Foodborne Diseases in the Edible Insect Industry in Europe—New Challenges and Old Problems
Abstract
:1. Introduction
2. Edible Insects in the Farm-to-Fork Strategy
3. The Role of Insects in Spread of Pathogenic Microorganisms and Foodborne Pathogens
4. Risk Map
5. Safety of Insects Reared for Food and Feed
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scudder, G.G. The importance of insects. Insect Biodivers. Sci. Soc. 2017, 1, 9–43. [Google Scholar]
- Busvine, J.R. Insects and hygiene. In Insects and Hygiene; Springer: Berlin/Heidelberg, Germany, 1980; pp. 1–20. [Google Scholar]
- Meyer-Rochow, V.B. Can Insects Help to Ease Problem of World Food Shortage. Search 1975, 6, 261–262. [Google Scholar]
- Govorushko, S. Human–Insect Interactions; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Dossey, A.T. Insects and their chemical weaponry: New potential for drug discovery. Nat. Prod. Rep. 2010, 27, 1737–1757. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Deng, P.; Chen, F.; Cao, Y.; Sun, H.; Liao, H. The exploration and utilization of functional substances in edible insects: A review. Food Prod. Process. Nutr. 2022, 4, 11. [Google Scholar] [CrossRef]
- Heuer, H.; Heuer, L.; Saalfrank, V. Living Medication: Overview and Classification into Pharmaceutical Law. In Nature Helps....; Springer: Berlin/Heidelberg, Germany, 2011; pp. 349–367. [Google Scholar]
- Altman, R.D.; Schultz, D.R.; Collins-Yudiskas, B.; Aldrich, J.; Arnold, P.I.; Arnold, P.I.; Brown, H.E. The effects of a partially purified fraction of an ant venom in rheumatoid arthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1984, 27, 277–284. [Google Scholar] [CrossRef]
- Agarwal, S.; Sharma, G.; Verma, K.; Latha, N.; Mathur, V. Pharmacological potential of ants and their symbionts—A review. Entomol. Exp. Et Appl. 2022, 170, 1032–1048. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling consumers who are ready to adopt insects as a meat substitute in a Western society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Patel, S.; Suleria, H.A.R.; Rauf, A. Edible insects as innovative foods: Nutritional and functional assessments. Trends Food Sci. Technol. 2019, 86, 352–359. [Google Scholar] [CrossRef]
- Kinyuru, J.; Ndung’u, N. Promoting edible insects in Kenya: Historical, present and future perspectives towards establishment of a sustainable value chain. J. Insects Food Feed. 2020, 6, 51–58. [Google Scholar] [CrossRef]
- Van Huis, A.; Halloran, A.; Van Itterbeeck, J.; Klunder, H.; Vantomme, P. How many people on our planet eat insects: 2 billion? J. Insects Food Feed. 2022, 8, 1–4. [Google Scholar] [CrossRef]
- Jongema, Y. List of Edible Insects of the World; Laboratory of Entomology, Wageningen University: Wageningen, The Netherlands, 2017. [Google Scholar]
- FAO. Looking at Edible Insects from a Food Safety Perspective. Challenges and Opportunities for the Sector; FAO: Rome, Italy, 2021. [Google Scholar]
- Ebenebe, C.I.; Ibitoye, O.S.; Amobi, I.M.; Okpoko, V.O. African edible insect consumption market. In African Edible Insects as Alternative Source of Food, Oil, Protein and Bioactive Components; Springer: Berlin/Heidelberg, Germany, 2020; pp. 19–51. [Google Scholar]
- Kitsa, K. Contribution des insectes comestibles à l’amélioration de la ration alimentaire au Kasaï-Occidental. Zaïre-Afr. Économie Cult. Vie Soc. 1989, 29, 511–519. [Google Scholar]
- Costa-Neto, E.M. Anthropo-entomophagy in Latin America: An overview of the importance of edible insects to local communities. J. Insects Food Feed. 2015, 1, 17–23. [Google Scholar] [CrossRef]
- Han, R.; Shin, J.T.; Kim, J.; Choi, Y.S.; Kim, Y.W. An overview of the South Korean edible insect food industry: Challenges and future pricing/promotion strategies. Entomol. Res. 2017, 47, 141–151. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU). 2017/2469 of 20 December 2017 Laying Down Administrative and Scientific Requirements for Applications Referred to in Article 10 of Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods; European Union: Luxemburg, 2017. [Google Scholar]
- IPIFF Guide on Good Hygiene Practices for European Union Producers of Insects as Food and Feed. Available online: https://ipiff.org/wp-content/uploads/2019/12/IPIFF-Guide-on-Good-Hygiene-Practices.pdf (accessed on 6 January 2022).
