Degradation of Zearalenone by Dielectric Barrier Discharge Cold Plasma and Its Effect on Maize Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Apparatus
2.3. Conditions for the Treatment of Maize by Cold Plasma
2.4. Zearalenone Determination
2.5. Degradation Kinetics of Zearalenone
2.6. Analysis of Maize Color
2.7. Determination of Fatty Acid
- Ak: The mass of fatty acids (mg/100 g).
- V1: The volume of KOH consumed by titration of the sample (mL).
- V0: The volume of KOH consumed by titration of the control sample (mL).
- c: The concentration of KOH standard titration solution (mol/L).
- m: The mass of sample (g).
- ω: The moisture content in 100 g sample (g).
2.8. Determination of Crude Protein
- X: Crude protein content in the samples (g/100 g).
- V1: The volume of H2SO4 consumed by titration of the sample (mL).
- V2: The volume of H2SO4 consumed by titration of the control sample (mL).
- c: The concentration of H2SO4 standard titration solution (mol/L).
- m: The mass of sample (g).
- V3: The volume of digestion solution (mL).
- F: Conversion factor.
2.9. Determination of Crude Fiber
- X: Crude fiber content in the samples.
- G: The mass of residue (g).
- m: The mass of sample (g).
2.10. Statistical Analysis
3. Results and Discussion
3.1. Degradation Efficiency Analysis
3.2. Degradation Kinetics Analysis
3.3. Effect of Cold Plasma Treatment on Maize Color
3.4. Effect of Cold Plasma Treatment on the Fatty Acid of Maize
3.5. Effect of Cold Plasma Treatment on the Crude Protein and Crude Fiber of Maize
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalagatur, N.K.; Karthick, K.; Allen, J.A.; Ghosh, O.S.N.; Chandranayaka, S.; Gupta, V.K.; Krishna, K.; Mudili, V. Application of activated carbon derived from seed shells of jatropha curcas for decontamination of zearalenone mycotoxin. Front. Pharmacol. 2017, 8, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Kim, W.; Park, J.-H.; Kim, D.; Kim, C.-R.; Chung, S.; Lee, C. The occurrence of zearalenone in South Korean feedstuffs between 2009 and 2016. Toxins 2017, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka, K.; Waskiewicz, A.; Golinski, P.; Swietlik, J. Occurrence of estrogenic mycotoxin—Zearalenone in aqueous environmental samples with various NOM content. Water Res. 2009, 43, 1051–1059. [Google Scholar] [CrossRef]
- Luo, X.; Zhai, Y.; Qi, L.; Pan, L.; Wang, J.; Xing, J.; Wang, R.; Wang, L.; Zhang, Q.; Yang, K.; et al. Influences of electron beam irradiation on the physical and chemical properties of zearalenone- and ochratoxin a-contaminated corn and in vivo toxicity assessment. Foods 2020, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.M.; Golzan, S.A.; Mahdavi, A.; Dakhili, S.; Torki, Z.; Hosseini, H. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Crit. Rev. Food Sci. Nutr. 2022, 62, 4726–4751. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, X.; Li, J. Updating techniques on controlling mycotoxins—A review. Food Control 2018, 89, 123–132. [Google Scholar] [CrossRef]
- Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009, 41, 1–7. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, P.; Kumar, S.; Zalpouri, R.; Singh, M. Ozonation as a potential approach for pesticide and microbial detoxification of food grains with a focus on nutritional and functional quality. Food Rev. Int. 2022. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y. Review on microbial degradation of zearalenone and aflatoxins. Grain Oil Sci. Technol. 2020, 3, 117–125. [Google Scholar] [CrossRef]
- Laroque, D.A.; Seo, S.T.; Valencia, G.A.; Laurindo, J.B.; Mattar Carciofi, B.A. Cold plasma in food processing: Design, mechanisms, and application. J. Food Eng. 2022, 312, 110748. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M. Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 2016, 9, 734–750. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Yan, Y.; Wang, W.; Zhang, L.; Zong, W. The degradation of alternaria mycotoxins by dielectric barrier discharge cold plasma. Food Control 2020, 117, 107333. [Google Scholar] [CrossRef]
- Ghorashi, A.H.; Tasouji, M.A.R.; Kargarian, A. Optimum cold plasma generating device for treatment of aspergillus flavus from nuts surface. J. Food Sci. Technol.-Mysore 2020, 57, 3988–3994. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, Y.; Zhang, J.; Guo, Y.; Ding, Y.; Lyu, F. Degradation efficiency and products of deoxynivalenol treated by cold plasma and its application in wheat. Food Control 2022, 136, 108874. [Google Scholar] [CrossRef]
- Coutinho, N.M.; Silveira, M.R.; Rocha, R.S.; Moraes, J.; Ferreira, M.V.S.; Pimentel, T.C.; Freitas, M.Q.; Silva, M.C.; Raices, R.S.L.; Ranadheera, C.S.; et al. Cold plasma processing of milk and dairy products. Trends Food Sci. Technol. 2018, 74, 56–68. [Google Scholar] [CrossRef]
- Shi, H.; Ileleji, K.; Stroshine, R.L.; Keener, K.; Jensen, J.L. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017, 10, 1042–1052. [Google Scholar] [CrossRef]
- Barba, F.J.; Koubaa, M.; do Prado-Silva, L.; Orlien, V.; Sant’Ana, A.d.S. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci. Technol. 2017, 66, 20–35. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, Y.; Liu, L.; Chen, Y.; Wang, Y.; Li, C. Zearalenone degradation by dielectric barrier discharge cold plasma: The kinetics and mechanism. Foods 2022, 11, 1494. [Google Scholar] [CrossRef]
- Wielogorska, E.; Ahmed, Y.; Meneely, J.; Graham, W.G.; Elliott, C.T.; Gilmore, B.F. A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chem. 2019, 301, 125281. [Google Scholar] [CrossRef]
- Feizollahi, E.; Roopesh, M.S. Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors. Food Bioprocess Technol. 2021, 14, 2107–2119. [Google Scholar] [CrossRef]
- GB/T 20570-2015; Guidelines for Evaluation of Maize Storage Character of the People’s Republic of China. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2015; p. 16.
- GB 5009.5-2016; Determination of Protein in Food of the People’s Republic of China. National Medical Products Administration: Beijing, China, 2016; p. 12.
- GB/T 5009.10-2003; Determination of Crude Fiber in Plant Foods of the People’s Republic of China. Standardization Administration: Beijing, China, 2003; p. 8.
- Puligundla, P.; Lee, T.; Mok, C. Inactivation effect of dielectric barrier discharge plasma against foodborne pathogens on the surfaces of different packaging materials. Innov. Food Sci. Emerg. Technol. 2016, 36, 221–227. [Google Scholar] [CrossRef]
