Discriminant Analysis of Aroma Differences between Cow Milk Powder and Special Milk Powder (Donkey, Camel, and Horse Milk Powder) in Xinjiang Based on GC-IMS and Multivariate Statistical Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Collection of Milk Powder Samples
2.2. GC-IMS Analysis
2.3. Statistical Analysis
3. Results and Analysis
3.1. GC-IMS Profiling of Different Milk Powders
3.2. Analysis of Volatile Matter Content Based on GC-IMS
3.3. Analysis of the Differences between Cow Milk Powder and Other Kinds of Milk Powder Based on PLS-DA
3.4. Validation of PLS-DA Screening Substances Based on Roc Analysis and Yoden Index Discrimination
3.5. Validation of the Production of GC-IMS Discriminant Fingerprints of Cow Milk Powder against Other Milk Powders Based on ROC Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Zhang, X.; Li, Y.; Feng, F. Research progress of special milk processing technology. Sci. Technol. Food Ind. 2018, 39, 347–352. [Google Scholar] [CrossRef]
- Liu, X.; Chen, F. Development status and countermeasures of dairy products processing industry in Xinjiang. Food Ind. 2020, 41, 262–265. [Google Scholar]
- Li, M.; Liu, A.; Zhao, S.; Zhao, H.; Zhang, J.; Song, W.; Yue, X.; Zheng, Y. Research progress on nutritional components of donkey milk. J. Dairy Sci. Technol. 2022, 45, 42–49. [Google Scholar]
- Lu, D.; Liu, P.; Wang, S.; Feng, W.; Zhang, J. Nutritional value and development and utilization of horse milk. Xinjiang Anim. Husb. 2012, 170, 4–9. [Google Scholar] [CrossRef]
- He, S.; Chen, X.; Guo, W.; Wang, S. Research progress on nutritional value of camel milk. Dairy Humankind 2023, 129, 32–37. [Google Scholar] [CrossRef]
- Wang, L.; Xiu, B. Development Status and Countermeasures of Horse Milk Industry in Inner Mongolia. Inn. Mong. Sci. Technol. Econ. 2020, 464, 3–4+14. [Google Scholar]
- Lu, D.; Xu, M.; Li, J.; He, X.; Ye, D. Development status, problems and countermeasures of special dairy industry in Xinjiang. Xinjiang Anim. Husb. 2017, 240, 4–7. [Google Scholar] [CrossRef]
- Souhassou; Bassbasi, S.; Hirri, M.; Kzaiber, A.; Oussama, F. Detection of camel milk adulteration using Fourier transformed infrared spectroscopy FT-IR coupled with chemometrics methods. Int. Food Res. J. 2018, 25, 1213–1218. [Google Scholar]
- Kumar, D.; Verma, A.K.; Chatli, M.K.; Singh, R.; Kumar, P.; Mehta, N.; Malav, O.P. Camel milk: Alternative milk for human consumption and its health benefits. Nutr. Food Sci. 2016, 46, 217–227. [Google Scholar] [CrossRef]
- Lu, D.; Xu, M.; Li, J.; He, X.; Li, X.; Wang, X.; Ye, D. The development and utilization status and development prospect of special milk in Xinjiang. China Dairy 2017, 185, 72–77. [Google Scholar] [CrossRef]
- Domenico, M.D.; Giuseppe, M.D.; Rodriguez, J.D.W.; Camma, C. Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products. J. Dairy Sci. 2017, 100, 106. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ya, M.; Hai, X.; Guo, Y.S.; Li, C.D.; Xu, W.L.; Liao, C.S.; Feng, W.; Cai, Q. A simultaneous triplex TaqMan real-time PCR approach for authentication of caprine and bovine meat, milk and cheese. Int. Dairy J. 2019, 95, 58–64. [Google Scholar] [CrossRef]
