Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Instruments
2.3. Extraction, Fractionation, and Isolation of A. rugosa
2.4. UPLC-qTof Mass Spectrometry Analysis
2.5. XO Inhibitory Activity and XO Kinetic Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bioassay-Guided Isolation and Identification of Compounds
3.2. XO Inhibitory Activity of Identified Compounds
3.3. UPLC-qTof Mass Spectrometry Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, T. Hyperuricemia, gout and the kidney. Curr. Opin. Rheumatol. 2012, 24, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Bitik, B.; Öztürk, M.A. An old disease with new insights: Update on diagnosis and treatment of gout. Eur. J. Rheumatol. 2014, 1, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zheng, A.; Xu, P.; Wang, J.; Xue, T.; Dai, S.; Pan, S.; Guo, Y.; Xie, X.; Li, L.; et al. High-protein diet induces hyperuricemia in a new animal model for studying human gout. Int. J. Mol. Sci. 2020, 21, 2147. [Google Scholar]
- Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 2014, 16, 400. [Google Scholar] [CrossRef]
- Fukunari, A.; Okamoto, K.; Nishino, T.B.; Eger, T.; Pai, E.F.; Kamezawa, M.; Yamada, I.; Kato, N. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: A potent xanthine oxidoreductase inhibitor with hepatic excretion. J. Pharmacol. Exp. Ther. 2004, 311, 519–528. [Google Scholar] [CrossRef]
- Huo, L.-N.; Wang, W.; Zhang, C.-Y.; Shi, H.-B.; Liu, Y.; Liu, X.H.; Guo, B.-H.; Zhao, D.-M.; Gao, H. Bioassy-guided isolation and identification of xanthine oxidase inhibitory constituents from the leaves of Perilla frutescens. Molecules 2015, 20, 17848–17859. [Google Scholar] [CrossRef]
- Orhan, I.E.; Deniz, F.S.S. Natural products and extracts as xantine oxidase inhibitors—A hope for gout disease? Curr. Pharm. Des. 2021, 27, 143–158. [Google Scholar] [CrossRef]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache rugosa and its Correlation with Colour and Poly-Phenol Content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef]
- Hong, S.; Cha, K.H.; Kwon, D.Y.; Son, Y.J.; Kim, S.M.; Choi, J.H.; Yoo, G.; Nho, C.W. Agastache rugosa ethanol extract suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. Phytomedicine 2021, 84, 153517. [Google Scholar] [CrossRef]
- Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W.Y. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med. 2017, 17, 93. [Google Scholar] [CrossRef]
- Oh, Y.R.; Lim, H.W.; Huang, Y.H.; Kwon, H.S.; Jin, C.D.; Kim, K.H.; Lim, C.J. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. J. Photochem. Photobiol. B Biol. 2016, 163, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.; Gu, M.J.; Han, J.; Cho, W.; Ma, J.Y. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. J. Funct. Foods 2017, 30, 30–38. [Google Scholar] [CrossRef]
- Jang, S.A.; Hwang, Y.H.; Kim, T.; Yang, H.; Lee, J.; Seo, Y.H.; Park, J.I.; Ha, H. Water extract of Agastache rugosa prevents ovariectomy-induced bone loss by inhibiting osteoclastogenesis. Foods 2020, 9, 1181. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, H.W.; Ryu, I.W.; Huang, Y.H.; Park, M.; Chi, Y.M.; Lim, C.J. Anti-inflammatory, barrier-protective, and antiwrinkle properties of Agastache rugosa Kuntze in human epidermal keratinocytes. BioMed Res. Int. 2020, 2020, 1759067. [Google Scholar] [CrossRef] [PubMed]
- Shin, S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 2004, 27, 295–299. [Google Scholar] [CrossRef]
- An, J.H.; Yuk, H.J.; Kim, D.Y.; Nho, C.W.; Lee, D.H.; Ryu, H.W.; Oh, S.R. Evaluation of phytochemicals in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze at different growth stages by UPLC-QTof-MS. Ind. Crops Prod. 2018, 112, 608–616. [Google Scholar]
- Yeo, H.J.; Park, C.H.; Park, Y.E.; Hyeon, H.; Kim, J.K.; Lee, S.Y.; Park, S.U. Metabolic profiling and antioxidant activity during flower development in Agastache rugose. Physiol. Mol. Biol. Plants 2021, 27, 445–455. [Google Scholar] [CrossRef]
- Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002, 294, 167–172. [Google Scholar] [CrossRef]
- Yuk, H.J.; Song, Y.H.; Curtis-Long, M.J.; Kim, D.W.; Woo, S.G.; Lee, Y.B.; Uddin, Z.; Kim, C.Y.; Park, K.H. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 2016, 64, 7315–7324. [Google Scholar] [CrossRef]
- Ai, C.B.; Li, L.N. Stereostructure of salvianolic acid B and isolation of salvianolic acid C from Salvia miltiorrhiza. J. Nat. Prod. 1988, 51, 145–149. [Google Scholar] [CrossRef]