- Lähteenmäki-Uutela, A.; Marimuthu, S.; Meijer, N. Regulations on insects as food and feed: A global comparison. J. Insects Food Feed. 2021, 7, 849–856. [Google Scholar] [CrossRef]
- Niassy, S.; Omuse, E.; Roos, N.; Halloran, A.; Eilenberg, J.; Egonyu, J.; Tanga, C.; Meutchieye, F.; Mwangi, R.; Subramanian, S. Safety, regulatory and environmental issues related to breeding and international trade of edible insects in Africa. Rev. Sci. Tech. 2022, 41, 117–131. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.M.; Zhao, M.; He, Z.; Sun, L.; Wang, C.Y.; Ding, W.F. Edible insects in China: Utilization and prospects. Insect Sci. 2018, 25, 184–198. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of processed edible insect products–results of a preliminary survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.; Ricci, A.; Paoletti, M.G. Edible insects: A food security solution or a food safety concern? Anim. Front. 2015, 5, 25–30. [Google Scholar]
- Belluco, S.; Losasso, C.; Maggioletti, M.; Alonzi, C.C.; Paoletti, M.G.; Ricci, A. Edible insects in a food safety and nutritional perspective: A critical review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 296–313. [Google Scholar] [CrossRef]
- WHO Technical Report Series. Protein and Amino Acid Requirements in Human Nutrition: Report of a Joint FAO/WHO/UNU Expert Consultation; World Health Organization. 2007. Available online: http://whqlibdoc.who.int/trs/who_trs_935_eng.pdf (accessed on 3 May 2022).
- WRAP. Food Futures. From Business as Usual to Business Unusual. In Proceedings of the World Economic Forum, Switzerland. 2021. Available online: http://www.wrap.org.uk/content/food-futures (accessed on 3 May 2022).
- Premalatha, M.; Abbasi, T.; Abbasi, T.; Abbasi, S. Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renew. Sustain. Energy Rev. 2011, 15, 4357–4360. [Google Scholar] [CrossRef]
- Shafiullah, M.; Khalid, U.; Shahbaz, M. Does meat consumption exacerbate greenhouse gas emissions? Evidence from US data. Environ. Sci. Pollut. Res. 2021, 28, 11415–11429. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects: The 2012 Revision; Population division of the department of economic and social affairs of the United Nations Secretariat: New York, NY, USA, 2013; p. 18. [Google Scholar]
- Mitsuhashi, J. The future use of insects as human food. For. Insects Food: Hum. Bite Back 2010, 115, 122. [Google Scholar]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor Larvae) as an alternative protein source for monogastric animal: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Ojha, S.; Bekhit, A.E.-D.; Grune, T.; Schlüter, O.K. Bioavailability of nutrients from edible insects. Curr. Opin. Food Sci. 2021, 41, 240–248. [Google Scholar] [CrossRef]
- Seyedalmoosavi, M.M.; Mielenz, M.; Veldkamp, T.; Daş, G.; Metges, C.C. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: A review. J. Anim. Sci. Biotechnol. 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Barrows, F.T.; Bellis, D.; Krogdahl, Å.; Silverstein, J.T.; Herman, E.M.; Sealey, W.M.; Rust, M.B.; Gatlin III, D.M. Report of the plant products in aquafeed strategic planning workshop: An integrated, interdisciplinary research roadmap for increasing utilization of plant feedstuffs in diets for carnivorous fish. Rev. Fish. Sci. 2008, 16, 449–455. [Google Scholar] [CrossRef]
- Banaszkiewicz, T. Nutritional value of soybean meal. Soybean Nutr. 2011, 12, 1–20. [Google Scholar]
- Tacon, A.G.; Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146–158. [Google Scholar] [CrossRef]
- Shepherd, C.; Jackson, A. Global fishmeal and fish-oil supply: Inputs, outputs and marketsa. J. Fish Biol. 2013, 83, 1046–1066. [Google Scholar] [CrossRef]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Dzwonkowski, W.; Rola, K.; Hanczakowska, E.; Niwińska, B.; Świątkiewicz, S. Raport o Sytuacji na Światowym Rynku Roślin GMO i Możliwościach Substytucji Genetycznie Zmodyfikowanej Soi Krajowymi Roślinami Białkowymi w Aspekcie Bilansu Paszowego; Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej-Państwowy Instytut: Warszawa, Poland, 2015. [Google Scholar]
- The Agricultural Market Information System. Supply and Demand. Available online: https://app.amis-outlook.org/#/market-database/supply-and-demand-overview (accessed on 17 November 2019).