- Ge, L.; Sun, X.; Wang, Y. Comparison of volatile components of instant soybean powder, milk powder and goat milk powder. Sci. Technol. Food Ind. 2019, 40, 248–254. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Martín-Gómez, A.; Segura-Borrego, M.P.; Ríos-Reina, R.; Cardador, M.J.; Callejón, R.M.; Morales, M.L.; Rodríguez-Estévez, V.; Arce, L. Discrimination of defective dry-cured Iberian ham determining volatile compounds by non-destructive sampling and gas chromatography. LWT 2021, 154, 112785. [Google Scholar] [CrossRef]
- He, F.; Shiqi, Y.; Guihu, Z.; Ling, X.; Hehe, L.; Jinyuan, S.; Mingquan, H.; Fuping, Z.; Baoguo, S. Exploration of key aroma active compounds in strong flavor Baijiu during the distillation by modern instrument detection technology combined with multivariate statistical analysis methods. J. Food Compos. Anal. 2022, 110, 104577. [Google Scholar] [CrossRef]
- Feng, D.; Wang, J.; Ji, X.; Min, W.-X.; Yan, W.-J. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. LWT 2021, 141, 110855. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, H.; Chen, J.; Xie, J.; Shen, S.; Deng, Y.; Zhu, J.; Yuan, H.; Jiang, Y. Characterization of the key aroma compounds in black teas with different aroma types by using gas chromatography electronic nose, gas chromatography-ion mobility spectrometry, and odor activity value analysis. LWT 2022, 163, 113492. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Jiang, Y.; Qian, M.C.; Deng, Y.; Xie, J.; Li, J.; Wang, J.; Dong, C.; Yuan, H. Aroma dynamic characteristics during the drying process of green tea by gas phase electronic nose and gas chromatography-ion mobility spectrometry. LWT 2022, 154, 112691. [Google Scholar] [CrossRef]
- Newton, A.E.; Fairbanks, A.J.; Golding, M.; Andrewes, P.; Gerrard, J.A. The role of the Maillard reaction in the formation of flavour compounds in dairy products–not only a deleterious reaction but also a rich source of flavour compounds. Food Funct. 2012, 3, 1231–1241. [Google Scholar] [CrossRef]
- Fyfe, K.; Kravchuk, O.; Nguyen, A.V.; Deeth, H.; Bhandari, B. Influence of dryer type on surface characteristics of milk powders. Dry. Technol. 2011, 29, 758–769. [Google Scholar] [CrossRef]
- Yin, J.; Wu, M.; Lin, R.; Li, X.; Ding, H.; Han, L.; Yang, W.; Song, X.; Li, W.; Qu, H. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem. J. 2021, 168, 106527. [Google Scholar] [CrossRef]
- Ye, M.; Li, R.; Jiang, Z.; Wang, Y.; Tan, J.; Tang, S. Analysis Classification and Prediction of Volatile Flavor Components in Milk Powders for Different Age Groups. Food Sci. 2022, 43, 242–252. [Google Scholar]
- Gou, Y.; Ma, X.; Niu, X.; Ren, X.; Muhatai, G.; Xu, Q. Exploring the Characteristic Aroma Components of Traditional Fermented Koumiss of Kazakh Ethnicity in Different Regions of Xinjiang by Combining Modern Instrumental Detection Technology with Multivariate Statistical Analysis Methods for Odor Activity Value and Sensory Analysis. Foods 2023, 12, 2223. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Chen, Y.; Liu, C.; Du, W. Volatile flavor compounds of donkey milk powder were extracted by simultaneous distillation extraction and solid phase microextraction. J. Xinjiang Norm. Univ. Nat. Sci. Ed. 2016, 35, 40–45. [Google Scholar] [CrossRef]
