Predict the Gelling Properties of Alkali-Induced Egg White Gel Based on the Freshness of Duck Eggs
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Sample Preparation
2.2.1. Storage Experiment with Duck Eggs
2.2.2. Preparation of the Alkali-Induced EWG
2.3. Freshness Indicator Determination
2.3.1. Aerobic Bacterial Count (ABC)
2.3.2. Haugh Unit (HU) Measurement
2.3.3. Albumen pH and Viscosity Measurement
2.3.4. Moisture Contents of Albumen
2.3.5. Air Chamber Height Measurement
2.3.6. T2 Relaxation Time of Albumin
2.3.7. Total Volatile Basic Nitrogen (TVB-N)
2.4. Comprehensive Freshness Index (CFI) Calculations
- (1)
- The load coefficient, which is the coefficient of new principal component data produced from the linear combination of the original data, connected the principal component with nine single freshness indicators, as shown in Equation (2):Pn = Cnl × S1+ Cn2 × S2 + Cn3 × S3 + Cn4 × S4 + …… + Cni × Si
- (2)
- The contribution rate is the proportion of each principal component calculated by calculating the proportion of eigenvalues, which are characteristic values of the covariance coefficient matrix. The function between the CFI and principal component was established by Equation (3).CFI = r1 × P1 + r2 × P2 + …… + rn × Pn
2.5. Determination of the Molecular Structure of EWP during Storage
2.5.1. Secondary Structure
2.5.2. Intermolecular Forces
2.5.3. Free Sulfhydryl (SH)
2.6. Textural Properties Analysis (TPA) of Alkali-Induced EWG
2.7. Statistical Analysis
3. Results and Discussion
3.1. Freshness Indicator Analysis
3.2. CFI Calculations
3.3. Gelling Properties Analysis
3.4. Correlation between CFI and Gelling Properties of Alkali-Induced EWG
3.5. Structure Property Analysis
3.5.1. Secondary Structure Analysis
3.5.2. Intermolecular Forces Analysis
3.5.3. Free SH Analysis
3.6. Correlations between Structure of EWP and Gelling Properties of Alkali-Induced EWG
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Zhao, Y.; Yao, Y.; Xu, M.; Du, H.; Wu, N.; Tu, Y. Anti-inflammatory effects of preserved egg white. J. Nutr. Biochem. 2018, 63, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Mao, C.; Cai, Z.; Ma, M. Anti-inflammatory effect of preserved egg with simulated gastrointestinal digestion on LPS-stimulated RAW264.7 cells. Poult. Sci. 2019, 98, 4401–4407. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.Y.; Yu, Z.H.; Li, C.L.; Jin, Y.G.; Ma, M.H. The Functional Properties of Preserved Eggs: From Anti-cancer and Anti-inflammatory Aspects. Korean J. Food Sci. Anim. Resour. 2018, 38, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Han, T.F.; Xu, M.S.; Yao, Y.; Wu, N.; Chen, S.P.; Zhang, G.W.; Wang, W.J.; Zhao, Y.; Tu, Y.G. Processing technology, principle, and nutritional characteristics of preserved eggs: A review. Trends Food Sci. Technol. 2022, 128, 265–277. [Google Scholar] [CrossRef]
- Eddin, A.S.; Ibrahim, S.A.; Tahergorabi, R. Egg quality and safety with an overview of edible coating application for egg preservation. Food Chem. 2019, 296, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Pires, P.; Pires, P.; Cardinal, K.M.; Bavaresco, C. The use of coatings in eggs: A systematic review. Trends Food Sci. Technol. 2020, 106, 312–321. [Google Scholar] [CrossRef]
