Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Growth Conditions
2.2. Phenolic Compounds and Synthetic Preservatives
2.3. Determination of Minimum Inhibitory Concentration (MIC)
2.4. Checkerboard Assay for Planktonic Growth Inhibition
2.5. Checkerboard Assay for Biofilm Formation Inhibition
2.6. Checkerboard Assay for Adhesion Inhibition
2.7. Statistical Analysis
3. Results
3.1. Effects of Combination of Antimicrobial Agents on Planktonic Growth of Yeasts
3.2. Effects of Combination of Antimicrobial Agents on Biofilm Formation
3.3. Effects of Combination of Antimicrobial Agents on Adhesion Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maicas, S. The role of yeasts in fermentation processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef] [PubMed]
- Riesute, R.; Salomskiene, J.; Moreno, D.S.; Gustiene, S. Effect of yeasts on food quality and safety and possibilities of their inhibition. Trends Food Sci. Technol. 2021, 108, 1–10. [Google Scholar] [CrossRef]
- Krisch, J.; Chandrasekaran, M.; Kadaikunnan, S.; Alharbi, N.S.; Vágvölgyi, C. Latest about spoilage by yeasts: Focus on the deterioration of beverages and other plant-derived products. J. Food Prot. 2016, 79, 825–829. [Google Scholar] [CrossRef]
- Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M.J.; Villalobos, M.C.; Martín, A.; Córdoba, M.G. Spoilage yeasts: What are the sources of contamination of foods and beverages? Int. J. Food Microbiol. 2018, 286, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Prista, C.; Michán, C.; Miranda, I.M.; Ramos, J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 2016, 33, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Satora, P.; Tarko, T.; Sroka, P.; Blaszczyk, U. The influence of Wickerhamomyces anomalus killer yeast on the fermentation and chemical composition of apple wines. FEMS Yeast Res. 2014, 14, 729–740. [Google Scholar] [CrossRef] [Green Version]
- Tournas, V.H.; Heeres, J.; Burgess, L. Moulds and yeasts in fruit salads and fruit juices. Food Microbiol. 2006, 23, 684–688. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.H.; Chin, Y.-W.; Paik, H.-D. Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods 2021, 10, 2418. [Google Scholar] [CrossRef]
- Perito, M.A.; Chiodo, E.; Serio, A.; Paparella, A.; Fantini, A. Factors influencing consumers’ attitude towards biopreservatives. Sustainability 2020, 12, 10338. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Phitaktim, S.; Chomnawang, M.; Sirichaiwetchakoon, K.; Dunkhunthod, B.; Hobbs, G.; Eumke, G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol. 2016, 16, 195. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, J.; Qiu, Y.; Niu, C.; Song, Z.; Yuan, Y.; Yue, T. Structure-dependent inhibition of Stenotrophomonas maltophilia by polyphenol and its impact on cell membrane. Front. Microbiol. 2019, 10, 2646. [Google Scholar] [CrossRef]
- Piper, J.D.; Piper, P.W. Benzoate and sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Compr. Rev. Food Sci. Food Saf. 2017, 16, 868–880. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, R.; Indugu, N.; Singh, P. Distinct gut microbiota signatures in mice treated with commonly used food preservatives. Microorganisms 2021, 9, 2311. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Hussain, Y.; Santarcangelo, C.; Baldi, A.; Di Minno, A.; Khan, H.; Xiao, J.; Daglia, M. Natural polyphenols for the preservation of meat and dairy products. Molecules 2022, 27, 1906. [Google Scholar] [CrossRef]