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Katya, K.; Borsra, M.; Ganesan, D.; Kuppusamy, G.; Herriman, M.; Salter, A.; Ali, S.A. Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. Int. Aquat. Res. 2017, 9, 303–312. [Google Scholar] [CrossRef]
- Clarkson, C.; Mirosa, M.; Birch, J. Consumer acceptance of insects and ideal product attributes. Br. Food J. 2018, 120, 2898–2911. [Google Scholar] [CrossRef]
- Costa-Neto, E.M.; Dunkel, F. Insects as food: History, culture, and modern use around the world. In Insects as Sustainable Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2016; pp. 29–60. [Google Scholar]
- Van Huis, A. Edible insects contributing to food security? Agric. Food Secur. 2015, 4, 1–9. [Google Scholar] [CrossRef]
- Bakuła, T.; Gałęcki, R. Strategia Wykorzystania Alternatywnych Źródeł Białka w Żywieniu Zwierząt Oraz Możliwości Rozwoju Jego Produkcji na Terytorium Rzeczpospolitej Polski; ERZET: Olsztyn, Poland, 2021; ISBN 978-83-961897-1-4. [Google Scholar]
- International Platform of Insects for Food and Feed (IPIFF). The European Insect Sector Today: Challenges, Opportunities and Regulatory Landscape. IPIFF Vision Paper on the Future of the Insect Sector towards 2030; IPIFF: Brussels, Belgium, 2018. [Google Scholar]
- Schoenly, K.; Beaver, R.; Heumier, T. On the trophic relations of insects: A food-web approach. Am. Nat. 1991, 137, 597–638. [Google Scholar] [CrossRef]
- Józefiak, D.; Józefiak, A.; Kierończyk, B.; Rawski, M.; Świątkiewicz, S.; Długosz, J.; Engberg, R.M. Insects–a natural nutrient source for poultry–a review. Ann. Anim. Sci. 2016, 16, 297–313. [Google Scholar] [CrossRef]
- Van Huis, A. New sources of animal proteins: Edible insects. In New Aspects of Meat Quality; Elsevier: Amsterdam, The Netherlands, 2017; pp. 443–461. [Google Scholar]
- Gałęcki, R.; Zielonka, Ł.; Zasȩpa, M.; Gołȩbiowska, J.; Bakuła, T. Potential Utilization of Edible Insects as an Alternative Source of Protein in Animal Diets in Poland. Front. Sustain. Food Syst. 2021, 5, 675796. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals. Off. J. Eur. Union 2021, 295, 1–17. [Google Scholar]
- EFSA Scientific Committee. Scientific opinion on a risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06343. [Google Scholar]
- EFSA. Novel Food’ Report: Opinion on the Risk Profile for House Cricket (Acheta domesticus) by the Swedish University of Agricultural Sciences (EFSA Funded Report, Adopted on 6 July 2018); EFSA: Parma, Italy, 2018. [Google Scholar]
- Zielińska, E.; Zieliński, D.; Karaś, M.; Jakubczyk, A. Exploration of consumer acceptance of insects as food in Poland. J. Insects Food Feed. 2020, 6, 383–392. [Google Scholar] [CrossRef]
- Kulma, M.; Tůmová, V.; Fialová, A.; Kouřimská, L. Insect consumption in the Czech Republic: What the eye does not see, the heart does not grieve over. J. Insects Food Feed. 2020, 6, 525–535. [Google Scholar] [CrossRef]
- Mancini, S.; Sogari, G.; Espinosa Diaz, S.; Menozzi, D.; Paci, G.; Moruzzo, R. Exploring the Future of Edible Insects in Europe. Foods 2022, 11, 455. [Google Scholar] [CrossRef]
- Gahukar, R. Edible insects farming: Efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In Insects as Sustainable Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2016; pp. 85–111. [Google Scholar]
- Dobermann, D.; Swift, J.; Field, L. Opportunities and hurdles of edible insects for food and feed. Nutr. Bull. 2017, 42, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Imathiu, S. Benefits and food safety concerns associated with consumption of edible insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Belluco, S.; Mantovani, A.; Ricci, A. Edible insects in a food safety perspective. In Edible Insects in Sustainable Food Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 109–126. [Google Scholar]
- Precup, G.; Ververis, E.; Azzollini, D.; Rivero-Pino, F.; Zakidou, P.; Germini, A. The Safety Assessment of Insects and Products Thereof as Novel Foods in the European Union. Novel Foods and Edible Insects in the European Union; EU: Brussels, Belgium, 2022; p. 123. [Google Scholar]
- Doi, H.; Gałęcki, R.; Mulia, R.N. The merits of entomophagy in the post COVID-19 world. Trends Food Sci. Technol. 2021, 110, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Zurek, L.; Gorham, J.R. Insects as Vectors of Foodborne Pathogens. Wiley Handbook of Science and Technology for Homeland Security; Wiley: Hoboken, NJ, USA, 2008; p. 1. [Google Scholar]
