Risk Assessment of Nine Coccidiostats in Commercial and Home-Raised Eggs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals, Reagents, and Standard Solutions
2.3. Sample Extraction
2.4. UHPLC-MS/MS Analysis
2.5. Statistical Analysis
2.6. Risk Assessment
3. Results and Discussion
3.1. Method Validation
3.2. Occurrence
Country | Year | Coccidiostats | Concentration Range (μg kg−1) | Positive/NC Samples | Reference |
---|---|---|---|---|---|
Poland | 2007–2010 | Lasolacid Maduramicin Nicarbazin Salinomicyn Semduramicin | 280–320 17 16–150 6.3–75 31–180 | 23/14 | [25] |
Italy (151) | 2012–2017 | Lasolacid Nicarbazin Robenidine Diclazuril Decoquinate Salinomicyn Maduramicin | 1002 (Lasolacid) - - 1.2 (Diclazuril) - - - | 24/3 | [26] |
Brazil | 2017 | ND | - | 619/7 | [30] |
Latvia | 2019 | Nicarbazin Toltrazuril | 10.1 ± 4.1 10.2 ± 0.5 | 5/1 | [27] |
Serbia (255) | 2018–2020 | Robenidine Nicarbazin Salinomicyn Maduramicin Lasolacid | 0.002–17.50 (all) | 69/56 | [2] |
Spain | 2020 | Narasin | - | 14/1 | [28] |
Bosnia (90) | 2021 | Lasolacid | 7–33 | 10/0 | [24] |
EFSA 4914 | 2020 | Diclazuril Lasolacid Monensin Narasin Robenidine Salinomycin Toltrazurisulfon | - | -/18 (0.35%) | [29] |
3.3. Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Food and Agriculture—Statistical Yearbook 2020; FAO: Rome, Italy, 2020. [CrossRef]
- Mitrovic, M.; Tomasevic, I.; Stefanovic, S.; Djordjevic, V.; Djekic, I. Toxic Elements in Eggs and Egg-Based Products: Occurrence, Exposure Assessment and Risk Characterisation for the Serbian Population. Int. J. Food Sci. Technol. 2021, 56, 6685–6696. [Google Scholar] [CrossRef]
- Análise Set Ovos; Gabinete de Planeamentos, Políticos e Administração Geral: Porto, Portugal, 2020; pp. 1–22.
- Spisso, B.F.; Pereira, M.U.; Ferreira, R.G.; Monteiro, M.A.; da Costa, R.P.; Cruz, T.Á.; da Nóbrega, A.W. Pilot Survey of Hen Eggs Consumed in the Metropolitan Area of Rio de Janeiro, Brazil, for Polyether Ionophores, Macrolides and Lincosamides Residues. Food Addit. Contam. Part B Surveill. 2010, 3, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and Egg-Derived Foods: Effects on Human Health and Use as Functional Foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef] [PubMed]
- Pia̧tkowska, M.; Jedziniak, P.; Zmudzki, J. Residues of Veterinary Medicinal Products and Coccidiostats in Eggs—Causes, Control and Results of Surveillance Program in Poland. Pol. J. Vet. Sci. 2012, 15, 803–812. [Google Scholar] [CrossRef] [Green Version]
- Chico, J.; Rúbies, A.; Centrich, F.; Companyó, R.; Prat, M.D.; Granados, M. Use of Gel Permeation Chromatography for Clean-up in the Analysis of Coccidiostats in Eggs by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 4777–4786. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Wu, X.; Zhang, J.; Duan, H.; Chu, X.; Wu, Y. Development of a Rapid LC-MS-MS Method for Multi-Class Determination of 14 Coccidiostat Residues in Eggs and Chicken. Chromatographia 2009, 69, 1083–1088. [Google Scholar] [CrossRef]
- Jankovic, S.; Radicevic, T.; Stefanovic, S.; Tankovic, S.; Djinovic-Stojanovic, J.; Spiric, D.; Nikolic, D. Cleaning Efficiency of Feed Production Lines after Production of Feedstuffs with Coccidiostats. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 854. [Google Scholar] [CrossRef]