- Mei, J.; Ma, X.; Xie, J. Review on natural preservatives for extending fish shelf life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [Green Version]
- Ofosu, F.K.; Daliri, E.B.-M.; Elahi, F.; Chelliah, R.; Lee, B.-H.; Oh, D.-H. New insights on the use of polyphenols as natural preservatives and their emerging safety concerns. Front. Sustain. Food Syst. 2020, 4, 525810. [Google Scholar] [CrossRef]
- Floris, B.; Galloni, P.; Conte, V.; Sabuzi, F. Tailored functionalization of natural phenols to improve biological activity. Biomolecules 2021, 11, 1325. [Google Scholar] [CrossRef] [PubMed]
- Kisiriko, M.; Anastasiadi, M.; Terry, L.A.; Yasri, A.; Beale, M.H.; Ward, J.L. Phenolics from medicinal and aromatic plants: Characterisation and potential as biostimulants and bioprotectants. Molecules 2021, 26, 6343. [Google Scholar] [CrossRef]
- Panzella, L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayan, A.; Sivaraman, G.K.; Visnuvinayagam, S.; Mothadaka, M.P. Role of natural additives on quality and shelf life extension of fish and fishery products. In Natural food additives; Prieto, M.A., Otero, P., Eds.; IntechOpen: London, UK, 2021; p. 77994. [Google Scholar]
- Ritota, M.; Manzi, P. Natural preservatives from plant in cheese making. Animals 2020, 10, 749. [Google Scholar] [CrossRef]
- Corrêa, J.A.F.; dos Santos, J.V.G.; Evangelista, A.G.; Pinto, A.C.S.M.; de Macedo, R.E.F.; Luciano, F.B. Combined application of phenolic acids and essential oil components against Salmonella Enteritidis and Listeria monocytogenes in vitro and in ready-to-eat cooked ham. LWT Food Sci. Technol. 2021, 149, 111881. [Google Scholar] [CrossRef]
- Bellio, P.; Fagnani, L.; Nazzicone, L.; Celenza, G. New and simplified method for drug combination studies by checkerboard assay. MethodsX 2021, 8, 101543. [Google Scholar] [CrossRef] [PubMed]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimani, B.G.; Kerekes, E.B.; Szebenyi, C.; Krisch, J.; Vágvölgyi, C.; Papp, T.; Takó, M. In vitro activity of selected phenolic compounds against planktonic and biofilm cells of food-contaminating yeasts. Foods 2021, 10, 1652. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, C.; Kerekes, E.B.; Kotogán, A.; Papp, T.; Vágvölgyi, C.; Krisch, J.; Takó, M. Antimicrobial activity of grape, apple and pitahaya residue extracts after carbohydrase treatment against food-related bacteria. LWT Food Sci. Technol. 2019, 100, 416–425. [Google Scholar] [CrossRef]
- Kerekes, E.B.; Deák, É.; Takó, M.; Tserennadmid, R.; Petkovits, T.; Vágvölgyi, C.; Krisch, J. Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J. Appl. Microbiol. 2013, 115, 933–942. [Google Scholar] [CrossRef]
- Motyl, M.; Dorso, K.; Barret, J.; Giacobbe, R. Basic microbiological techniques used in antibacterial drug discovery. Curr. Protoc. Pharmacol. 2005, 31, 13A.3.1–13A.3.22. [Google Scholar] [CrossRef]
- Bellio, P.; Segatore, B.; Mancini, A.; Di Pietro, L.; Bottoni, C.; Sabatini, A.; Brisdelli, F.; Piovano, M.; Nicoletti, M.; Amicosante, G.; et al. Interaction between lichen secondary metabolites and antibiotics against clinical isolates methicillin-resistant Staphylococcus aureus strains. Phytomedicine 2015, 22, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.D.; Perfect, J.R. Use of antifungal combination therapy: Agents, order, and timing. Curr. Fungal Infect. Rep. 2010, 4, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Martinez, E.; Vallieres, C.; Holland, S.L.; Avery, S.V. Novel, synergistic antifungal combinations that target translation fidelity. Sci. Rep. 2015, 5, 16700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saibabu, V.; Fatima, Z.; Singh, S.; Khan, L.A.; Hameed, S. Vanillin confers antifungal drug synergism in Candida albicans by impeding CaCdr2p driven efflux. J. Mycol. Med. 2020, 30, 100921. [Google Scholar] [CrossRef]
- Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Mechanistic insights into the anticandidal action of vanillin reveal disruption of cell surface integrity and mitochondrial functioning. Infect. Disord. Drug Targets. 2021, 21, 405–415. [Google Scholar] [CrossRef]
- Korošec, B.; Sova, M.; Turk, S.; Kraševec, N.; Novak, M.; Lah, L.; Stojan, J.; Podobnik, B.; Berne, S.; Zupanec, N.; et al. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 2014, 116, 955–966. [Google Scholar] [CrossRef]
- Michán, C.; Martínez, J.L.; Alvarez, M.C.; Turk, M.; Sychrova, H.; Ramos, J. Salt and oxidative stress tolerance in Debaryomyces hansenii and Debaryomyces fabryi. FEMS Yeast Res. 2013, 13, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Turk, M.; Montiel, V.; Žigon, D.; Plemenitaš, A.; Ramos, J. Plasma membrane composition of Debaryomyces hansenii adapts to changes in pH and external salinity. Microbiology 2007, 153, 3586–3592. [Google Scholar] [CrossRef] [Green Version]
- Segal-Kischinevzky, C.; Romero-Aguilar, L.; Alcaraz, L.D.; López-Ortiz, G.; Martínez-Castillo, B.; Torres-Ramírez, N.; Sandoval, G.; González, J. Yeasts inhabiting extreme environments and their biotechnological applications. Microorganisms 2022, 10, 794. [Google Scholar] [CrossRef]
- Iwaki, A.; Ohnuki, S.; Suga, Y.; Izawa, S.; Ohya, Y. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: Application and validation of high-content, image-based profiling. PLoS ONE 2013, 8, e61748. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: A review. Front. Microbiol. 2015, 6, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing microbial infections with natural phenolic compounds. Future Pharmacol. 2022, 2, 460–498. [Google Scholar] [CrossRef]
- Tits, J.; Cammue, B.P.A.; Thevissen, K. Combination therapy to treat fungal biofilm-based infections. Int. J. Mol. Sci. 2020, 21, 8873. [Google Scholar] [CrossRef] [PubMed]
- Ramage, G.; Rajendran, R.; Sherry, L.; Williams, C. Fungal biofilm resistance. Int. J. Microbiol. 2012, 2012, 528521. [Google Scholar] [CrossRef]
- de-la-Fuente-Blanco, A.; Ferreira, V. Gas chromatography olfactometry (GC-O) for the (semi)quantitative screening of wine aroma. Foods 2020, 9, 1892. [Google Scholar] [CrossRef]
- Ogawa, K.; Tashima, A.; Sadakata, M.; Morinaga, O. Appetite-enhancing effects of vanilla flavours such as vanillin. J. Nat. Med. 2018, 72, 798–802. [Google Scholar] [CrossRef]
- Zhao, J.; Xia, H.; Yu, T.; Jin, L.; Li, X.; Zhang, Y.; Shu, L.; Zeng, L.; He, Z. A colorimetric assay for vanillin detection by determination of the luminescence of o-toluidine condensates. PLoS ONE 2018, 13, e0194010. [Google Scholar] [CrossRef] [Green Version]
- Adams, T.B.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Munro, I.C.; Portoghese, P.S.; Smith, R.L.; Waddell, W.J.; et al. The FEMA GRAS assessment of cinnamyl derivatives used as flavor ingredients. Food Chem. Toxicol. 2004, 42, 157–185. [Google Scholar] [CrossRef]
- Mohammadzadeh-Aghdash, H.; Sohrabi, Y.; Mohammadi, A.; Shanehbandi, D.; Dehghan, P.; Dolatabadi, J.E.N. Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives. Food Chem. 2018, 257, 211–215. [Google Scholar] [CrossRef]