- Graczyk, T.K.; Knight, R.; Tamang, L. Mechanical transmission of human protozoan parasites by insects. Clin. Microbiol. Rev. 2005, 18, 128–132. [Google Scholar] [CrossRef]
- Lounibos, L.P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 2002, 47, 233. [Google Scholar] [CrossRef] [PubMed]
- Yates-Doerr, E. The world in a box? Food security, edible insects, and “One World, One Health” collaboration. Soc. Sci. Med. 2015, 129, 106–112. [Google Scholar] [CrossRef]
- Cao, L.; Ye, Y.; Han, R. Fruiting body production of the medicinal Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes), in artificial medium. Int. J. Med. Mushrooms 2015, 17, 1107–1112. [Google Scholar] [CrossRef]
- Evans, J.; Müller, A.; Jensen, A.; Dahle, B.; Flore, R.; Eilenberg, J.; Frøst, M. A descriptive sensory analysis of honeybee drone brood from Denmark and Norway. J. Insects Food Feed. 2016, 2, 277–283. [Google Scholar] [CrossRef]
- van der Fels-Klerx, H.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food safety issues related to uses of insects for feeds and foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef]
- Dall’Asta, C. Why ‘New’Foods Are Safe and How They Can Be Assessed. Novel Foods and Edible Insects in the European Union; EU: Brussels, Belgium, 2022; p. 81. [Google Scholar]
- Lacey, L.A.; Siegel, J.P. Safety and ecotoxicology of entomopathogenic bacteria. In Entomopathogenic Bacteria: From Laboratory to Field Application; Springer: Berlin/Heidelberg, Germany, 2000; pp. 253–273. [Google Scholar]
- Klunder, H.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Mutungi, C.; Irungu, F.; Nduko, J.; Mutua, F.; Affognon, H.; Nakimbugwe, D.; Ekesi, S.; Fiaboe, K. Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Crit. Rev. Food Sci. Nutr. 2019, 59, 276–298. [Google Scholar] [CrossRef] [Green Version]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Kwiatek, K.; Bakuła, T.; Sieradzki, Z.; Osiński, Z.; Kowalczyk, E. Wytyczne Dobrej Praktyki Higienicznej w Produkcji Owadów dla Celów Paszowych i Spożywczych; Zakład Higieny Pasz Państwowy Instytut Weterynaryjny—Państwowy Instytut Badawczy: Puławy, Poland, 2021; p. 169. Available online: https://www.gov.pl/web/rolnictwo/wytyczne-dobrej-praktyki-higienicznej-w-produkcji-owadow-dla-celow-paszowych-i-spozywczych (accessed on 12 February 2022).
- Belluco, S.; Halloran, A.; Ricci, A. New protein sources and food legislation: The case of edible insects and EU law. Food Secur. 2017, 9, 803–814. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies. Int. J. Food Microbiol. 2017, 261, 11–18. [Google Scholar] [CrossRef]
- Fraqueza, M.J.R.; Patarata, L. Constraints of HACCP application on edible insect for food and feed. Future foods 2017, 89–113. Available online: https://books.google.co.jp/books?hl=pl&lr=&id=SW2PDwAAQBAJ&oi=fnd&pg=PA89&dq=Constraints+of+HACCP+application+on+edible+insect+for+food+and+feed.&ots=zxgVfrH4j8&sig=G6_KoH3yMYyO8Z62vfC2Jhws2nc&redir_esc=y#v=onepage&q=Constraints%20of%20HACCP%20application%20on%20edible%20insect%20for%20food%20and%20feed.&f=false (accessed on 16 February 2022).
- Fernandez-Cassi, X.; Söderqvist, K.; Bakeeva, A.; Vaga, M.; Dicksved, J.; Vagsholm, I.; Jansson, A.; Boqvist, S. Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. J. Insects Food Feed. 2020, 6, 429–440. [Google Scholar] [CrossRef]
- Ng’ang’a, J.; Imathiu, S.; Fombong, F.; Borremans, A.; Van Campenhout, L.; Broeck, J.V.; Kinyuru, J. Can farm weeds improve the growth and microbiological quality of crickets (Gryllus bimaculatus)? J. Insects Food Feed. 2020, 6, 199–209. [Google Scholar] [CrossRef]
- Walia, K.; Kapoor, A.; Farber, J. Qualitative risk assessment of cricket powder to be used to treat undernutrition in infants and children in Cambodia. Food Control 2018, 92, 169–182. [Google Scholar] [CrossRef]
- Inacio, A.C.; Vågsholm, I.; Jansson, A.; Vaga, M.; Boqvist, S.; Fraqueza, M. Impact of starvation on fat content and microbial load in edible crickets (Acheta domesticus). J. Insects Food Feed. 2021, 7, 1143–1147. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Lievens, B.; Van Campenhout, L. Identification of bacterial endospores and targeted detection of foodborne viruses in industrially reared insects for food. Nat. Food 2020, 1, 511–516. [Google Scholar] [CrossRef]
- Fasolato, L.; Cardazzo, B.; Carraro, L.; Fontana, F.; Novelli, E.; Balzan, S. Edible processed insects from e-commerce: Food safety with a focus on the Bacillus cereus group. Food Microbiol. 2018, 76, 296–303. [Google Scholar] [CrossRef]