- Chi, X.; Guo, H.; Zhang, Y.; Zheng, N.; Liu, H.; Wang, J. E-nose, E-tongue Combined with GC-IMS to Analyze the Influence of Key Additives during Processing on the Flavor of Infant Formula. Foods 2022, 11, 3708. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, D.; Sun, J. Application of GC-IMS coupled with chemometric analysis for the classification and authentication of geographical indication agricultural products and food. Front. Nutr. 2023, 10, 1247695. [Google Scholar] [CrossRef]
- Vagenas, G.; Roussis, I.G. Fat-derived volatiles of various products of cows’, ewes’, and goats’ milk. Int. J. Food Prop. 2012, 15, 665–682. [Google Scholar] [CrossRef]
- Karagül-Yüceer, Y.; Cadwallader, K.R.; Drake. Volatile flavor components of stored nonfat dry milk. J. Agric. Food Chem. 2002, 50, 305–312. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wang, W. Heat-induced changes in volatiles of milk and effects of thermal processing on microbial metabolism of yogurt. J. Food Biochem. 2013, 37, 409–417. [Google Scholar] [CrossRef]
- Licón, C.C.; de Mendoza, J.H.; Maggi, L.; Berruga, M.I.; Aranda, R.M.M.; Carmona, M. Optimization of headspace sorptive extraction for the analysis of volatiles in pressed ewes’ milk cheese. Int. Dairy J. 2012, 23, 53–61. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Wang, W.; Han, X. Differences in particle characteristics and oxidized flavor as affected by heat-related processes of milk powder. J. Dairy Sci. 2013, 96, 4784–4793. [Google Scholar] [CrossRef]
- Lu, D.; Ye, D.; Li, J.; Xu, M. Comparative Analysis of Fatty Acid Content and Composition in Four Kinds of Livestock Milk Powder in Xinjiang. Grass-Feed. Livest. 2017, 185, 7–14. [Google Scholar] [CrossRef]
- Contador, R.; Delgado, F.; García-Parra, J.; Garrido, M.; Ramírez, R. Volatile profile of breast milk subjected to high-pressure processing or thermal treatment. Food Chem. 2015, 180, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, L.; Wang, W. Formation of aldehyde and ketone compounds during production and storage of milk powder. Molecules 2012, 17, 9900–9911. [Google Scholar] [CrossRef] [PubMed]
- Mottram, D.S. Volatile compounds in food—Qualitative and quantitative data. Food Chem. 1991, 39, 120–122. [Google Scholar] [CrossRef]
- Gioacchini, A.M.; De Santi, M.; Guescini, M.; Brandi, G.; Stocchi, V. Characterization of the volatile organic compounds of Italian ‘Fossa’cheese by solid-phase microextraction gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 3405–3412. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Zhao, W.; Liang, Q. Comparative Study of Effects of Pulsed Electric Field (PEF) and Ultra-high Temperature (UHT) Processing on Flavor Compounds in Milk. Food Sci. 2009, 30, 43–46. [Google Scholar]