- Martins, R.R.; Silva, L.J.G.; Pereira, A.M.P.T.; Esteves, A.; Duarte, S.C.; Pena, A. Coccidiostats and Poultry: A Comprehensive Review and Current Legislation. Foods 2022, 11, 2738. [Google Scholar] [CrossRef]
- Quon, D.J. Monitoring of Domestic and Imported Eggs for Veterinary Drug Residues by the Canadian Food Inspection Agency. J. Agric. Food Chem. 2000, 48, 6421–6427. [Google Scholar] [CrossRef]
- Bello, A.; Henri, J.; Viel, A.; Mochel, J.P.; Poźniak, B. Ionophore Coccidiostats—Disposition Kinetics in Laying Hens and Residues Transfer to Eggs. Poult. Sci. 2022, 102, 102280. [Google Scholar] [CrossRef]
- Radičević, T.; Janković, S.; Stefanović, S.; Nikolić, D.; Dinović-Stojanović, J.; Spirić, D. Coccidiostats in Unmedicated Feedingstuffs for Poultry. In IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2017; Volume 85. [Google Scholar] [CrossRef] [Green Version]
- von Holst, C.; Chedin, M.; Kaklamanos, G.; Alonso Albarracín, D.; Vincent, U. DART Mass Spectrometry: A Rapid Tool for the Identification of Feed Additives Containing Coccidiostats as Active Substances. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 475–487. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, Q.; Liao, G.; Qian, Y.; Qiu, J. Multi-Residue Determination of 244 Chemical Contaminants in Chicken Eggs by Liquid Chromatography-Tandem Mass Spectrometry after Effective Lipid Clean-Up. Agriculture 2022, 12, 869. [Google Scholar] [CrossRef]
- EFSA. COMMISSION REGULATION (EC) No 124/2009. Off. J. Eur. Union 2009, L40, 1–5. [Google Scholar]
- Commission Regulation (EU) No 610/2012. EFSA J. 2012, 9, 1952. [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Simões, B.D.F.; Lino, C.; Pena, A. Exposure to Nickel through Commercial Premade Baby Foods: Is There Any Risk? J. Food Compos. Anal. 2020, 92, 103541. [Google Scholar] [CrossRef]
- Mbabazi, J. Principles and Methods for the Risk Assessment of Chemicals in Food. Int. J. Environ. Stud. 2011, 68, 251–252. [Google Scholar] [CrossRef]
- Inquérito Alimentar Nacional e de Atividade Física; Relatório de Resultados; Universidade do Porto: Porto, Portugal, 2017.
- European Medicines Agency Veterinary Medicines and Inspections. Committee for Veterinary Medicinal Products Diclazuril (Extension to All Ruminants and Porcine Species) Summary Report (2); EMEA: London, UK, 2004.
- Drug, V. FAO/WHO 2022. FAO/WHO 2022, 854, 23–25. [Google Scholar]
- European Parliament and the Council of the European Union. COMMISSION REGULATION (EU) No 37/2010. Off. J. Eur. Union 2010, L15, 1–71. [Google Scholar]
- Clanjak-Kudra, E.; Alagic, D.; Smajlovic, M.; Smajlovic, A.; Mujezinović, I.; Magoda, A.; Jankovic, S. Coccidiostats in Table Eggs, Liver and Poultry Meat on the Market in Bosnia and Herzegovina. IOP Conf. Ser. Earth Environ. Sci. 2021, 854, 012016. [Google Scholar] [CrossRef]
- Olejnik, M.; Szprengier-Juszkiewicz, T.; Jedziniak, P.; Śledzińska, E.; Szymanek-Bany, I.; Korycińska, B.; Pietruk, K.; Zmudzki, J. Residue Control of Coccidiostats in Food of Animal Origin in Poland during 2007-2010. Food Addit. Contam. Part B Surveill. 2011, 4, 259–267. [Google Scholar] [CrossRef]