- Ramashia, S.; Tangulani, T.; Mashau, M.; Nethathe, B. Microbiological quality of different dried insects sold at Thohoyandou open market, South Africa. Food Res. 2020, 4, 2247–2255. [Google Scholar] [CrossRef] [PubMed]
- Adámek, M.; Mlček, J.; Adámková, A.; Suchánková, J.; Janalíková, M.; Borkovcová, M.; Bednářová, M. Effect of different storage conditions on the microbiological characteristics of insect. Potravin. Slovak J. Food Sci. 2018, 12, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Kooh, P.; Ververis, E.; Tesson, V.; Boué, G.; Federighi, M. Entomophagy and public health: A review of microbiological hazards. Health 2019, 11, 1272–1290. [Google Scholar] [CrossRef]
- Borch, E.; Arinder, P. Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Sci. 2002, 62, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Balta, I.; Linton, M.; Pinkerton, L.; Kelly, C.; Stef, L.; Pet, I.; Stef, D.; Criste, A.; Gundogdu, O.; Corcionivoschi, N. The effect of natural antimicrobials against Campylobacter spp. and its similarities to Salmonella spp, Listeria spp., Escherichia coli, Vibrio spp., Clostridium spp. and Staphylococcus spp. Food Control 2021, 121, 107745. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef]
- Chiang, Y.-C.; Tsen, H.-Y.; Chen, H.-Y.; Chang, Y.-H.; Lin, C.-K.; Chen, C.-Y.; Pai, W.-Y. Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli O157: H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples. J. Microbiol. Methods 2012, 88, 110–116. [Google Scholar]
- de Gier, S.; Verhoeckx, K. Insect (food) allergy and allergens. Mol. Immunol. 2018, 100, 82–106. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Cunha, L.M.; Sousa-Pinto, B.; Fonseca, J. Allergic risks of consuming edible insects: A systematic review. Mol. Nutr. Food Res. 2018, 62, 1700030. [Google Scholar] [CrossRef]
- Pener, M.P. Allergy to crickets: A review. J. Orthoptera Res. 2016, 25, 91–95. [Google Scholar] [CrossRef]
- Pomés, A.; Mueller, G.A.; Randall, T.A.; Chapman, M.D.; Arruda, L.K. New insights into cockroach allergens. Curr. Allergy Asthma Rep. 2017, 17, 1–16. [Google Scholar] [CrossRef]
- Pali-Schöll, I.; Meinlschmidt, P.; Larenas-Linnemann, D.; Purschke, B.; Hofstetter, G.; Rodríguez-Monroy, F.A.; Einhorn, L.; Mothes-Luksch, N.; Jensen-Jarolim, E.; Jäger, H. Edible insects: Cross-recognition of IgE from crustacean-and house dust mite allergic patients, and reduction of allergenicity by food processing. World Allergy Organ. J. 2019, 12, 100006. [Google Scholar] [CrossRef] [Green Version]
- Mancini, S.; Fratini, F.; Tuccinardi, T.; Degl’Innocenti, C.; Paci, G. Tenebrio molitor reared on different substrates: Is it gluten free? Food Control 2020, 110, 107014. [Google Scholar] [CrossRef]
- Van Raamsdonk, L.; Van der Fels-Klerx, H.; De Jong, J. New feed ingredients: The insect opportunity. Food Addit. Contam. Part A 2017, 34, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Eilenberg, J.; Vlak, J.; Nielsen-LeRoux, C.; Cappellozza, S.; Jensen, A. Diseases in insects produced for food and feed. J. Insects Food Feed. 2015, 1, 87–102. [Google Scholar] [CrossRef]
- Dicke, M.; Eilenberg, J.; Salles, J.F.; Jensen, A.; Lecocq, A.; Pijlman, G.; Van Loon, J.; Van Oers, M. Edible insects unlikely to contribute to transmission of coronavirus SARS-CoV-2. J. Insects Food Feed. 2020, 6, 333–339. [Google Scholar] [CrossRef]
- Paul, A.; Hasan, A.; Rodes, L.; Sangaralingam, M.; Prakash, S. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: Principles, prospects and challenges. Adv. Drug Deliv. Rev. 2014, 71, 115–130. [Google Scholar] [CrossRef]
- Roundy, C.M.; Hamer, S.A.; Zecca, I.B.; Davila, E.B.; Auckland, L.D.; Tang, W.; Gavranovic, H.; Swiger, S.L.; Tomberlin, J.K.; Fischer, R.S.B.; et al. No Evidence of SARS-CoV-2 Among Flies or Cockroaches in Households Where COVID-19 Positive Cases Resided. J. Med. Entomol. 2022, 59, 1479–1483. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Garofalo, C.; Cardinali, F.; Roncolini, A.; Sabbatini, R.; De Filippis, F.; Ercolini, D.; Gabucci, C.; Petruzzelli, A. Revealing the microbiota of marketed edible insects through PCR-DGGE, metagenomic sequencing and real-time PCR. Int. J. Food Microbiol. 2018, 276, 54–62. [Google Scholar] [CrossRef]
- Boemare, N.; Laumond, C.; Mauleon, H. The entomopathogenic nematode-bacterium complex: Biology, life cycle and vertebrate safety. Biocontrol Sci. Technol. 1996, 6, 333–346. [Google Scholar] [CrossRef]
