Influence of Hazelnut and Walnut Oil Cakes Powder on Thermal and Rheological Properties of Wheat Flour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Determination of Chemical Composition of Analyzed Systems
2.2.2. Measurement of Thermodynamic Characteristics of Gelatinization
2.2.3. Measurement of Pasting Characteristics
2.2.4. Determination of Viscosity Curves
2.2.5. Determination of Mechanical Spectra
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Gelatinization and Retrogradation Properties of Tested Samples
3.3. Pasting Properties
3.4. Flow Behavior and Thixotropy
3.5. Viscoelastic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gόmez, M.; Oliete, B.; Caballero, P.A.; Ronda, F.; Blanco, C. Effect of Nut Paste Enrichment on Wheat Dough Rheology and Bread Volume. Food Sci. Technol. Int. 2008, 14, 57–65. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia seeds: Microstructure, mucilage extraction and hydration. J. Food Eng. 2012, 108, 216–224. [Google Scholar] [CrossRef]
- Kornsteiner, M.; Karl-Heinz, W.; Ibrahim, E. Tocopherols and phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2013–2111. [Google Scholar] [CrossRef] [PubMed]
- Uddin, Y.; Khan, N.M.; Ali, F.; Ahmad, S.; Khan, Z.U.; Nawaz, M.A.; Wang, J. Estimation of Various Physicochemical Properties of Walnut Oil from Different Areas of Northern Kpk, Pakistan. J. Mex. Chem. Soc. 2021, 65, 572–581. [Google Scholar] [CrossRef]
- Gałkowska, D.; Witczak, T.; Pycia, K. Quality characteristics of novel pasta enriched with non-extruded and extruded blackcurrant pomace. Molecules 2022, 27, 8616. [Google Scholar] [CrossRef]
- Pycia, K.; Pawłowska, A.M.; Kaszuba, J.; Żurek, N. Walnut Male Flowers (Juglans regia L.) as a Functional Addition to Wheat Bread. Foods 2022, 11, 3988. [Google Scholar] [CrossRef]
- Żurek, N.; Pawłowska, A.; Pycia, K.; Grabek-Lejko, D.; Kapusta, I. Phenolic profile and antioxidant, antibacterial, and antiproliferative activity of Juglans regia L. male flowers. Molecules 2022, 27, 2762. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Kapusta, I.T. Phytochemical screening and bioactive Properties of Juglans regia L. pollen. Antioxidants 2022, 11, 2046. [Google Scholar] [CrossRef]
- Żurek, N.; Pycia, K.; Pawłowska, A.; Potocki, L.; Kapusta, I.T. Chemical profiling, bioactive properties, and anticancer and antimicrobial potential of Juglans regia L. leaves. Molecules 2023, 28, 1989. [Google Scholar] [CrossRef]
- Bárta, J.; Bártová, V.; Jarošová, M.; Švajner, J.; Smetana, P.; Kadlec, J.; Filip, V.; Kyselka, J.; Berčíková, M.; Zdráhal, Z.; et al. Oilseed cake flour composition, functional properties and antioxidant potential as effects of sieving and species differences. Foods 2021, 10, 2766. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, N.; Chakraborty, D.; Dutta, R.; Agrahari, P.; Bharathi, S.D.; Singh, A.A.; Jacob, S. A comprehensive review on oilseed cakes and their potential as a feedstock for integrated biorefinery. J. Adv. Biotechnol. Exp. Ther. 2021, 4, 376–387. [Google Scholar] [CrossRef]
- Pycia, K.; Juszczak, L. The Influence of the Addition of Nuts on the Thermal and Rheological Properties of Wheat Flour. Molecules 2021, 26, 3969. [Google Scholar] [CrossRef] [PubMed]
- Pycia, K.; Juszczak, L. The Effect of the Addition of Hazelnut or Walnut Flour on the Rheological Characteristics of Wheat Dough. Materials 2022, 15, 782. [Google Scholar] [CrossRef]
- AACC. AACC Method 44-15.02. Moisture—Air-Oven Methods. In AACC Approved Methods of Analysis; Cereals & Grains Association: St. Paul, MN, USA, 2009. [Google Scholar]
- American Association of Cereal Chemists. AOAC Approved Methods of the AAAC, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2006. [Google Scholar]
- Determination of Crude Fiber Value. ICC Standard no 113. International Association for Cereal Chemistry: Vienna, Austria, 1995.