- Huang, Q.; Ma, M.; Jin, Y.; Qiu, N.; Geng, F. Effect of storage condition on S-ovalbumin formation in albumen. Trans. Chin. Soc. Agric. Eng. 2012, 28, 288–292. [Google Scholar] [CrossRef]
- Khanna, G.; Chauhan, A.K.; Kang, S.C. Development of chlorine dioxide gas generation chamber to prevent spoilage of eggs. Emir. J. Food Agric. 2016, 28, 348–352. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, L.; Wu, Y.; Huang, X.; Wang, G.; Song, H.; Geng, F.; Luo, P. Mechanism of differences in characteristics of thick/thin egg whites during storage: Physicochemical, functional and molecular structure characteristics analysis. Food Chem. 2022, 369, 130828. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, D.; Shao, Y.; Xiong, C.; Li, J.; Tu, Y. Changes in physico-chemical properties, microstructures, molecular forces and gastric digestive properties of preserved egg white during pickling with the regulation of different metal compounds. Food Hydrocoll. 2020, 98, 105281. [Google Scholar] [CrossRef]
- Yamak, U.S.; Sarica, M.; Erensoy, K.; Ayhan, V. The effects of storage conditions on quality changes of table eggs. J. Consum. Prot. Food Saf. 2021, 16, 71–81. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Fu, D.D.; Ma, M. Egg Freshness Indexes Correlations with Ovomucin Concentration during Storage. J. Food Qual. 2022, 2022, 9562886. [Google Scholar] [CrossRef]
- Karoui, R.; Kemps, B.; Bamelis, F.; Ketelaere, B.; Decuypere, E.; Baerdemaeker, J. Methods to evaluate egg freshness in research and industry: A review. Eur. Food Res. Technol. 2006, 222, 727–732. [Google Scholar] [CrossRef]
- Du, M.; Luo, X.; Tian, Y.; Ma, S.; Ma, G.; Su, D.; Li, H. Study on quality changes and mechanical properties of eggs during storage. Food Eng. 2018, 4, 52–56. [Google Scholar] [CrossRef]
- Yimenu, S.M.; Kim, J.Y.; Koo, J.; Kim, B.S. Predictive modeling for monitoring egg freshness during variable temperature storage conditions. Poult. Sci. 2017, 96, 2811–2819. [Google Scholar] [CrossRef]
- Tan, J.E.; Liu, T.; Yao, Y.; Wu, N.; Du, H.; Xu, M.; Liao, M.; Zhao, Y.; Tu, Y. Changes in physicochemical and antioxidant properties of egg white during the Maillard reaction induced by alkali. LWT-Food Sci. Technol. 2021, 143, 113685. [Google Scholar] [CrossRef]
- GB 4789.2-2016; Microbiological Examination of Food-Determination of Total Number of Colonies. State Administration for Market Regulation: Beijing, China, 2016.
- Shurmasti, D.K.; Kermani, P.R.; Sarvarian, M.; Awuchi, C.G. Egg shelf life can be extended using varied proportions of polyvinyl alcohol/chitosan composite coatings. Food Sci. Nutr. 2023, 11, 5041–5049. [Google Scholar] [CrossRef] [PubMed]
- GB 5009.3-2016; Determination of Moisture in Food-National Standard for Food Safety. National Health and Family Planning Commission: Beijing, China, 2016.
- Sun, J.; Mu, Y.; Jin, H.; Mohammed, O.; Xu, B. Effects of single- and dual-frequency ultrasound on the functionality of egg white protein. J. Food Eng. 2020, 277, 109902. [Google Scholar] [CrossRef]
- GB 5009.228-2016; Determination of Volatile Salt Nitrogen in Foods-National Standard for Food Safety. National Health and Family Planning Commission: Beijing, China, 2016.