- Kikuchi, Y. Endosymbiotic bacteria in insects: Their diversity and culturability. Microbes Environ. 2009, 24, 195–204. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends Food Sci. Technol. 2017, 63, 80–90. [Google Scholar] [CrossRef]
- Amadi, E.; Ogbalu, O.; Barimalaa, I.; Pius, M. Microbiology and nutritional composition of an edible larva (Bunaea alcinoe Stoll) of the Niger Delta. J. Food Saf. 2005, 25, 193–197. [Google Scholar] [CrossRef]
- Templeton, J.M.; De Jong, A.J.; Blackall, P.; Miflin, J.K. Survival of Campylobacter spp. in darkling beetles (Alphitobius diaperinus) and their larvae in Australia. Appl. Environ. Microbiol. 2006, 72, 7909–7911. [Google Scholar] [CrossRef] [PubMed]
- Strother, K.O.; Steelman, C.D.; Gbur, E. Reservoir competence of lesser mealworm (Coleoptera: Tenebrionidae) for Campylobacter jejuni (Campylobacterales: Campylobacteraceae). J. Med. Entomol. 2005, 42, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Wales, A.; Carrique-Mas, J.; Rankin, M.; Bell, B.; Thind, B.; Davies, R. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses Public Health 2010, 57, 299–314. [Google Scholar]
- Osimani, A.; Aquilanti, L. Spore-forming bacteria in insect-based foods. Curr. Opin. Food Sci. 2021, 37, 112–117. [Google Scholar] [CrossRef]
- Stentiford, G.; Becnel, J.; Weiss, L.; Keeling, P.; Didier, E.; Bjornson, S.; Freeman, M.; Brown, M.; Roesel, K.; Sokolova, Y. Microsporidia–emergent pathogens in the global food chain. Trends Parasitol. 2016, 32, 336–348. [Google Scholar] [CrossRef]
- Vávra, J.; Horák, A.; Modrý, D.; Lukeš, J.; Koudela, B. Trachipleistophora extenrec n. sp. a new microsporidian (Fungi: Microsporidia) infecting mammals. J. Eukaryot. Microbiol. 2006, 53, 464–476. [Google Scholar] [CrossRef]
- Vávra, J.; Kamler, M.; Modrý, D.; Koudela, B. Opportunistic nature of the mammalian microsporidia: Experimental transmission of Trachipleistophora extenrec (Fungi: Microsporidia) between mammalian and insect hosts. Parasitol. Res. 2011, 108, 1565–1573. [Google Scholar] [CrossRef]
- Schrögel, P.; Wätjen, W. Insects for food and feed-safety aspects related to mycotoxins and metals. Foods 2019, 8, 288. [Google Scholar] [CrossRef]
- Evans, N.M.; Shao, S. Mycotoxin Metabolism by Edible Insects. Toxins 2022, 14, 217. [Google Scholar] [CrossRef] [PubMed]
- Gałęcki, R.; Sokół, R. A parasitological evaluation of edible insects and their role in the transmission of parasitic diseases to humans and animals. PLoS ONE 2019, 14, e0219303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Tegoshi, T.; Abe, N.; Urabe, M. Two Human Cases Infected by the Horsehair Worm, Parachordodes sp.(Nematomorpha: Chordodidae), in Japan. Korean J. Parasitol. 2012, 50, 263. [Google Scholar] [CrossRef] [PubMed]
- Jorjani, O.; Bahlkeh, A.; Koohsar, F.; Talebi, B.; Bagheri, A. Chronic respiratory allergy caused by Lophomonas blattarum: A case report. Med. Lab. J. 2018, 12, 44–46. [Google Scholar] [CrossRef]
- Pappas, P.W.; Barley, A.J. Beetle-to-beetle transmission and dispersal of Hymenolepis diminuta (Cestoda) eggs via the feces of Tenebrio molitor. J. Parasitol. 1999, 85, 384–385. [Google Scholar] [CrossRef] [PubMed]
- Manga-González, M.Y.; González-Lanza, C.; Cabanas, E.; Campo, R. Contributions to and review of dicrocoeliosis, with special reference to the intermediate hosts of Dicrocoelium dendriticum. Parasitology 2001, 123, 91–114. [Google Scholar] [CrossRef]
- Bailey, W.; Cabrera, D.; Diamond, D. Beetles of the family Scarabaeidae as intermediate hosts for Spirocerca lupi. J. Parasitol. 1963, 49, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, P.J.; Moretti, T.d.C.; Ueta, M.T.; Ribeiro, O.B. The role of insects (Blattodea, Diptera, and Hymenoptera) as possible mechanical vectors of helminths in the domiciliary and peridomiciliary environment. Cad. De Saúde Pública 2004, 20, 1096–1102. [Google Scholar] [CrossRef]
- Graczyk, T.K.; Cranfield, M.R.; Fayer, R.; Bixler, H. House flies (Musca domestica) as transport hosts of Cryptosporidium parvum. Am. J. Trop. Med. Hyg. 1999, 61, 500–504. [Google Scholar] [CrossRef]
- Goodwin, M.A.; Waltman, W.D. Transmission of Eimeria, viruses, and bacteria to chicks: Darkling beetles (Alphitobius diaperinus) as vectors of pathogens. J. Appl. Poult. Res. 1996, 5, 51–55. [Google Scholar] [CrossRef]
- Aelami, M.H.; Khoei, A.; Ghorbani, H.; Seilanian-Toosi, F.; Poustchi, E.; Hosseini-Farash, B.R.; Moghaddas, E. Urinary canthariasis due to Tenebrio molitor Larva in a ten-year-old boy. J. Arthropod-Borne Dis. 2019, 13, 416. [Google Scholar] [CrossRef]