- Gałkowska, D.; Juszczak, L. Effects of amino acids on gelatinization, pasting and rheological properties of modified potato starches. Food Hydrocoll. 2019, 92, 143–154. [Google Scholar] [CrossRef]
- Pycia, K.; Kaszuba, J.; Posadzka, Z.; Juszczak, L. Influence of the Addition of Vital Wheat Gluten on Thermal and Rheological Properties of Triticale Flour. Polymers 2023, 15, 1870. [Google Scholar] [CrossRef]
- Pycia, K.; Juszczak, L.; Gałkowska, D.; Witczak, M. Physicochemical properties of starches obtained from Polish potato cultivars. Starch/Stärke 2012, 64, 105–114. [Google Scholar] [CrossRef]
- Bochkarev, B.; Egorova, E.; Poznyakovskiy, V. Reasons for the ways of using oilcakes in food industry. Foods Raw Mater. 2016, 4, 4–12. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Gangadharan, D. Chapter 13 Edible Oil Cakes. In Biotechnology for Agro-Industrial Residues Utilisation; Singh nee’ Nigam, P., Pandey, A., Eds.; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Rittenauer, M.; Gladis, S.; Gastl, M.; Becker, T. Gelatinization or Pasting? The Impact of Different Temperature Levels on the Saccharification Efficiency of Barley Malt Starch. Foods 2021, 10, 1733. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Bintang, S.; Soeherman, G.P.; Djali, M. Physicochemical and Pasting Properties of Corn Starch as Affected by Hydrothermal Modification by Various Methods. Int. J. Food Prop. 2022, 25, 792–812. [Google Scholar] [CrossRef]
- Hoover, R.; Vasanthan, T. The effect of annealing on the physico-chemical properties of wheat, oat, potato and lentil starches. J. Food Biochem. 1994, 17, 303–325. [Google Scholar] [CrossRef]
- Noda, T.; Takahata, Y.; Sato Ikoma, H.; Mochida, H. Physicochemical properties of starches from purple and orange-fleshed sweet potato roots at two levels of fertilizer. Starch 1996, 48, 395–399. [Google Scholar] [CrossRef]
- Tester, R.F. Starch: The polysaccharide fractions. In Starch, Structure and Functionality; Frazier, P.J., Richmond, P., Donald, A.M., Eds.; Royal Society of Chemistry: London, UK, 1997; pp. 163–171. [Google Scholar]
- Pietrzyk, S.; Juszczak, L.; Fortuna, T.; Ciemniewska, A. Effect of the oxidation level of corn starch on its acetylation and physicochemical and rheological properties. J. Food Eng. 2014, 120, 50–56. [Google Scholar] [CrossRef]
- Schmiele, M.; Jaekel, L.Z.; Patricio, S.M.C.; Steel, C.J.; Chang, Y.K. Rheological properties of wheat flour and quality characteristics of pan bread as modified by partial additions of wheat bran or whole grain wheat flour. Int. J. Food Sci. Technol. 2012, 47, 2141–2150. [Google Scholar] [CrossRef]
- Gałkowska, D.; Dudycz, A.; Juszczak, L. Effect of potato protein on thermal and rheological characteristics of maize starches with different amylose contents. Starch/Stärke 2021, 73, 2000216. [Google Scholar] [CrossRef]
Sample | Moisture Content [%] | Lipid Content [%] | Ash Content [%] | Crude Fiber Content [%] |