- Mpountoukas, P.; Vantarakis, A.; Sivridis, E.; Lialiaris, T. Cytogenetic study in cultured human lymphocytes treated with three commonly used preservatives. Food Chem. Toxicol. 2008, 46, 2390–2393. [Google Scholar] [CrossRef]
Yeasts | Phenolic Compounds | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
D. hansenii | Cinnamic acid + Vanillin | 0.5 1 | ≤0.125 ≤0.0625 | ≥4 ≥16 | ≤0.31 | Synergy |
W. anomalus | Cinnamic acid + Vanillin | 0.5 1 | ≤0.125 ≤0.0625 | ≥4 ≥16 | ≤0.31 | Synergy |
S. pombe | Cinnamic acid + Vanillin | 0.5 2 | ≤0.125 ≤0.0625 | ≥4 ≥32 | ≤0.28 | Synergy |
S. cerevisiae | Cinnamic acid + Vanillin | 0.5 2 | ≤0.125 ≤0.0625 | ≥4 ≥32 | ≤0.28 | Synergy |
Yeasts | Phenolic Agent + Synthetic Preservative | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
D. hansenii | Vanillin + Sodium benzoate | 1 50 | 2 1 | 0.5 50 | 2.02 | Indifferent |
Vanillin + Potassium sorbate | 1 50 | 2 32 | 0.5 1.56 | 2.64 | Indifferent | |
Vanillin + Sodium diacetate | 1 50 | 2 16 | 0.5 3.13 | 2.32 | Indifferent | |
W. anomalus | Vanillin + Sodium benzoate | 1 12.5 | 0.25 1 | 4 12.5 | 0.33 | Synergy |
Vanillin + Potassium sorbate | 1 3 | 0.25 1 | 4 3 | 0.58 | Additive | |
Vanillin + Sodium diacetate | 1 6 | 4 4 | 0.25 1.5 | 4.67 | Antagonism | |
S. pombe | Vanillin + Sodium benzoate | 2 6.25 | 0.5 1 | 4 6.25 | 0.41 | Synergy |
Vanillin + Potassium sorbate | 2 3 | 0.25 1 | 8 3 | 0.46 | Synergy | |
Vanillin + Sodium diacetate | 2 12.5 | 0.5 2 | 4 6.25 | 0.41 | Synergy | |
S. cerevisiae | Vanillin + Sodium benzoate | 2 25 | 0.5 2.34 | 4 10.68 | 0.34 | Synergy |
Vanillin + Potassium sorbate | 2 25 | 0.5 2.34 | 4 10.68 | 0.34 | Synergy | |
Vanillin + Sodium diacetate | 2 50 | 1 8 | 2 6.25 | 0.66 | Additive |
Yeasts | Phenolic Agent + Synthetic Preservative | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
D. hansenii | Cinnamic acid + Sodium benzoate | 0.5 50 | >4 >64 | <0.13 <0.78 | >9.28 | Antagonism |
Cinnamic acid + Potassium sorbate | 0.5 50 | 0.25 64 | 2 0.78 | 1.78 | Indifferent | |
Cinnamic acid + Sodium diacetate | 0.5 50 | 2 64 | 0.25 0.78 | 5.28 | Antagonism | |
W. anomalus | Cinnamic acid + Sodium benzoate | 0.5 12.5 | 0.25 1 | 2 12.5 | 0.58 | Additive |
Cinnamic acid + Potassium sorbate | 0.5 3.13 | 0.13 1 | 3.85 3.13 | 0.58 | Additive | |
Cinnamic acid + Sodium diacetate | 0.5 6.25 | 2 1 | 0.25 6.25 | 4.16 | Antagonism | |
S. pombe | Cinnamic acid + Sodium benzoate | 0.5 6 | 0.25 1 | 2 6 | 0.67 | Additive |
Cinnamic acid + Potassium sorbate | 0.5 3 | 0.25 1 | 2 3 | 0.83 | Additive | |
Cinnamic acid + Sodium diacetate | 0.5 12.5 | ≤0.13 ≤1 | ≥3.85 ≥12.5 | ≤0.34 | Synergy | |
S. cerevisiae | Cinnamic acid + Sodium benzoate | 0.5 25 | 0.13 64 | 3.85 0.39 | 2.82 | Indifferent |
Cinnamic acid + Potassium sorbate | 0.5 25 | 0.13 64 | 3.85 0.39 | 2.82 | Indifferent | |
Cinnamic acid + Sodium diacetate | 0.5 50 | 0.13 32 | 3.85 1.56 | 0.9 | Additive |
Yeasts | Phenolic Agent + Synthetic Preservative | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
W. anomalus | Vanillin + Sodium benzoate | 8 32 | 16 2 | 0.5 16 | 2.06 | Indifferent |
Vanillin + Potassium sorbate | 8 16 | 16 1 | 0.5 16 | 2.06 | Indifferent | |
Cinnamic acid + Sodium benzoate | 8 32 | 2 32 | 4 1 | 1.25 | Indifferent | |
Cinnamic acid + Potassium sorbate | 8 16 | 4 32 | 2 0.5 | 2.5 | Indifferent | |
S. pombe | Vanillin + Potassium sorbate | 8 16 | 16 1 | 0.5 16 | 2.06 | Indifferent |
Vanillin + Sodium benzoate | 8 64 | 8 2 | 1 32 | 1.03 | Indifferent | |
Vanillin + Sodium diacetate | 8 32 | 4 8 | 2 4 | 0.75 | Additive | |