- Dong, Y.; Liu, Y.; Yu, N.; Sun, Y.; Yan, X.R.; Deng, T.; Zhang, J.; Pan, M.; Chen, Y. Analysis of defatting treatment on volatile flavor compounds of milk based on headspace-gas chromatography-ion mobility spectrometry. J. Food Saf. Qual. 2022, 13, 6155–6162. [Google Scholar] [CrossRef]
- Tornambé, G.; Cornu, A.; Pradel, P.; Kondjoyan, N.; Carnat, A.; Petit, M.; Martin, B. Changes in terpene content in milk from pasture-fed cows. J. Dairy Sci. 2006, 89, 2309–2319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ai, N.; Wang, J.; Tong, L.; Zheng, F.; Sun, B. Lipase-catalyzed modification of the flavor profiles in recombined skim milk products by enriching the volatile components. J. Dairy Sci. 2016, 99, 8665–8679. [Google Scholar] [CrossRef] [PubMed]
- Badings, H.; de Jong, C. Headspace analysis for the study of aroma compounds in milk and dairy products. Anal. Volatiles Methods-Appl. 1984, 401–419. [Google Scholar] [CrossRef]
- Shiratsuchi, H.; Shimoda, M.; Imayoshi, K.; Noda, K.; Osajima, Y. Volatile flavor compounds in spray-dried skim milk powder. J. Agric. Food Chem. 1994, 42, 984–988. [Google Scholar] [CrossRef]
- Ye, D.; Zheng, X.; Li, Y.; Duan, C.; Liu, Y. Influence of Aging in Different Oak Barrels on Volatile Sulfur Compounds in Wines. Food Sci. 2020, 41, 285–291. [Google Scholar]
- Zhang, K.; Zhang, C.; Gao, L.; Zhuang, H.; Feng, T.; Xu, G. Analysis of volatile flavor compounds of green wheat under different treatments by GC-MS and GC-IMS. J. Food Biochem. 2022, 46, e13875. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Zhang, R.; Yu, J.; He, J.; Hong, S. Cutting Value Optimization Method of Logistic Regression Based on ROC Curve. J. Kunming Univ. Sci. Technol. 2023, 48, 53–57. [Google Scholar] [CrossRef]
- Chen, W.; Ni, Z.; Pan, X.; Liu, Y.; Xia, Y. The ROC curve was used to determine the optimal critical point and the range of suspicious values. Mod. Prev. Med. 2005, 7, 729–731. [Google Scholar]
- Zhang, X.; Tong, L.; Chi, X.; Ai, N.; Wang, J.; Sun, B. Analysis of volatile flavor substances in cow milk, buffalo milk and yak milk. Food Res. Dev. 2017, 38, 126–131. [Google Scholar]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Sue, C.D.; Yang, M. Odor components of milk and its products. China Dairy Ind. 1987, 15, 212–225+197. [Google Scholar]
Description of Sample | Abbreviation | Sampling Site | Processing Methods |
---|---|---|---|
Cow milk | M | Aksu Xinjiang | Spray drying |
Donkey milk | D | Hetian Xinjiang | Freeze drying |
Camel milk | C | Hetian Xinjiang | Spray drying |
Horse milk | H | Altay Xinjiang | Freeze drying |
Compound | Formula | MW | RI | Dt | Contents (%) | |||
---|---|---|---|---|---|---|---|---|
M | D | C | H | |||||
Ketones | 23.41 ± 4.63 a | 10.83 ± 2.46 c | 15.46 ± 2.27 b | 9.69 ± 1.24 c | ||||
Acetone | C3H6O | 58.1 | 809.6 | 1.11185 | 9.28 ± 0.85 a | 6.80 ± 1.24 c | 8.06 ± 0.50 b | 2.86 ± 0.07 d |
3-Hydroxy-2-butanone * | C4H8O2 | 88.1 | 1285.1 | 1.0663 | 5.60 ± 1.58 a | 0.55 ± 0.14 c | 3.16 ± 0.31 b | 1.41 ± 0.31 c |
2-Butanone * | C4H8O | 72.1 | 898.1 | 1.06083 | 3.10 ± 0.72 a | 1.30 ± 0.59 b | 2.62 ± 0.44 a | 1.21 ± 0.41 b |