---|---|---|---|---|
Control | 14.0 a ± 0.1 | 0.9 a ± 0.1 | 0.7 a ± 0,1 | 2.2 a ± 0.0 |
WFHOC5% | 14.1 a ± 0.0 | 1.7 b ± 0.0 | 0.7 a ± 0.1 | 7.4 b ± 0.2 |
WFHOC10% | 14.0 a ± 0.1 | 2.6 c ± 0.1 | 1.1 b ± 0.2 | 9.3 d ± 0.6 |
WFHOC15% | 13.5 a ± 0.1 | 4.3 d ± 0.7 | 1.3 b ± 0.1 | 12.0 e ± 0.2 |
WFWOC5% | 13.8 a ± 0.0 | 1.6 b ± 0.1 | 0.7 a ± 0.0 | 8.3 c ± 0.1 |
WFWOC10% | 13.6 a ± 0.1 | 3.1 c ± 0.6 | 0.8 a ± 0.1 | 8.2 c ± 0.2 |
WFWOC15% | 13.5 a ± 0.0 | 4.5 d ± 0.3 | 1.2 b ± 0.1 | 12.9 e ± 0.3 |
Sample | Gelatinization | Retrogradation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TO (°C) | TP (°C) | TE (°C) | ΔT (°C) | ΔHG (J/g) | TO (°C) | TP (°C) | TE (°C) | ΔT (°C) | ΔHR (J/g) | R (%) | |
Control | 58.8 a ± 0.9 | 64.2 a ± 0.8 | 71.1 a ± 0.4 | 12.3 a ± 1.2 | 5.3 d ± 0.5 | 45.8 a ± 0.9 | 52.3 a ± 0.2 | 62.4 ab ± 1.3 | 16.6 b ± 1.4 | 1.3 d ± 0.1 | 24.0 c ± 3.8 |
WFHOC5% | 58.9 a ± 0.4 | 64.1 a ± 0.0 | 70.3 a ± 0.9 | 11.4 a ± 1.3 | 4.3 b ± 0.4 | 48.3 bc ± 1.8 | 54.5 ab ± 2.6 | 63.3 b ± 2.2 | 15.0 a ± 3.5 | 0.9 c ± 0.1 | 22.3 c ± 4.1 |
WFHOC10% | 60.1 b ± 0.3 | 65.2 ab ± 0.3 | 71.3 a ± 0.6 | 11.2 a ± 0.4 | 4.8 bc ± 0.1 | 47.5 bc ± 0.4 | 55.7 b ± 0.9 | 61.8 ab ± 0.1 | 14.3 a ± 0.4 | 0.7 b ± 0.1 | 14.4 b ± 1.4 |
WFHOC15% | 60.2 b ± 0.1 | 65.5 b ± 0.2 | 70.6 a ± 1.4 | 10.4 a ± 1.5 | 4.7 bc ± 0.3 | 49.3 cd ± 0.8 | 55.9 b ± 0.3 | 62.1 ab ± 0.8 | 12.8 a ± 1.4 | 0.4 a ± 0.1 | 8.9 a ± 2.9 |
WFWOC5% | 59.6 ab ± 0.3 | 65.0 ab ± 0.4 | 71.1 a ± 0.6 | 11.5 a ± 0.4 | 5.9 e ± 0.4 | 46.8 b ± 0.7 | 52.8 a ± 0.5 | 61.7 ab ± 0.3 | 14.9 a ± 0.8 | 0.7 b ± 0.0 | 12.6 ab ± 1.4 |
WFWOC10% | 60.0 b ± 0.6 | 65.5 b ± 0.4 | 70.8 a ± 1.6 | 10.8 a ± 1.0 | 5.1 c ± 0.4 | 48.1 bc ± 0.3 | 54.5 ab ± 0.6 | 61.0 a ± 1.1 | 12.9 a ± 0.9 | 0.6 b ± 0.1 | 11.6 ab ± 1.7 |
WFWOC15% | 60.1 b ± 0.7 | 64.7 b ± 0.4 | 69.8 a ± 0.6 | 9.7 a ± 0.2 | 3.6 a ± 0.5 | 50.2 d ± 1.1 | 56.1 b ± 0.5 | 61.8 ab ± 0.9 | 11.6 a ± 1.5 | 0.3 a ± 0.1 | 9.7 ab ± 2.8 |
Two-way ANOVA p-values | |||||||||||
Factor 1 | p = 0.381 | p = 0.044 | p = 0.781 | p = 0.468 | p = 0.128 | p = 0.945 | p = 0.131 | p = 0.109 | p = 0.299 | p ≤ 0.001 | p ≤ 0.001 |
Factor 2 | p ≤ 0.001 | p ≤ 0.001 | p = 0.394 | p = 0.063 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p = 0.280 | p = 0.058 | p ≤ 0.001 | p ≤ 0.001 |
Factor 1 × factor 2 | p = 0.259 | p ≤ 0.001 | p = 0.429 | p = 0.780 | p ≤ 0.001 | p = 0.101 | p = 0.373 | p = 0.607 | p = 0.786 | p = 0.449 | p ≤ 0.001 |
Sample | PT (°C) | PV (mPa·s) | HPV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB mPa·s) |
---|---|---|---|---|---|---|
Control | 64.8 a ± 0.1 | 1923 f ± 4 | 1048 g ± 10 | 875 f ± 8 | 1993 f ± 6 | 945 g ± 6 |
WFHOC5% | 66.1 b ± 0.8 | 1804 e ± 28 | 1002 f ± 24 | 802 e ± 9 | 1894 e ± 28 | 893 f ± 8 |
WFHOC10% | 66.2 b ± 0.9 | 1670 c ± 16 | 965 e ± 13 | 705 c ± 7 | 1825 d ± 14 | 860 e ± 2 |
WFHOC15% | 66.1 b ± 0.5 | 1522 b ± 6 | 912 d ± 12 | 610 a ± 10 | 1705 c ± 13 | 792 c ± 3 |