- Patras, A.; Brunton, N.P.; Downey, G.; Rawson, A.; Warriner, K.; Gernigon, G. Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity. J. Food Compos. Anal. 2011, 24, 250–256. [Google Scholar] [CrossRef]
- Gómez-Guillén, M.C.; Borderías, A.J.; Montero, P. Chemical Interactions of Nonmuscle Proteins in the Network of Sardine (Sardina pilchardus) Muscle Gels. LWT-Food Sci. Technol. 1997, 30, 602–608. [Google Scholar] [CrossRef]
- Bourne, M.C.; Kenny, J.F.; Barnard, J. Computer-assisted readout of data from texture profile analysis curves. J. Texture Stud. 1978, 9, 481–494. [Google Scholar] [CrossRef]
- Hughey, V.L.; Johnson, E.A. Antimicrobial activity of lysozyme against bacteria involved in food spoilage and food-borne disease. Appl. Environ. Microbiol. 1987, 53, 2165–2170. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Shibata, M.; Yamaoka, H.; Kobayashi, K. Deamidation of Lysozyme during the Storage of Egg White. Agric. Biol. Chem. 1988, 52, 1973–1978. [Google Scholar] [CrossRef]
- Park, W.K.; Chung, J.W.; Kim, Y.K.; Chung, S.C.; Kho, H.S. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces. Arch. Oral Biol. 2006, 51, 861–869. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Y.; Wang, Q. Effect of the Freshness of Raw Eggs on the Quality of Preserved Eggs during the Curing Period. Food Sci. 2022, 43, 1–7. [Google Scholar] [CrossRef]
- GB/T 9694-2014; Preserved Eggs-National Standard for Food Safety. General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2014.
- Shin, D.; Narciso-Gaytán, C.; Regenstein, J.M.; Sánchez-Plata, M.X. Effect of various refrigeration temperatures on quality of shell eggs. J. Sci. Food Agric. 2012, 92, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- SBT 10638-2011; Grade Fresh Eggs and Fresh Duck Eggs-Business Standard. Ministry of Commerce of the People’s Republic of China: Beijing, China, 2011.
- Duan, Y.X.; Zhao, Y.; Chi, Y.J. Low field nuclear magnetic resonance analysis of moisture distribution and quality variation in boiled eggs under different storage conditions. Food Sci. 2018, 39, 26–32. [Google Scholar] [CrossRef]