- Uchiyama, H.; Zhao, Q.-L.; Hassan, M.A.; Andocs, G.; Nojima, N.; Takeda, K.; Ishikawa, K.; Hori, M.; Kondo, T. EPR-spin trapping and flow cytometric studies of free radicals generated using cold atmospheric argon plasma and X-ray irradiation in aqueous solutions and intracellular milieu. PLoS ONE 2015, 10, e0136956. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Wang, G.; Tian, Y.; Wang, K.; Zhang, J.; Fang, J. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. J. Hazard. Mater. 2015, 300, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Sebaei, A.S.; Sobhy, H.M.; Fouzy, A.S.M.; Hussain, O.A. Occurrence of zearalenone in grains and its reduction by gamma radiation. Int. J. Environ. Anal. Chem. 2022, 102, 2503–2511. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, L.; Zhang, Q.; Yu, L.; Qi, X.; Mao, J.; Li, P. Insight into the boosted ZEN degradation over defective Bi2WO6 ultrathin layers: ROS-mediated mechanism and application in corn oil. Food Chem. 2023, 405 Pt B, 134895. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Zhuang, H.; Nasiru, M.M.; Yuan, Y.; Zhang, J.; Yan, W. Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Sci. 2021, 17, 108456. [Google Scholar] [CrossRef]
- Xie, M.; Zhao, W.; Jia, M.; Meng, Y.; Gao, G.; Deng, H. Effects of low temperature plasma treatment on texture and physicochemical properties of fresh-cut kiwi slices. J. Chin. Inst. Food Sci. Technol. 2021, 21, 133–142. [Google Scholar]
- Wang, L.; Shao, H.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Luo, Y.; Chen, Z. Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality. PLoS ONE 2016, 11, e0147613. [Google Scholar] [CrossRef]
- Luo, X.; Wang, R.; Wang, L.; Li, Y.; Bian, Y.; Chen, Z. Effect of ozone treatment on aflatoxin B-1 and safety evaluation of ozonized corn. Food Control 2014, 37, 171–176. [Google Scholar] [CrossRef]
- Bhat, N.A.; Wani, I.A.; Hamdani, A.M.; Gani, A.; Masoodi, F.A. Physicochemical properties of whole wheat flour as affected by gamma irradiation. Lwt-Food Sci. Technol. 2016, 71, 175–183. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, Y.-H.; Jo, C. Prospective applications of cold plasma for processing poultry products: Benefits, effects on quality attributes, and limitations. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Nagy, R.; Mathe, E.; Csapo, J.; Sipos, P. Modifying effects of physical processes on starch and dietary fiber content of foodstuffs. Processes 2021, 9, 17. [Google Scholar] [CrossRef]
- Lokeswari, R.; Sharanyakanth, P.S.; Jaspin, S.; Mahendran, R. Cold plasma effects on changes in physical, nutritional, hydration, and pasting properties of pearl millet (Pennisetum Glaucum). IEEE Trans. Plasma Sci. 2021, 49, 1745–1751. [Google Scholar] [CrossRef]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef]
- Kilburn-Kappeler, L.R.; Lema Almeida, K.A.; Aldrich, C.G. Evaluation of graded levels of corn-fermented protein on stool quality, apparent nutrient digestibility, and palatability in healthy adult cats. J. Anim. Sci. 2022, 100, skac354. [Google Scholar] [CrossRef]
Model | Equation | F | R² | Sig |
---|---|---|---|---|