- Roila, R.; Branciari, R.; Pecorelli, I.; Cristofani, E.; Carloni, C.; Ranucci, D.; Fioroni, L. Occurrence and Residue Concentration of Coccidiostats in Feed and Food of Animal Origin; Human Exposure Assessment. Foods 2019, 8, 477. [Google Scholar] [CrossRef] [Green Version]
- Rusko, J.; Jansons, M.; Pugajeva, I.; Zacs, D.; Bartkevics, V. Development and Optimization of Confirmatory Liquid Chromatography—Orbitrap Mass Spectrometry Method for the Determination of 17 Anticoccidials in Poultry and Eggs. J. Pharm. Biomed. Anal. 2019, 164, 402–412. [Google Scholar] [CrossRef] [PubMed]
- González-Rubio, S.; García-Gómez, D.; Ballesteros-Gómez, A.; Rubio, S. A New Sample Treatment Strategy Based on Simultaneous Supramolecular Solvent and Dispersive Solid-Phase Extraction for the Determination of Ionophore Coccidiostats in All Legislated Foodstuffs. Food Chem. 2020, 326, 126987. [Google Scholar] [CrossRef]
- Brocca, D.; Salvatore, S. Report for 2020 on the Results from the Monitoring of Veterinary Medicinal Product Residues and Other Substances in Live Animals and Animal Products. EFSA Support. Publ. 2022, 19, 7143E. [Google Scholar] [CrossRef]
- Barreto, F.; Ribeiro, C.; Hoff, R.B.; Costa, T.D. A Simple and High-Throughput Method for Determination and Confirmation of 14 Coccidiostats in Poultry Muscle and Eggs Using Liquid Chromatography—Quadrupole Linear Ion Trap—Tandem Mass Spectrometry (HPLC–QqLIT-MS/MS): Validation According to European Union 2002/657/EC. Talanta 2017, 168, 43–51. [Google Scholar] [CrossRef]
- Martins, R.R.; Azevedo, V.S.; Pereira, A.M.P.T.; Silva, L.J.G.; Duarte, S.C.; Pena, A. Risk Assessment of Nine Coccidiostats in Commercial and Home Raised Poultry. J. Agric. Food Chem. 2021, 69, 14287–14293. [Google Scholar] [CrossRef] [PubMed]
Compound | ESI | Precursor Ion (m/z ± 0.5) | Product Ion (m/z ± 0.5) | Collision Energy (v) | IS | |
---|---|---|---|---|---|---|
Lasalocid | Positive | 613.4 | 377.3 | QP | 50 | NIG |
359.2 | CP | 50 | ||||
Narasin | Positive | 787.6 | 431.2 | QP | 69 | NIG |
531.5 | CP | 61 | ||||
Salinomycin | Positive | 773.5 | 431.2 | QP | 69 | NIG |
531.4 | CP | 61 | ||||
Monensin | Positive | 693.3 | 675.4 | QP | 51 | NIG |
461.2 | CP | 67 | ||||
Maduramicin | Positive | 939.5 | 877.5 | QP | 57 | NIG |
719.4 | CP | 89 | ||||
Halofuginone | Positive | 415.9 | 138.1 | QP | 25 | NIG |
100.0 | CP | 55 | ||||
Robenidine | Positive | 334.0 | 155.1 | QP | 29 | NIG |
138.0 | CP | 33 | ||||
Diclazuril | Negative | 405.0 | 333.9 | QP | −26 | DNC d8 |
406.9 | 335.9 | CP | −28 | |||
Nicarbazine–DNC | Negative | 301.0 | 137.0 | QP | −16 | DNC d8 |
107.0 | CP | −18 | ||||
DNC d8 | Negative | 309.0 | 141.0 | IS | −18 | |
NIG | Positive | 747.1 | 703.5 | IS | −18 |
MRL (μg kg−1) | CCα (μg kg−1) | LOD (μg kg−1) | LOQ (μg kg−1) | Validation Level (μg kg−1) | Repeatability (RSD%) | Reproducibility (RSD%) | Recovery (%) | Linearity (R2) | |
---|---|---|---|---|---|---|---|---|---|
Lasalocid | 150 | 173 | 2.79 | 3.11 | 15 (a) | 12.8 | 14.3 | 116.1 | 0.9939 |
150 | 6.1 | 9.2 | 91.8 | ||||||
225 | 10.5 | 16.7 | 84.4 | ||||||
Narasin | 2 | 2.85 | 0.10 | 0.28 | 1 (b) | 12.3 | 12.9 | 106.6 | 0.9996 |
2 | 12.0 | 12.6 | 104.0 | ||||||
3 | 11.5 | 11.8 | 94.0 | ||||||
Salinomycin | 3 | 3.60 | 0.59 | 0.75 | 1.5 (b) | 10.9 | 13.0 | 105.6 | 0.9932 |
3 | 13.3 | 14.2 | 92.7 | ||||||
5 | 12.0 | 12.3 | 88.3 | ||||||
Monensin | 2 | 2.50 | 0.22 | 0.66 | 1 (b) | 13.2 | 13.6 | 99.7 | 0.9995 |