- Gałęcki, R.; Michalski, M.M.; Wierzchosławski, K.; Bakuła, T. Gastric canthariasis caused by invasion of mealworm beetle larvae in weaned pigs in large-scale farming. BMC Vet. Res. 2020, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Yang, B.-K.; Lee, J.-S.; Yoon, J.U.; Hong, K.-J. Infestation status of the darkling beetle (Alphitobius diaperinus) in Broiler chicken houses of Korea. Korean J. Appl. Entomol. 2019, 58, 189–196. [Google Scholar]
- Maciel-Vergara, G.; Jensen, A.; Lecocq, A.; Eilenberg, J. Diseases in edible insect rearing systems. J. Insects Food Feed. 2021, 7, 621–638. [Google Scholar] [CrossRef]
- Gahukar, R.T. Edible insects collected from forests for family livelihood and wellness of rural communities: A review. Glob. Food Secur. 2020, 25, 100348. [Google Scholar] [CrossRef]
- Henke, M.O.; De Hoog, G.S.; Gross, U.; Zimmermann, G.; Kraemer, D.; Weig, M. Human deep tissue infection with an entomopathogenic Beauveria species. J. Clin. Microbiol. 2002, 40, 2698–2702. [Google Scholar] [CrossRef]
- Lange, K.W.; Nakamura, Y. Edible insects as future food: Chances and challenges. J. Future Foods 2021, 1, 38–46. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Bioaccumulation of heavy metals in the black soldier fly, Hermetia illucens and effects on its life cycle. J. Insects Food Feed. 2015, 1, 261–270. [Google Scholar] [CrossRef]
- Skotnicka, M.; Karwowska, K.; Kłobukowski, F.; Borkowska, A.; Pieszko, M. Possibilities of the development of edible insect-based foods in Europe. Foods 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU). 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No. 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No. 142/2011 as Regards the Provisions on Processed Animal Protein; European Union: Luxemburg, 2017. [Google Scholar]
- Commission Regulation (EC). No. 1069/2009, Regulation (EC) No. 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal By-Products and Derived Products not Intended for Human Consumption and Repealing Regulation (EC) No. 1774/2002; European Union: Luxemburg, 2002. [Google Scholar]
- Commission Regulation (EU). No. 142/2011, of 25 February 2011 Implementing Regulation (EC) No. 1069/2009 of the European Parliament and of the Council Laying Down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border under that Directive; European Union: Luxemburg, 2011. [Google Scholar]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: Astate-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef] [PubMed]
- Laurenza, E.C.; Carreño, I. Edible insects and insect-based products in the EU: Safety assessments, legal loopholes and business opportunities. Eur. J. Risk Regul. 2015, 6, 288–292. [Google Scholar] [CrossRef]
- Commission Regulation (EC). Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed—Council statement; 2002 178/2002 of the European Parliament and of the Council of 28 January 2002; European Union: Luxemburg, 2002. [Google Scholar]
- Commission Regulation (EC). Regulation (EC) No. 178/2002 of the European Parliament and of the Council of 28 January 2002 Laying Down the General Principles and Requirements of Food Law, Establishing the European Food Safety Authority and Laying Down Procedures in Matters of Food Safety; European Union: Luxemburg, 2002. [Google Scholar]
- Poma, G.; Cuykx, M.; Da Silva, K.M.; Iturrospe, E.; van Nuijs, A.L.; van Huis, A.; Covaci, A. Edible insects in the metabolomics era. First steps towards the implementation of entometabolomics in food systems. Trends Food Sci. Technol. 2021, 119, 371–377. [Google Scholar]
- Commission Regulation (EC). Commission Notice—Guidelines for the Feed Use of Food No Longer Intended for Human Consumption C/2018/2035; European Union: Luxemburg, 2018. [Google Scholar]
- Elechi, M.C.; Kemabonta, K.A.; Ogbogu, S.S.; Orabueze, I.C.; Adetoro, F.A.; Adebayo, H.A.; Obe, T.M. Heavy metal bioaccumulation in prepupae of black soldier fly Hermetia Illucens (Diptera: Stratiomyidae) cultured with organic wastes and chicken feed. Int. J. Trop. Insect Sci. 2021, 41, 2125–2131. [Google Scholar] [CrossRef]