Log function | y = 8.658 logx + 14.531 | 301.713 | 0.968 | <0.001 |
Quadratic function | y = 33.463 + 0.349x − 0.01x² | 80.802 | 0.947 | <0.001 |
Cubic function | y = 0.677x − 0.07x² + 3.109 × 10−5x3 + 29.219 | 85.985 | 0.970 | <0.001 |
Power function | y = 22.766 (x0.19) | 338.234 | 0.971 | <0.001 |
Treatment Voltage (KV) | Treatment Time (s) | L * | a * | b * |
---|---|---|---|---|
/ | 0 | 28.980 ± 2.587c | 2.65 ± 2.913 abc | 19.854 ± 2.124 a |
30 KV | 10 | 20.094 ± 2.360 ab | 3.592 ± 1.522 bc | 28.002 ± 4.756 b |
30 | 19.544 ± 1.392 ab | 3.14 ± 2.562 abc | 33.566 ± 4.671 bc | |
60 | 21.734 ± 3.217 b | 3.69 ± 0.767 bc | 32.426 ± 2.293 bc | |
90 | 22.314 ± 3.338 b | 4.002 ± 0.807 bc | 33.088 ± 2.169 bc | |
120 | 18.354 ± 2.758 ab | 2.17 ± 1.808 abc | 32.472 ± 4.545 bc | |
40 KV | 10 | 18.146 ± 2.492 ab | 1.156 ± 1.128 ab | 32.446 ± 4.074 bc |
30 | 15.822 ± 1.276 a | 0.174 ± 1.696 a | 31.952 ± 2.576 bc | |
60 | 19.242 ± 3.225 ab | 1.312 ± 1.846 ab | 31.940 ± 3.591 bc | |
90 | 18.152 ± 3.327 ab | 0.852 ± 2.021 ab | 30.756 ± 4.829 bc | |
120 | 18.452 ± 1.510 ab | 2.24 ± 2.055 abc | 32.956 ± 2.846 bc | |
50 KV | 10 | 19.456 ± 3.000 ab | 3.488 ± 1.962 bc | 32.534 ± 4.542 bc |
30 | 21.302 ± 4.481 b | 4.938 ± 2.153 c | 34.520 ± 5.535 bc | |
60 | 18.756 ± 2.862 ab | 3.704 ± 1.341 bc | 33.166 ± 3.779 bc | |
90 | 22.954 ± 5.193 b | 3.972 ± 2.069 bc | 31.374 ± 5.549 bc | |
120 | 18.918 ± 2.052 ab | 0.186 ± 2.161 a | 35.136 ± 1.426 c |
Treatment Voltage (KV) | Treatment Time (s) | Fatty Acids (mg/100 g) | Crude Fiber (%) | Crude Protein (%) |
---|---|---|---|---|
/ | 0 | 64.35 ± 1.05 a | 2.30 ± 0 c | 9.18 ± 0.17 a |
30 | 10 | 65.35 ± 2.6 abc | 2.15 ± 0.05 c | 9.05 ± 0.07 a |
30 | 68.4 ± 0.9 abc | 2.1 ± 0 c | 8.875 ± 0.095 a | |
60 | 66.55 ± 0.45 abc | 2 ± 0.1 abc | 8.9 ± 0.13 a | |
90 | 65.7 ± 1.5 abc | 1.95 ± 0.45 abc | 9.155 ± 0.015 a | |
120 | 65.1 ± 3.4 ab | 1.95 ± 0.15 abc | 9.21 ± 0.25 a | |
40 | 10 | 66.7 ± 2.6 abc | 2.05 ± 0.15 bc | 9.16 ± 0 a |
30 | 67.5 ± 0.9 abc | 1.75 ± 0.15 abc | 8.92 ± 0.05 a | |
60 | 68.15 ± 0.45 abc | 1.7 ± 0.2 abc | 9.16 ± 0.21 a | |
90 | 67.4 ± 1.5 abc | 1.7 ± 0 abc | 9 ± 0.22 a | |
120 | 69.3 ± 3.4 abc | 1.55 ± 0.15 ab | 8.975 ± 0.035 a | |
50 | 10 | 66.15 ± 2.55 abc | 1.7 ± 0.1 abc | 9.065 ± 0.085 a |
30 | 66.8 ± 0.1 abc | 1.65 ± 0.05 abc | 9.08 ± 0.14 a | |
60 | 69.3 ± 0.2 abc | 1.8 ± 0.05 abc | 9.105 ± 0.105 a | |
90 | 69.55 ± 0.95 bc | 1.65 ± 0.15 abc | 8.995 ± 0.035 a | |
120 | 70.3 ± 1.2 c | 1.5 ± 0 a | 9.14 ± 0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Niu, L.; Yang, W.; Chen, Y.; Huang, Y.; Li, C. Degradation of Zearalenone by Dielectric Barrier Discharge Cold Plasma and Its Effect on Maize Quality. Foods 2023, 12, 1129. https://doi.org/10.3390/foods12061129
Zheng Z, Niu L, Yang W, Chen Y, Huang Y, Li C. Degradation of Zearalenone by Dielectric Barrier Discharge Cold Plasma and Its Effect on Maize Quality. Foods. 2023; 12(6):1129. https://doi.org/10.3390/foods12061129
Chicago/Turabian StyleZheng, Zhe, Liyang Niu, Wencheng Yang, Yi Chen, Yousheng Huang, and Chang Li. 2023. "Degradation of Zearalenone by Dielectric Barrier Discharge Cold Plasma and Its Effect on Maize Quality" Foods 12, no. 6: 1129. https://doi.org/10.3390/foods12061129