2 | 12.1 | 12.4 | 95.6 | ||||||
3 | 11.9 | 12.4 | 98.6 | ||||||
Maduramicin | 12 | 13.5 | 0.24 | 0.63 | 6 (b) | 13.8 | 16.9 | 87.5 | 0.9979 |
12 | 20.0 | 21.2 | 109.6 | ||||||
18 | 20.6 | 22.2 | 114.5 | ||||||
Robenidin | 25 | 28.3 | 1.32 | 2.09 | 2.5 (a) | 16.4 | 18.1 | 95.1 | 0.9953 |
25 | 12.8 | 14.1 | 94.4 | ||||||
38 | 10.3 | 11.3 | 104.6 | ||||||
Halofuginone | 6 | 6.58 | 0.31 | 0.48 | 3 (b) | 12.6 | 18.2 | 86.7 | 0.9960 |
6 | 13.2 | 15.8 | 91.4 | ||||||
9 | 15.6 | 19.4 | 88.2 | ||||||
DNC | 300 | 341 | 2.16 | 2.76 | 30 (a) | 10.8 | 11.7 | 99.0 | 0.9993 |
300 | 3.7 | 10.6 | 88.9 | ||||||
450 | 13.8 | 18.3 | 84.6 | ||||||
Diclazuril | 2 | 2.23 | 0.17 | 0.20 | 0.2 (a) | 20.4 | 22.7 | 86.9 | 0.9961 |
2 | 17.2 | 18.9 | 92.3 | ||||||
3 | 16.9 | 20.5 | 99.1 |
Coccidiostats | Home-Raised (n = 28) | Supermarket (n = 34) | Total (n = 62) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Positive Samples (>MRL) | Frequency | Mean ± SD | Min | Max | Positive Samples (>MRL) | Frequency | Mean ± SD | Min | Max | Positive Samples (>MRL) | Frequency | Mean ± SD | Min | Max | |
Diclazuril | 5 (3) | 17.9% | 0.91 ± 2.78 | 0.09 | 13.6 | ND | ND | ND | ND | ND | 5 (3) | 8.1% | 0.46 ± 1.90 | 0.09 | 13.6 |
Nicarbazin | 24 (11) | 85.7% | 266.3 ± 169.4 | 1.08 | 744.8 | 31 (0) | 91.1% | 167.6 ± 62.2 | 1.08 | 222.4 | 55 (11) | 88.7% | 212.1 ± 131.3 | 1.08 | 744.8 |
Total | 25 (13) | 89.3% | 133.6 ± 178.9 | 0.09 | 744.8 | 31 (0) | 91.1% | 83.8 ± 95.0 | 1.08 | 222.4 | 56 (13) | 90.3% | 106.3 ± 140.9 | 0.09 | 744.8 |
Compound | ADI (mg−1 Kg−1 Day−1) | Children | Teenager | Adult | |||
---|---|---|---|---|---|---|---|
EDI (mg−1 Kg−1 Day−1) | EDI/ADI (%) | EDI (mg−1 Kg−1 Day−1) | EDI/ADI (%) | EDI (mg−1 Kg−1 Day−1) | EDI/ADI (%) | ||
Diclazuril | 0.03 | 0.00049 | 1.63 | 2.25 × 10−4 | 0.75 | 1.76 × 10−4 | 0.58 |
Nicarbazin | 0.9 | 0.23 | 25.5 | 0.1 | 11.1 | 0.08 | 8.8 |
Compound | ADI (mg kg−1 Day−1) | Children | Teenager | Adult | |||
---|---|---|---|---|---|---|---|
EDI (mg kg−1 Day−1) | EDI/ADI (%) | EDI (mg kg−1 Day−1) | EDI/ADI (%) | EDI (mg kg−1 Day 1) | EDI/ADI (%) | ||
Diclazuril | 0.03 | 0.015 | 50 | 0.0067 | 22.3 | 0.005 | 16.6 |
Nicarbazin | 0.9 | 0.8 | 88.9 | 0.36 | 40 | 0.28 | 31.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, R.R.; Pereira, A.M.P.T.; Silva, L.J.G.; Esteves, A.; Duarte, S.C.; Freitas, A.; Pena, A. Risk Assessment of Nine Coccidiostats in Commercial and Home-Raised Eggs. Foods 2023, 12, 1225. https://doi.org/10.3390/foods12061225
Martins RR, Pereira AMPT, Silva LJG, Esteves A, Duarte SC, Freitas A, Pena A. Risk Assessment of Nine Coccidiostats in Commercial and Home-Raised Eggs. Foods. 2023; 12(6):1225. https://doi.org/10.3390/foods12061225
Chicago/Turabian StyleMartins, Rui R., André M. P. T. Pereira, Liliana J. G. Silva, Alexandra Esteves, Sofia C. Duarte, Andreia Freitas, and Angelina Pena. 2023. "Risk Assessment of Nine Coccidiostats in Commercial and Home-Raised Eggs" Foods 12, no. 6: 1225. https://doi.org/10.3390/foods12061225
APA StyleMartins, R. R., Pereira, A. M. P. T., Silva, L. J. G., Esteves, A., Duarte, S. C., Freitas, A., & Pena, A. (2023). Risk Assessment of Nine Coccidiostats in Commercial and Home-Raised Eggs. Foods, 12(6), 1225. https://doi.org/10.3390/foods12061225