2-Heptanone * | C7H14O | 114.2 | 1172.8 | 1.26016 | 3.51 ± 0.52 a | 1.20 ± 0.23 c | 0.78 ± 0.20 d | 1.51 ± 0.06 b |
2-Pentanone | C5H10O | 86.1 | 973.4 | 1.36654 | 1.61 ± 0.93 a | 0.29 ± 0.13 b | 0.42 ± 0.15 b | 1.38 ± 0.21 a |
1-Penten-3-one * | C5H8O | 84.1 | 1018.2 | 1.0789 | 0.24 ± 0.02 d | 0.61 ± 0.12 b | 0.34 ± 0.01 c | 1.39 ± 0.07 a |
2-Nonanone | C9H18O | 142.2 | 1394.8 | 1.87621 | 0.06 ± 0.009 b | 0.08 ± 0.003 b | 0.06 ± 0.01 b | 0.20 ± 0.11 a |
Aldehydes | 16.65 ± 6.96 b | 22.21 ± 7.96 a | 21.00 ± 6.24 a | 23.81 ± 2.88 a | ||||
1-Hexanal * | C6H12O | 100.2 | 1095.9 | 1.26878 | 4.38 ± 2.78 b | 9.02 ± 2.47 a | 6.19 ± 2.51 b | 4.69 ± 0.07 b |
Propanal * | C3H6O | 58.1 | 773.8 | 1.05825 | 3.996 ± 0.94 b | 3.86 ± 1.16 b | 4.27 ± 1.00 a | 2.18 ± 0.24 b |
1-Nonanal * | C9H18O | 142.2 | 1408.2 | 1.47784 | 1.93 ± 0.63 a | 1.43 ± 0.64 ab | 1.26 ± 0.14 b | 1.53 ± 0.45 ab |
Heptanal * | C7H14O | 114.2 | 1173.6 | 1.33622 | 1.77 ± 0.70 bc | 2.10 ± 1.19 b | 3.35 ± 1.02 a | 1.19 ± 0.17 c |
n-Pentanal | C5H10O | 86.1 | 975.7 | 1.42324 | 0.95 ± 0.39 b | 0.86 ± 0.07 b | 1.53 ± 0.64 a | 0.98 ± 0.18 b |
(E)-2-Hexenal * | C6H10O | 98.1 | 1207.7 | 1.17953 | 0.44 ± 0.23 b | 0.52 ± 0.09 b | 0.46 ± 0.07 b | 1.31 ± 0.31 a |
(E)-2-Pentenal * | C5H8O | 84.1 | 1129.4 | 1.1047 | 0.75 ± 0.15 c | 1.30 ± 0.39 b | 0.95 ± 0.08 c | 3.19 ± 0.16 a |
Butanal | C4H8O | 72.1 | 898.5 | 1.28609 | 1.12 ± 0.69 a | 0.87 ± 0.25 a | 1.29 ± 0.45 a | 1.09 ± 0.27 a |
1-Octanal * | C8H16O | 128.2 | 1283.7 | 1.40792 | 0.50 ± 0.16 bc | 0.44 ± 0.06 b | 0.59 ± 0.09 b | 0.86 ± 0.19 a |
(E,E)-2,4-Heptadienal * | C7H10O | 110.2 | 1541 | 1.19486 | 0.54 ± 0.19 b | 1.00 ± 0.34 a | 0.59 ± 0.03 b | 1.30 ± 0.55 a |
(Z)-2-Methylpent-2-enal | C6H10O | 98.1 | 1153.5 | 1.49675 | 0.22 ± 0.008 b | 0.24 ± 0.03 b | 0.19 ± 0.01 b | 5.34 ± 0.25 a |
2-Methyl butanal | C5H10O | 86.1 | 916.1 | 1.40205 | 0.10 ± 0.02 b | 0.55 ± 0.06 a | 0.36 ± 0.01 ab | 0.14 ± 0.01 b |
Alcohols | 9.84 ± 2.87 a | 8.83 ± 1.79 a | 9.85 ± 2.82 a | 13.10 ± 1.95 b | ||||
1-Pentanol * | C5H12O | 88.1 | 1247.7 | 1.25373 | 2.95 ± 0.18 ab | 1.92 ± 1.60 a | 2.92 ± 1.13 ab | 3.48 ± 0.20 b |
1-Butanol * | C4H10O | 74.1 | 1136.8 | 1.18259 | 2.41 ± 0.13 a | 2.27 ± 0.73 a | 1.61 ± 0.59 ab | 1.15 ± 0.02 b |
1-Propanol * | C3H8O | 60.1 | 1026.8 | 1.11126 | 1.11 ± 0.63 b | 0.67 ± 0.16 d | 1.58 ± 0.28 a | 1.05 ± 0.05 c |
1-Penten-3-ol | C5H10O | 86.1 | 1154.6 | 0.94065 | 1.03 ± 0.28 a | 1.28 ± 0.49 a | 1.32 ± 0.32 a | 0.65 ± 0.12 b |
1-Hexanol * | C6H14O | 102.2 | 1366.7 | 1.32911 | 0.48 ± 0.22 c | 0.41 ± 0.07 c | 0.70 ± 0.24 b | 1.07 ± 0.07 a |
4-Terpinenol * | C10H18O | 154.3 | 1590.2 | 1.22368 | 0.58 ± 0.08 b | 0.95 ± 0.13 b | 0.68 ± 0.06 b | 3.63 ± 1.12 a |
2-Methyl-1-propanol | C4H10O | 74.1 | 1089.8 | 1.17393 | 0.26 ± 0.15 a | 0.32 ± 0.01 a | 0.28 ± 0.06 a | 0.03 ± 0.004 b |
(Z)-2-Pentenol | C5H10O | 86.1 | 1315.9 | 0.94353 | 0.42 ± 0.08 b | 0.33 ± 0.03 c | 0.32 ± 0.04 c | 0.82 ± 0.01 a |
(E)-2-Heptenal | C7H12O | 112.2 | 1321.8 | 1.2579 | 0.29 ± 0.10 b | 0.25 ± 0.05 bc | 0.18 ± 0.02 c | 0.39 ± 0.09 a |
3-Methyl-3-buten-1-ol | C5H10O | 86.1 | 1254.8 | 1.17277 | 0.12 ± 0.005 b | 0.12 ± 0.001 b | 0.10 ± 0.02 b | 0.21 ± 0.08 a |
