamis | A. solandri | K. pelamis | ||||||
Cd | 0.014 | 0.007 | 0.007 | 0.155 | 0.007 | 0.02 | 0.031 | ||
Cu | 1.207 | 0.301 | 0.118 | 4.71 | 2.01 | 4.68 | |||
Fe | 16.88 | 4.639 | 42.17 | 21.12 | |||||
Pb | 0.006 | 0.009 | 0.054 | 0.152 | 0.03 | 1.1 | 0.055 | ||
Zn | 5.057 | 9.192 | 10.01 | 30.57 | 9.23 | 6.5 | |||
The present study | [93] | [58] | [61] | [99] | [100] | [101] | [102] |
Atlantic Ocean | Mediterranean Sea | Pacific Ocean | Indian Ocean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Canary Islands (Spain) | Azores (Portugal) | Guinea | Canada | Italy | Turkey | Mexico | Equator | South Africa | |||
Metal | T. albacares | T. obesus | T. thynnus | T. obesus | T. thynnus | T. albacares | T. obesus | ||||
Al | 0.641 | 9.361 | 19.56 | 1 | |||||||
Cd | 0.009 | 0.006 | 0.051 | 0.186 | 0.07 | 0.03 | 0.26 | 0.002 | 0.09 | 0.24 | 0.15 |
Cu | 0.485 | 0.64 | 1.526 | 2.05 | 1 | 1.15 | 0.819 | 2.13 | |||
Fe | 16.26 | 11.99 | 137.8 | 38.7 | 29 | 42.28 | |||||
Pb | 0.012 | 0.01 | 0.28 | 0.036 | 0.03 | 0.24 | 0.115 | 0.105 | 0.04 | ||
Zn | 22.01 | 5.159 | 14.75 | 23.9 | 17 | 30.32 | 8.34 | 33.03 | |||
The present study | [58] | [95] | [96] | [97] | [98] | [102] | [103] | [95] |
Metal & Limits | Index | Katsuwonus pelamis | Thunnus obesus | Acanthocybium solandri | Thunnus albacares | Thunnus thynnus |
---|---|---|---|---|---|---|
Al 1 mg/kg/week | EDI (mg) | 0.5 | 1 | 0.05 | 0.5 | 2.09 |
MoS | 0.05 | 0.1 | 0.005 | 0.05 | 0.21 | |
kg/day | 2.09 | 1.04 | 20.9 | 2.09 | 0.51 | |
CDI | 0.34 | 0.67 | 0.03 | 0.046 | 1.4 | |
Cd 2.5 μg/kg/week | EDI (mg) | 0.0014 | 0.0006 | 0.0007 | 0.001 | 0.005 |
MoS | 0.07 | 0.03 | 0.03 | 0.004 | 0.27 | |
g/day | 1.53 | 3.57 | 3.06 | 2.14 | 0.42 | |
CDI | 0.2 × 10−4 | 0.1 × 10−4 | 0.1 × 10−4 | 0.15 × 10−4 | 0.7 × 10−3 | |
Pb 0.5 μg/kg/day | EDI (mg) | 0.0006 | 0.001 | 0.001 | 0.001 | 0.03 |
MoS | 0.01 | 0.03 | 0.02 | 0.03 | 0.85 | |
g/day | 6.43 | 3.749 | 3.74 | 3.12 | 0.124 | |
CDI | 0.25 × 10−4 | 0.21 × 10−4 | 0.2 × 10−4 | 0.25 × 10−4 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano-Bilbao, E.; Delgado-Suárez, I.; Paz-Montelongo, S.; Hardisson, A.; Pascual-Fernández, J.J.; Rubio, C.; Weller, D.G.; Gutiérrez, Á.J. Risk Assessment and Characterization in Tuna Species of the Canary Islands According to Their Metal Content. Foods 2023, 12, 1438. https://doi.org/10.3390/foods12071438
Lozano-Bilbao E, Delgado-Suárez I, Paz-Montelongo S, Hardisson A, Pascual-Fernández JJ, Rubio C, Weller DG, Gutiérrez ÁJ. Risk Assessment and Characterization in Tuna Species of the Canary Islands According to Their Metal Content. Foods. 2023; 12(7):1438. https://doi.org/10.3390/foods12071438
Chicago/Turabian StyleLozano-Bilbao, Enrique, Indira Delgado-Suárez, Soraya Paz-Montelongo, Arturo Hardisson, José J. Pascual-Fernández, Carmen Rubio, Dailos González Weller, and Ángel J. Gutiérrez. 2023. "Risk Assessment and Characterization in Tuna Species of the Canary Islands According to Their Metal Content" Foods 12, no. 7: 1438. https://doi.org/10.3390/foods12071438
APA StyleLozano-Bilbao, E., Delgado-Suárez, I., Paz-Montelongo, S., Hardisson, A., Pascual-Fernández, J. J., Rubio, C., Weller, D. G., & Gutiérrez, Á. J. (2023). Risk Assessment and Characterization in Tuna Species of the Canary Islands According to Their Metal Content. Foods, 12(7), 1438. https://doi.org/10.3390/foods12071438