WFWOC5% | 65.4 b ± 0.5 | 1752 d ± 15 | 884 c ± 10 | 868 f ± 6 | 1720 c ± 13 | 836 d ± 3 |
WFWOC10% | 66.1 b ± 0.4 | 1512 b ± 7 | 740 b ± 5 | 772 d ± 5 | 1418 b ± 6 | 678 b ± 2 |
WFWOC15% | 66.4 b ± 0.0 | 1333 a ± 11 | 640 a ± 9 | 692 b ± 3 | 1197 a ± 22 | 557 a ± 13 |
Two-way ANOVA p-values | ||||||
Factor 1 | p = 0.524 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 |
Factor 2 | p = 0.323 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 |
Factor 1 × factor 2 | p = 0.364 | p ≤ 0.001 | p ≤ 0.001 | p = 0.110 | p ≤ 0.001 | p ≤ 0.001 |
Sample | K (Pa∙sn) | n | R2 |
---|---|---|---|
control | 19.5 f ± 0.6 | 0.43 b ± 0.01 | 0.9983 |
WFHOC5% | 18.8 e ± 0.3 | 0.43 b ± 0.01 | 0.9941 |
WFHOC10% | 16.6 c ± 0.8 | 0.44 bc ± 0.01 | 0.9955 |
WFHOC15% | 13.7 b ± 0.8 | 0.45 bc ± 0.01 | 0.9912 |
WFWOC5% | 17.8 cd ± 1.0 | 0.41 a ± 0.01 | 0.9982 |
WFWOC10% | 14.0 b ± 0.1 | 0.42 ab ± 0.00 | 0.9980 |
WFWOC15% | 9.4 a ± 0.6 | 0.46 c ± 0.03 | 0.9947 |
Two-way ANOVA p-values | |||
Factor 1 | p ≤ 0.001 | p = 0.266 | |
Factor 2 | p ≤ 0.001 | p ≤ 0.001 | |
Factor 1 × factor 2 | p ≤ 0.001 | p = 0.182 |
Sample | K′ | n′ | R2 | K″ | n″ | R2 |
---|---|---|---|---|---|---|
control | 76.3 d ± 3.5 | 0.23 ab ± 0.01 | 0.9983 | 20.7 c ± 0.1 | 0.32 b ± 0.00 | 0.9966 |
WFHOC5% | 75.3 d ± 3.7 | 0.22 a ± 0.00 | 0.9983 | 21.0 d ± 2.0 | 0.31 a ± 0.01 | 0.9973 |
WFHOC10% | 75.7 d ± 1.4 | 0.23 ab ± 0.00 | 0.9989 | 21.6 d ± 0.8 | 0.32 b ± 0.00 | 0.9982 |
WFHOC15% | 77.0 d ± 3.7 | 0.22 a ± 0.00 | 0.9978 | 21.2 d ± 0.5 | 0.31 a ± 0.00 | 0.9993 |
WFWOC5% | 67.3 c ± 0.4 | 0.24 c ± 0.00 | 0.9976 | 18.1 b ± 0.3 | 0.33 bc ± 0.00 | 0.9982 |
WFWOC10% | 58.8 b ± 0.9 | 0.23 ab ± 0.01 | 0.9982 | 17.3 b ± 1.4 | 0.33 bc ± 0.02 | 0.9994 |
WFWOC15% | 46.2 a ± 0.3 | 0.25 d ± 0.00 | 0.9973 | 12.7 a ± 0.1 | 0.36 d ± 0.00 | 0.9987 |
Two-way ANOVA p-values | ||||||
Factor 1 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | ||
Factor 2 | p ≤ 0.001 | p = 0.248 | p ≤ 0.001 | p ≤ 0.001 | ||
Factor 1 × factor 2 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 | p ≤ 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pycia, K.; Juszczak, L. Influence of Hazelnut and Walnut Oil Cakes Powder on Thermal and Rheological Properties of Wheat Flour. Foods 2023, 12, 4060. https://doi.org/10.3390/foods12224060
Pycia K, Juszczak L. Influence of Hazelnut and Walnut Oil Cakes Powder on Thermal and Rheological Properties of Wheat Flour. Foods. 2023; 12(22):4060. https://doi.org/10.3390/foods12224060
Chicago/Turabian StylePycia, Karolina, and Lesław Juszczak. 2023. "Influence of Hazelnut and Walnut Oil Cakes Powder on Thermal and Rheological Properties of Wheat Flour" Foods 12, no. 22: 4060. https://doi.org/10.3390/foods12224060
APA StylePycia, K., & Juszczak, L. (2023). Influence of Hazelnut and Walnut Oil Cakes Powder on Thermal and Rheological Properties of Wheat Flour. Foods, 12(22), 4060. https://doi.org/10.3390/foods12224060