3-Methyl-1-butanol | C5H12O | 88.1 | 1196.5 | 1.24773 | 0.13 ± 0.06 ab | 0.23 ± 0.02 a | 0.057 ± 0.01 b | 0.03 ± 0.003 b |
(Z)-4-heptenal * | C7H12O | 112.2 | 1232.8 | 1.14759 | 0.064 ± 0.001 b | 0.10 ± 0.003 b | 0.10 ± 0.03 b | 0.6 ± 0.14 a |
Esters | 9.45 ± 2.88 a | 8.17 ± 2.04 b | 9.03 ± 2.25 a | 6.94 ± 2.37 c | ||||
Ethyl acetate | C4H8O2 | 88.1 | 869.4 | 1.33873 | 4.3 ± 2.44 ab | 2.66 ± 3.31 b | 5.05 ± 1.60 a | 3.15 ± 0.27 ab |
Acetic acid butyl ester * | C6H12O2 | 116.2 | 1065.2 | 1.23989 | 2.3 ± 0.24 ab | 4.69 ± 2.8 ab | 0.78 ± 0.009 b | 2.19 ± 1.24 a |
Propyl acetate | C5H10O2 | 102.1 | 969.8 | 1.47649 | 0.57 ± 0.11 c | 0.34 ± 0.03 c | 2.93 ± 0.50 a | 1.03 ± 0.64 b |
Butyl propanoate | C7H14O2 | 130.2 | 1134.9 | 1.71778 | 1.67 ± 2.28 a | 0.20 ± 0.03 b | 0.14 ± 0.02 b | 0.07 ± 0.004 b |
Butanoic acid, butyl ester | C8H16O2 | 144.2 | 1203.1 | 1.8173 | 0.44 ± 0.05 a | 0.09 ± 0.02 b | 0.06 ± 0.008 b | 0.04 ± 0.002 b |
Ethyl propanoate | C5H10O2 | 102.1 | 952.7 | 1.45226 | 0.089 ± 0.05 b | 0.082 ± 0.03 b | 0.046 ± 0.006 b | 0.37 ± 0.15 a |
Butanoic acid ethyl ester | C6H12O2 | 116.2 | 1032.3 | 1.55874 | 0.048 ± 0.002 b | 0.10 ± 0.04 a | 0.032 ± 0.004 b | 0.09 ± 0.006 a |
Other | 6.07 ± 1.87 a | 4.92 ± 1.54 b | 2.71 ± 0.76 c | 1.79 ± 0.48 d | ||||
Dimethyl sulfide | C2H6S | 62.1 | 760.5 | 0.95479 | 1.83 ± 0.08 a | 0.37 ± 0.08 c | 1.33 ± 0.51 b | 0.17 ± 0.02 c |
2-Methylpropanoic acid | C4H8O2 | 88.1 | 1503.7 | 1.38303 | 4.05 ± 0.69 a | 4.42 ± 0.83 a | 1.30 ± 0.24 a | 1.41 ± 0.40 a |
2-Pentylfuran | C9H14O | 138.2 | 1219.4 | 1.25334 | 0.17 ± 0.14 a | 0.10 ± 0.07 ab | 0.05 ± 0.004 b | 0.10 ± 0.01 ab |
2-Ethylfuran | C6H8O | 96.1 | 775.9 | 1.30114 | 0.03 ± 0.004 b | 0.03 ± 0.007 b | 0.03 ± 0.005 b | 0.10 ± 0.05 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, Y.; Han, Y.; Li, J.; Niu, X.; Ma, G.; Xu, Q. Discriminant Analysis of Aroma Differences between Cow Milk Powder and Special Milk Powder (Donkey, Camel, and Horse Milk Powder) in Xinjiang Based on GC-IMS and Multivariate Statistical Methods. Foods 2023, 12, 4036. https://doi.org/10.3390/foods12214036
Gou Y, Han Y, Li J, Niu X, Ma G, Xu Q. Discriminant Analysis of Aroma Differences between Cow Milk Powder and Special Milk Powder (Donkey, Camel, and Horse Milk Powder) in Xinjiang Based on GC-IMS and Multivariate Statistical Methods. Foods. 2023; 12(21):4036. https://doi.org/10.3390/foods12214036
Chicago/Turabian StyleGou, Yongzhen, Yaping Han, Jie Li, Xiyue Niu, Guocai Ma, and Qian Xu. 2023. "Discriminant Analysis of Aroma Differences between Cow Milk Powder and Special Milk Powder (Donkey, Camel, and Horse Milk Powder) in Xinjiang Based on GC-IMS and Multivariate Statistical Methods" Foods 12, no. 21: 4036. https://doi.org/10.3390/foods12214036
APA StyleGou, Y., Han, Y., Li, J., Niu, X., Ma, G., & Xu, Q. (2023). Discriminant Analysis of Aroma Differences between Cow Milk Powder and Special Milk Powder (Donkey, Camel, and Horse Milk Powder) in Xinjiang Based on GC-IMS and Multivariate Statistical Methods. Foods, 12(21), 4036. https://doi.org/10.3390/foods12214036