- Cai, M.; Ma, S.; Hu, R.; Tomberlin, J.K.; Thomashow, L.S.; Zheng, L.; Li, W.; Yu, Z.; Zhang, J. Rapidly mitigating antibiotic resistant risks in chicken manure by Hermetia illucens bioconversion with intestinal microflora. Environ. Microbiol. 2018, 20, 4051–4062. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Liu, T.; Awasthi, S.K.; Duan, Y.; Pandey, A.; Zhang, Z. Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content. Sci. Total Environ. 2020, 737, 139842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Jiang, L.; Yu, X.; Zhu, H.; Zhang, J.; Feng, Z.; Zhang, X.; Chen, G.; Zhang, Z. Black soldier fly (Hermetia illucens) larvae significantly change the microbial community in chicken manure. Curr. Microbiol. 2021, 78, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Wiedmer, S.; Kurth, M. Risk evaluation of passive transmission of animal parasites by feeding of black soldier fly (Hermetia illucens) larvae and prepupae. J. Food Prot. 2019, 82, 948–954. [Google Scholar] [CrossRef]
- Melgar-Lalanne, G.; Hernández-Álvarez, A.J.; Salinas-Castro, A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1166–1191. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EC). No. 2073/2005 of 15 November 2005 on Microbiological Criteria for Food-Stuffs; European Union: Luxemburg, 2005. [Google Scholar]
Stages of Contamination | Risks | Treatment | Reference |
---|---|---|---|
Substrate |
| [89,90,91] | |
Rearing |
| [89] | |
Harvest |
| Gut emptying by starvation prior to killing could reduce the microbial load in the insect gut, but it could also decrease fat and energy content and profitability of production. | [92] |
Processing |
| Thermal treatments, novel processing methods (i.e., high-pressure processing), and additional post-processing treatments (acidification, addition of food preservatives, modified atmosphere packaging, etc.) should be applied to extend crickets’ shelf-life. | [89,93,94] |
Transport | https://ipiff.org/wp-content/uploads/2019/12/IPIFF-Guide-on-Good-Hygiene-Practices.pdf (accessed on: 13.November.2022) | ||
Preparation |
| [95] | |
Storage |
| Insects intended for long-term storage should be killed in boiling water, dried at 103 °C for 12 h, and hermetically packed. | [96] |
Consumption |
| [18,28,93,97] | |
R&D |
| [89] |
Type of Hazard | Infectious Agent | Sensitive Species | Predisposing Factors | References |
---|---|---|---|---|
Prion vectors | Proteinaceous infectious particles | All species fed contaminated substrates of animal origin |
| [70,108] |
Viruses | Caliciviridae Hepadnaviridae Vesicular stomatitis virus (VSV) | Migratory locust (Lo. migratoria), black soldier fly (H. illucens) Insects harvested from the natural environment |
| [53,88] |
Bacteria | Aeromonas hydrophila, B. cereus, Clostridium difficile, Clostridium perfringens, Clostridium septicum, Clostridium sporogenes, E. coli, Enterococcus faecium, Enterococcus faecalis, Listeria spp., Salmonella spp., S. aureus. | Migratory locust (Lo. migratoria) Yellow mealworm (T. molitor) Lesser mealworm (A. diaperinus) House cricket (Ach. domesticus) Domestic silk moth (B. mori) Insects harvested from the natural environment |
| [98,99,100,101,117] |
Fungi and mycotoxins | Aspergillus fumigatus, Aspergillus sclerotiorum, Cladosporium spp. Penicillium spp., Fusarium spp., Phycomycetes spp. Microsporidia | Migratory locust (Lo. migratoria) Black soldier fly (H. illucens) Yellow mealworm (T. molitor) |
| [28,83,125,140] |
Parasites | Protozoa (Balantidium spp., Cryptosporidium spp., Entamoeba spp.) Trematoda (Dicrocoelium spp., Lecithodendriidae) Cestoda (Hymenolepis spp., Raillietina spp.) Nematoda (Gordius spp., Spirocerca spp.) | Yellow mealworm (T. molitor) Lesser mealworm (A. diaperinus) House cricket (Ach domesticus) Insects harvested from the natural environment |
| [4,127,128,129,130,131,132,133,134,135] |
Mites | Acarus spp., Dermatophagoides spp., Goheria spp. Tyrophagus spp. | Mealworm (T molitor) Lesser mealworm (A. diaperinus) Black soldier fly (H. illucens) House cricket (Ach. domesticus) |
| [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gałęcki, R.; Bakuła, T.; Gołaszewski, J. Foodborne Diseases in the Edible Insect Industry in Europe—New Challenges and Old Problems. Foods 2023, 12, 770. https://doi.org/10.3390/foods12040770
Gałęcki R, Bakuła T, Gołaszewski J. Foodborne Diseases in the Edible Insect Industry in Europe—New Challenges and Old Problems. Foods. 2023; 12(4):770. https://doi.org/10.3390/foods12040770
Chicago/Turabian StyleGałęcki, Remigiusz, Tadeusz Bakuła, and Janusz Gołaszewski. 2023. "Foodborne Diseases in the Edible Insect Industry in Europe—New Challenges and Old Problems" Foods 12, no. 4: 770. https://doi.org/10.3390/foods12040770