- Carraro Alleoni, A.C. Albumen protein and functional properties of gelation and foaming. Sci. Agric. 2006, 63, 291–298. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, Y.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Tu, Y. Relationship between protein structure changes and in vitro digestion of preserved egg white during pickling. Int. J. Biol. Macromol. 2019, 138, 116–124. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Wang, M.; Zhou, J. Effects of protein interactions on properties and microstructure of zein–gliadin composite films. J. Food Eng. 2013, 119, 288–298. [Google Scholar] [CrossRef]
- Sheng, L.; Huang, M.; Wang, J.; Xu, Q.; Hammad, H.H.M.; Ma, M. A study of storage impact on ovalbumin structure of chicken egg. J. Food Eng. 2018, 219, 1–7. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Wang, G.; Song, H.; Geng, F.; Zeng, Q.; Huang, Q. Quantitative proteomics provides a new perspective on the mechanism of network structure depolymerization during egg white thinning. Food Chem. 2022, 392, 133320. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.H.; Kong, B.H.; Xiong, Y.L. Effect of protein oxidation on physicochemical properties of whey protein isolate. China Dairy Ind. 2008, 36, 5. [Google Scholar] [CrossRef]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estevez, M. Protein oxidation in muscle foods: A review. Mol. Nutr. Food Res. 2011, 55, 83–95. [Google Scholar] [CrossRef] [PubMed]
Storage Time (Days) | Aerobic Bacterial Count (CFU) | ||
---|---|---|---|
Undiluted | 10−1 | 10−2 | |
Storage at 25 °C | |||
0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 |
4 | 0 | 0 | 0 |
6 | 0 | 0 | 0 |
8 | 0 | 0 | 0 |
10 | 0 | 0 | 0 |
12 | 0 | 0 | 0 |
14 | 0 | 0 | 0 |
16 | 1 | 0 | 0 |
Storage at 4 °C | |||
0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 |
8 | 0 | 0 | 0 |
12 | 0 | 0 | 0 |
16 | 0 | 0 | 0 |
20 | 0 | 0 | 0 |
24 | 0 | 0 | 0 |
28 | 1 | 0 | 0 |
Storage Time (Days) | Freshness Indicator | |||||
---|---|---|---|---|---|---|
Haugh Unit | Albumen pH | Moisture Content (%) | Air Chamber Height (mm) | Viscosity (mPa·s) | TVB-N (mg/100 g) | |
Storage at 25 °C | ||||||
0 | 88.12 ± 1.59 a | 8.76 ± 0.02 f | 87.13 ± 0.17 a | 0.85 ± 0.08 i | 226.00 ± 4.20 a | 2.31 ± 0.30 g |
2 | 82.37 ± 0.79 b | 8.97 ± 0.13 e | 86.84 ± 0.23 b | 2.46 ± 0.07 h | 207.00 ± 4.24 b | 3.22 ± 0.40 f |
4 | 76.58 ± 2.13 c | 9.15 ± 0.06 d | 86.26 ± 0.09 de | 3.78 ± 0.19 g | 166.50 ± 4.95 c | 3.85 ± 0.10 e |
6 | 76.69 ± 2.38 c | 9.37 ± 0.08 c | 86.69 ± 0.13 bc | 4.66 ± 0.26 f | 134.50 ± 4.95 d | 4.34 ± 0.20 e |