- Yuk, H.J.; Lee, Y.S.; Ryu, H.W.; Kim, S.H.; Kim, D.S. Effects of Toona sinensis leaf extract and its chemical constituents on xanthine oxidase activity and serum uric acid levels in potassium oxonate-induced hyperuricemic rats. Molecules 2018, 23, 3254. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.J.; Kim, J.W.; Sung, Y.Y.; Kim, D.S. Phloroglucinol derivatives from Dryopteris crassirhizoma as potent xanthine oxidase inhibitors. Molecules 2021, 26, 122. [Google Scholar] [CrossRef]
- Kim, J.Y.; Wang, Y.; Li, Z.P.; Baiseitova, A.; Ban, Y.J.; Park, K.H. Xanthine oxidase inhibition and anti-LDL oxidation by prenylated isoflavones from Flemingia philippinensis root. Molecules 2020, 25, 3074. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Jang, H.; Bo, S.; Kim, M.; Deepa, P.; Park, J.; Sowndhararajan, K.; Kim, S. Changes in human electroencephalographic activity in response to Agastache rugosa essential oil exposure. Behav. Sci. 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Keum, Y.S.; Nile, A.S.; Kwon, Y.D.; Kim, D.H. Potential cow milk xanthine oxidase inhibitory and antioxidant activity of selected phenolic acid derivatives. J. Biochem. Mol. Toxicol. 2018, 32, e22005. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, L.; Ren, L.; Xie, Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Awale, S.; Tezuka, Y.; Ueda, J.Y.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Medica 2006, 72, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.; Fernandes, E.; Roleira, F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 2002, 9, 195–217. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.W.; Ryu, H.W.; Kim, J.H.; Han, S.I.; Ra, J.E.; Seo, K.H.; Jang, K.C.; Lee, J.H. Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. J. Funct. Foods 2013, 5, 1421–1431. [Google Scholar] [CrossRef]
- Kim, N.Y.; Kwon, H.S.; Lee, H.Y. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. J. Cosmet. Dermatol. 2016, 16, 407–415. [Google Scholar] [CrossRef]
Compound | Extraction Yield (%) 1 | Xanthine Oxidase | ||
---|---|---|---|---|
IC50 | Inhibition % 2 | Kinetic Mode (Ki, µM) | ||
EtOH | 3.9 | 54.2 ± 0.9 µg/mL | 71.8 ± 1.3 | - |
70% EtOH | 10.1 | 31.9 ± 1.4 µg/mL | 88.4 ± 1.1 | - |
50% EtOH | 11.3 | 32.4 ± 1.2 µg/mL | 86.2 ± 1.2 | - |
30% EtOH | 9.5 | 64.8 ± 1.1 µg/mL | 63.7 ± 1.1 | - |
H2O | 12.0 | >250 µg/mL | 31.8 ± 1.6 | - |
1 | - | >100 µM | 27.2 ± 1.5 | NT 3 |
2 | - | 30.7 ± 0.8 µM | 46.1 ± 1.2 | NT |
3 | - | 26.4 ± 0.6 µM | 49.3 ± 1.5 | NT |
4 | - | 80.6 ± 0.7 µM | 36.2 ± 1.4 | NT |
5 | - | 74.5 ± 0.9 µM | 40.7 ± 1.5 | NT |
6 | - | >100 µM | 26.2 ± 0.9 | NT |
7 | - | 0.58 ± 0.5 µM | 94.5 ± 1.4 | Mixed (0.61) |
Apigenin | - | 0.87 ± µM | 88.6 ± 1.2 | Competitive |
Allopurinol | - | 4.2 ± µM | 82.5 ± 1.2 | Competitive |
Peak | tR | λmax | Dried Aerial Parts(mg/g) a | Molecular Ion [M–H]−/[M+H]+ | Elemental Composition | Identity | |
---|---|---|---|---|---|---|---|
(no.) | (min) | (nm) | 50% ARE | Hydrolysis of 50%ARE | (m/z) | (ppm Error) | |
1 | 5.94 | 200,329 | 4.05 | 3.82 | 359.0777 [M–H]− | C18H16O8 (2.8) | Rosmarinic acid |
2 | 6.85 | 287,329 | 0.06 | 0.05 | 717.1453 [M–H]− | C36H30O16 (−0.4) | Salvianolic acid B |
3 | 7.84 | 267,332 | 9.24 | <0.05 | 447.1286 [M+H]+ | C22H22O10 (−1.1) | Tilianin |
4 | 8.62 | 267,332 | 5.22 | <0.05 | 533.1293 [M+H]+ | C25H24O13 (−0.4) | Acacetin 7-O-(6-O-malonyl)-β-D-glucoside |
5 | 9.06 | 267,332 | 0.37 | <0.05 | 489.1394 [M+H]+ | C24H24O11 (−0.6) | Acacetin 7-O-(2″-O-acetyl)-β-D-glucoside |
6 | 9.78 | 267,332 | 0.45 | <0.05 | 575.1399 [M+H]+ | C27H26O14 (−0.3) | Acacetin 7-O-(2″-O-acetyl-6″-O-malonyl)-β-D-glucoside |
7 | 10.85 | 267,332 | 1.97 | 10.2 | 285.0755 [M+H]+ | C16H12O5 (−2.8) | Acacetin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuk, H.J.; Ryu, H.W.; Kim, D.-S. Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods 2023, 12, 573. https://doi.org/10.3390/foods12030573
Yuk HJ, Ryu HW, Kim D-S. Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods. 2023; 12(3):573. https://doi.org/10.3390/foods12030573
Chicago/Turabian StyleYuk, Heung Joo, Hyung Won Ryu, and Dong-Seon Kim. 2023. "Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze" Foods 12, no. 3: 573. https://doi.org/10.3390/foods12030573
APA StyleYuk, H. J., Ryu, H. W., & Kim, D.-S. (2023). Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods, 12(3), 573. https://doi.org/10.3390/foods12030573