Cinnamic acid + Sodium diacetate | 8 32 | 4 64 | 2 0.5 | 2.5 | Indifferent | |
Cinnamic acid + Sodium benzoate | 8 64 | 8 1 | 1 64 | 1.02 | Indifferent | |
Cinnamic acid + Potassium sorbate | 8 16 | 8 1 | 1 16 | 1.06 | Indifferent | |
S. cerevisiae | Vanillin + Potassium sorbate | 8 32 | 16 1 | 0.5 32 | 2.03 | Indifferent |
Vanillin + Sodium benzoate | 8 32 | 16 1 | 0.5 32 | 2.03 | Indifferent | |
Vanillin + Sodium diacetate | 8 64 | 4 32 | 2 2 | 1.00 | Indifferent | |
Cinnamic acid + Sodium diacetate | 8 64 | 2 64 | 4 1 | 1.25 | Indifferent |
Yeasts | Phenolic Compounds | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
D. hansenii | Cinnamic acid + Vanillin | 8 8 | 2 2 | 4 4 | 0.5 | Synergy |
W. anomalus | Cinnamic acid + Vanillin | 8 8 | ≤1 ≤0.5 | ≥8 ≥16 | ≤0.19 | Synergy |
S. pombe | Cinnamic acid + Vanillin | 8 8 | 1 1 | 8 8 | 0.25 | Synergy |
S. cerevisiae | Cinnamic acid + Vanillin | 8 8 | 2 0.5 | 4 16 | 0.31 | Synergy |
Yeasts | Phenolic Agent + Synthetic Preservative | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
W. anomalus | Vanillin + Sodium benzoate | 8 32 | 16 1 | 0.5 32 | 2.03 | Indifferent |
Vanillin + Potassium sorbate | 8 16 | 1 2 | 8 8 | 0.25 | Synergy | |
Cinnamic acid + Sodium benzoate | 8 32 | 4 32 | 2 1 | 1.5 | Indifferent | |
Cinnamic acid + Potassium sorbate | 8 16 | 8 8 | 1 2 | 1.5 | Indifferent | |
S. pombe | Vanillin + Potassium sorbate | 8 8 | 2 1 | 4 8 | 0.38 | Synergy |
Vanillin + Sodium benzoate | 8 16 | 4 2 | 2 8 | 0.63 | Additive | |
Vanillin + Sodium diacetate | 8 32 | 4 1 | 2 32 | 0.53 | Additive | |
Cinnamic acid + Sodium diacetate | 8 32 | 4 8 | 2 4 | 0.75 | Additive | |
Cinnamic acid + Sodium benzoate | 8 16 | 4 1 | 2 16 | 0.56 | Additive | |
Cinnamic acid + Potassium sorbate | 8 8 | 4 1 | 2 8 | 0.63 | Additive | |
S. cerevisiae | Vanillin + Potassium sorbate | 8 16 | 16 1 | 0.5 16 | 2.06 | Indifferent |
Vanillin + Sodium benzoate | 8 16 | 16 8 | 0.5 2 | 2.5 | Indifferent | |
Vanillin + Sodium diacetate | 8 32 | 8 16 | 1 2 | 1.5 | Indifferent | |
Cinnamic acid + Sodium diacetate | 8 32 | 16 16 | 0.5 2 | 2.5 | Indifferent |
Yeasts | Phenolic Compounds | MIC (mg/mL) | MIC Reduction (Fold) | FIC Index | Outcome | |
---|---|---|---|---|---|---|
Single | Combined | |||||
D. hansenii | Cinnamic acid + Vanillin | 8 8 | 4 1 | 2 8 | 0.63 | Additive |
W. anomalus | Cinnamic acid + Vanillin | 8 8 | 2 0.5 | 4 16 | 0.31 | Synergy |
S. pombe | Cinnamic acid + Vanillin | 8 8 | 1 2 | 8 4 | 0.38 | Synergy |
S. cerevisiae | Cinnamic acid + Vanillin | 8 8 | 2 2 | 4 4 | 0.5 | Synergy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimani, B.G.; Takó, M.; Veres, C.; Krisch, J.; Papp, T.; Kerekes, E.B.; Vágvölgyi, C. Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts. Foods 2023, 12, 1338. https://doi.org/10.3390/foods12061338
Kimani BG, Takó M, Veres C, Krisch J, Papp T, Kerekes EB, Vágvölgyi C. Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts. Foods. 2023; 12(6):1338. https://doi.org/10.3390/foods12061338
Chicago/Turabian StyleKimani, Bernard Gitura, Miklós Takó, Csilla Veres, Judit Krisch, Tamás Papp, Erika Beáta Kerekes, and Csaba Vágvölgyi. 2023. "Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts" Foods 12, no. 6: 1338. https://doi.org/10.3390/foods12061338
APA StyleKimani, B. G., Takó, M., Veres, C., Krisch, J., Papp, T., Kerekes, E. B., & Vágvölgyi, C. (2023). Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts. Foods, 12(6), 1338. https://doi.org/10.3390/foods12061338