8 | 75.83 ± 1.61 cd | 9.42 ± 0.04 c | 86.49 ± 0.09 cd | 5.44 ± 0.20 e | 123.50 ± 4.95 e | 5.11 ± 0.30 d |
10 | 73.13 ± 1.51 d | 9.64 ± 0.04 a | 86.30 ± 0.22 de | 6.17 ± 0.04 d | 114.51 ± 3.54 ef | 5.67 ± 0.11 cd |
12 | 69.11 ± 2.38 e | 9.53 ± 0.03 b | 86.47 ± 0.02 cd | 6.63 ± 0.26 c | 106.51 ± 2.12 f | 6.09 ± 0.30 c |
14 | 63.41 ± 1.54 f | 9.54 ± 0.02 ab | 86.17 ± 0.03 e | 7.73 ± 0.26 b | 86.81 ± 5.10 g | 7.07 ± 0.10 b |
16 | 56.83 ± 2.25 g | 9.48 ± 0.03 bc | 85.31 ± 0.10 f | 8.80 ± 0.25 a | 51.40 ± 1.84 h | 7.91 ± 0.30 a |
Storage at 4 °C | ||||||
0 | 88.12 ± 1.59 a | 8.76 ± 0.02 c | 87.13 ± 0.17 a | 0.85 ± 0.08 h | 226.00 ± 4.24 a | 2.31 ± 0.30 h |
4 | 86.89 ± 2.68 a | 8.92 ± 0.23 b | 86.46 ± 0.14 b | 2.45 ± 0.03 g | 186.00 ± 4.24 b | 2.94 ± 0.20 g |
8 | 81.17 ± 2.94 b | 9.13 ± 0.03 ab | 86.49 ± 0.09 b | 3.95 ± 0.24 f | 173.50 ± 3.54 c | 3.71 ± 0.30 f |
12 | 81.49 ± 0.48 b | 9.23 ± 0.02 a | 86.26 ± 0.36 b | 5.03 ± 0.37 e | 151.50 ± 4.95 d | 4.27 ± 0.10 e |
16 | 76.76 ± 1.37 c | 9.29 ± 0.06 a | 86.49 ± 0.05 b | 5.88 ± 0.02 d | 133.50 ± 3.54 e | 4.83 ± 0.10 d |
20 | 75.91 ± 1.43 c | 9.24 ± 0.02 a | 86.2 ± 0.04 b | 7.16 ± 0.16 c | 124.50 ± 2.12 f | 5.53 ± 0.31 c |
24 | 66.40 ± 1.55 d | 9.20 ± 0.03 a | 85.65 ± 0.2 c | 7.57 ± 0.12 b | 111.00 ± 1.41 g | 6.23 ± 0.11 b |
28 | 62.46 ± 0.92 e | 9.02 ± 0.01 bc | 85.71 ± 0.22 c | 8.76 ± 0.05 a | 98.35 ± 5.16 h | 7.01 ± 0.21 a |
Storage Time (days) | T21 (ms) | T22 (ms) | T23 (ms) | A21 (%) | A22 (%) | A23 (%) |
---|---|---|---|---|---|---|
Storage at 25 °C | ||||||
0 | 0.69 ± 0.00 a | 7.93 ± 0.00 b | 464.16 ± 0.00 a | 22.39 ± 0.35 a | 1.75 ± 0.21 f | 75.48 ± 0.16 a |
2 | 0.69 ± 0.00 a | 7.93 ± 0.00 b | 394.42 ± 0.00 b | 22.47 ± 0.43 a | 2.59 ± 0.28 e | 74.50 ± 0.52 ab |
4 | 0.69 ± 0.00 a | 8.39 ± 0.81 b | 394.42 ± 0.00 b | 22.31 ± 0.24 a | 3.12 ± 0.45 e | 74.49 ± 0.39 ab |
6 | 0.69 ± 0.00 a | 8.39 ± 0.81 b | 394.42 ± 0.00 b | 22.29 ± 0.70 a | 3.95 ± 0.31 d | 74.08 ± 0.02 bc |
8 | 0.69 ± 0.00 a | 8.39 ± 0.81 b | 335.16 ± 0.00 c | 20.97 ± 0.21 ab | 4.52 ± 0.38 d | 74.62 ± 1.17 ab |
10 | 0.69 ± 0.00 a | 8.86 ± 0.81 ab | 335.16 ± 0.00 c | 20.45 ± 0.66 bc | 6.56 ± 0.33 c | 73.04 ± 0.52 cd |
12 | 0.69 ± 0.00 a | 8.86 ± 0.81 ab | 335.16 ± 0.00 c | 19.21 ± 1.42 c | 8.36 ± 0.47 b | 72.04 ± 0.40 de |
14 | 0.69 ± 0.00 a | 9.41 ± 1.53 ab | 284.80 ± 0.00 d | 19.44 ± 1.30 c | 8.81 ± 0.35 b | 71.69 ± 0.33 e |
16 | 0.69 ± 0.00 a | 10.43 ± 0.95 a | 284.80 ± 0.00 d | 17.69 ± 0.35 d | 12.51 ± 0.39 a | 69.81 ± 1.52 f |
Storage at 4 °C | ||||||
4 | 0.69 ± 0.00 a | 7.93 ± 0.00 b | 464.16 ± 0.00 a | 22.26 ± 2.00 a | 2.59 ± 0.46 f | 74.43 ± 2.06 ab |
8 | 0.69 ± 0.00 a | 8.39 ± 0.81 ab | 394.42 ± 0.00 b | 21.67 ± 1.54 ab | 3.28 ± 0.22 e | 73.67 ± 0.29 b |
12 | 0.69 ± 0.00 a | 8.39 ± 0.81 ab | 394.42 ± 0.00 b | 21.21 ± 0.41 ab | 4.54 ± 0.33 d | 72.99 ± 0.11 bc |
16 | 0.69 ± 0.00 a | 8.39 ± 0.81 ab | 394.42 ± 0.00 b | 21.24 ± 0.69 ab | 5.04 ± 0.43 d | 73.33 ± 1.00 b |
20 | 0.69 ± 0.00 a | 8.86 ± 0.81 ab | 394.42 ± 0.00 b | 20.83 ± 0.28 ab | 6.12 ± 0.26 c | 73.09 ± 0.40 bc |
24 | 0.69 ± 0.00 a | 8.86 ± 0.81 ab | 335.16 ± 0.00 c | 19.82 ± 0.82 bc | 7.58 ± 0.09 b | 72.72 ± 0.79 bc |
28 | 0.69 ± 0.00 a | 9.34 ± 0.00 a | 335.16 ± 0.00 c | 18.57 ± 0.62 c | 9.58 ± 0.38 a | 71.55 ± 0.16 c |
HU | pH | Air Chamber Height | Moisture Contents | Viscosity | A21 | A22 | A23 | TVB-N | |
---|---|---|---|---|---|---|---|---|---|
HU | 1.000 | ||||||||
pH | −0.776 * | 1.000 | |||||||
Air chamber height | −0.970 ** | 0.900 ** | 1.000 | ||||||
Moisture contents | 0.916 ** | −0.627 | −0.849 ** | 1.000 | |||||
Viscosity | 0.954 ** | −0.900 ** | −0.989 ** | 0.849 ** | 1.000 | ||||
A21 | 0.919 ** | −0.704 * | −0.932 ** | 0.812 ** | 0.885 ** | 1.000 | |||
A22 | −0.965 ** | 0.735 * | 0.957 ** | −0.866 ** | −0.922 ** | −0.981 ** | 1.000 | ||
A23 | 0.958 ** | −0.683 * | −0.919 ** | 0.862 ** | 0.881 ** | 0.945 ** | −0.986 ** | 1.000 | |
TVB-N | −0.979 ** | 0.853 ** | 0.996 ** | −0.860 ** | −0.977 ** | −0.942 ** | 0.967 ** | −0.937 ** | 1.000 |
Principal Component | Eigenvalue | Variance Contribution Rate (%) | Cumulative (%) |
---|---|---|---|
1 | 8.154 | 90.598 | 90.598 |
2 | 0.509 | 5.659 | 96.257 |
3 | 0.226 | 2.515 | 98.772 |
4 | 0.056 | 0.618 | 99.390 |
5 | 0.037 | 0.411 | 99.801 |
6 | 0.014 | 0.159 | 99.960 |
7 | 0.003 | 0.035 | 99.995 |
8 | 0.000 | 0.005 | 100.000 |
9 | 5.336 × 10−17 | 5.928 × 10−16 | 100.000 |
Storage Time (days) | Score of PCA | Ranking | Score of SRA | Ranking |
---|---|---|---|---|
0 | 3.889 | 1 | 3.926 | 1 |
2 | 2.664 | 2 | 2.588 | 2 |
4 | 1.417 | 3 | 1.378 | 3 |
6 | 0.947 | 4 | 1.097 | 4 |
8 | 0.283 | 5 | −0.001 | 5 |
10 | −0.878 | 6 | −0.833 | 6 |
12 | −1.531 | 7 | −1.222 | 7 |
14 | −2.368 | 8 | −2.654 | 8 |
16 | −4.423 | 9 | −4.333 | 9 |
HU | pH | Air Chamber Height | Moisture Contents | Viscosity | A21 | A22 | A23 | TVB-N | |
---|---|---|---|---|---|---|---|---|---|
HU | 1.000 | ||||||||
pH | −0.420 | 1.000 | |||||||
air chamber height | −0.950 ** | 0.654 | 1.000 | ||||||
moisture contents | 0.919 ** | −0.380 | −0.870 ** | 1.000 | |||||
viscosity | 0.918 ** | −0.688 | −0.977 ** | 0.869 ** | 1.000 | ||||
A21 | 0.977 ** | −0.337 | −0.933 ** | 0.919 ** | 0.890 ** | 1.000 | |||
A22 | −0.980 ** | 0.437 | 0.973 ** | −0.923 ** | −0.944 ** | −0.986 ** | 1.000 | ||
A23 | 0.896 ** | −0.605 | −0.933 ** | 0.862 ** | 0.949 ** | 0.919 ** | −0.932 ** | 1.000 | |
TVB-N | −0.973 ** | 0.553 | 0.994 ** | −0.907 ** | −0.976 ** | −0.957 ** | 0.989 ** | −0.939 ** | 1.000 |
Principal Component | Eigenvalue | Variance Contribution Rate (%) | Cumulative (%) |
---|---|---|---|
1 | 7.866 | 87.396 | 87.396 |
2 | 0.873 | 9.700 | 97.096 |
3 | 0.123 | 1.371 | 98.467 |
4 | 0.089 | 0.989 | 99.456 |
5 | 0.035 | 0.390 | 99.846 |
6 | 0.010 | 0.112 | 99.958 |
7 | 0.004 | 0.042 | 100.000 |
8 | 1.221 × 10−15 | 1.356 × 10−14 | 100.000 |
9 | −1.055 × 10−16 | −1.172 × 10−15 | 100.000 |
Storage Time (days) | Score of PCA | Ranking | Score of SRA | Ranking |
---|---|---|---|---|
0 | 3.798 | 1 | 3.726 | 1 |
4 | 2.375 | 2 | 2.450 | 2 |
8 | 1.172 | 3 | 1.163 | 3 |
12 | 0.102 | 4 | 0.161 | 4 |
16 | −0.244 | 5 | −0.309 | 5 |
20 | −1.062 | 6 | −1.244 | 6 |
24 | −2.518 | 7 | −2.246 | 7 |
28 | −3.624 | 8 | −3.747 | 8 |
Storage Time (days) | Hardness (g) | Springness (%) | Resilience (%) | Chewiness (g·mm) |
---|---|---|---|---|
25 °C storage | ||||
0 | 452.33 ± 4.84 f | 23.14 ± 0.34 a | 18.71 ± 0.24 a | 3714.14 ± 98.93 e |
2 | 464.37 ± 3.17 ef | 23.03 ± 0.07 ab | 17.97 ± 0.25 b | 3906.04 ± 125.70 d |
4 | 491.45 ± 47.36 de | 22.60 ± 0.37 ab | 18.06 ± 0.15 b | 3973.93 ± 223.61 d |
6 | 501.34 ± 12.77 d | 22.47 ± 0.82 ab | 17.45 ± 0.29 c | 4586.36 ± 37.00 b |
8 | 579.92 ± 3.81 bc | 22.39 ± 0.12 b | 16.84 ± 0.15 d | 4857.95 ± 32.96 a |
10 | 594.93 ± 13.16 b | 22.61 ± 0.44 ab | 16.59 ± 0.20 d | 4903.08 ± 85.25 a |
12 | 664.24 ± 5.78 a | 20.18 ± 0.19 c | 15.74 ± 0.28 e | 4303.10 ± 10.91 c |
14 | 559.10 ± 18.52 c | 18.34 ± 0.08 d | 14.25 ± 0.15 f | 2943.94 ± 69.24 f |
16 | 487.97 ± 10.40 de | 17.03 ± 0.19 e | 12.70 ± 0.51 g | 2695.85 ± 75.04 g |
4 °C storage | ||||
4 | 571.45 ± 19.63 e | 22.66 ± 0.18 a | 18.36 ± 0.25 ab | 4163.65 ± 48.36 b |
8 | 613.07 ± 19.41 d | 20.79 ± 0.37 b | 17.84 ± 0.15 b | 5603.99 ± 16.75 a |
12 | 662.92 ± 11.06 c | 20.84 ± 0.26 b | 16.35 ± 0.17 c | 3730.23 ± 99.02 c |
16 | 693.06 ± 7.54 b | 18.26 ± 0.18 cd | 14.78 ± 0.16 d | 3615.85 ± 43.88 d |
20 | 722.78 ± 14.11 a | 18.64 ± 0.05 c | 14.04 ± 0.45 de | 2849.88 ± 27.43 e |
24 | 632.47 ± 3.65 d | 18.59 ± 0.50 c | 13.29 ± 0.65 e | 2682.77 ± 13.42 f |
28 | 470.77 ± 9.38 f | 17.87 ± 0.31 d | 11.57 ± 0.90 f | 2433.52 ± 9.08 g |
Storage Time (days) | α-helix (%) | β-sheet (%) | β-turn (%) | Random Coil(%) | SA (µg/mL) | SB (µg/mL) | SC (µg/mL) | SD (µg/mL) | Free SH (µmol/g) |
---|---|---|---|---|---|---|---|---|---|
Storage at 25 °C | |||||||||
0 | 23.66 ± 0.21 a | 36.60 ± 0.27 c | 27.11 ± 0.22 a | 12.79 ± 0.01 b | 211.25 ± 1.77 a | 132.50 ± 7.07 e | 196.25 ± 1.77 a | 488.00 ± 4.24 a | 10.88 ± 0.31 d |
2 | 23.24 ± 0.19 ab | 36.59 ± 0.33 c | 23.51 ± 3.93 b | 13.28 ± 0.98 b | 205.00 ± 3.54 ab | 131.25 ± 1.77 e | 190.00 ± 3.54 bc | 486.25 ± 1.77 a | 11.99 ± 0.10 c |
4 | 22.78 ± 0.08 bc | 41.07 ± 0.41 b | 21.95 ± 0.46 b | 13.93 ± 0.01 ab | 201.25 ± 8.84 bc | 133.50 ± 5.66 e | 187.75 ± 0.35 de | 485.75 ± 2.47 a | 12.58 ± 0.10 b |
6 | 22.88 ± 0.43 bc | 40.97 ± 0.66 b | 22.12 ± 0.21 b | 14.33 ± 0.08 ab | 198.50 ± 2.12 bc | 139.00 ± 2.12 de | 185.00 ± 3.54 de | 478.50 ± 1.41 b | 12.53 ± 0.34 bc |
8 | 22.84 ± 0.03 bc | 41.64 ± 0.39 b | 21.64 ± 0.22 b | 13.96 ± 0.18 ab | 193.75 ± 5.30 cd | 147.50 ± 3.53 cd | 183.75 ± 1.77 de | 475.75 ± 4.60 b | 12.81 ± 0.16 ab |
10 | 22.36 ± 0.66 c | 41.37 ± 0.18 b | 21.73 ± 0.04 b | 14.46 ± 0.33 ab | 183.75 ± 5.30 de | 151.50 ± 4.95 bc | 182.25 ± 0.35 e | 475.00 ± 3.54 b | 12.77 ± 0.10 ab |
12 | 22.80 ± 0.03 bc | 41.50 ± 0.10 b | 21.59 ± 0.23 b | 14.25 ± 0.12 ab | 183.50 ± 1.41 de | 160.50 ± 7.07 ab | 188.50 ± 1.41 cd | 471.75 ± 4.60 bc | 13.03 ± 0 ab |
14 | 22.66 ± 0.14 c | 41.47 ± 0.62 b | 21.63 ± 0.48 b | 13.96 ± 0.17 ab | 183.75 ± 1.77 de | 166.25 ± 1.77 a | 197.50 ± 3.54 a | 471.00 ± 1.41 bc | 13.31 ± 0.45 a |
16 | 20.90 ± 0.07 d | 43.94 ± 0.26 a | 21.26 ± 0.45 b | 15.33 ± 2.49 a | 174.75 ± 2.47 e | 167.75 ± 2.47 a | 193.75 ± 1.77 ab | 466.25 ± 1.77 c | 12.73 ± 0.21 ab |
Storage at 4 °C | |||||||||
4 | 23.43 ± 0.46 ab | 36.14 ± 0.10 f | 22.17 ± 0.01 b | 14.40 ± 0.44 a | 206.50 ± 2.12 ab | 135.50 ± 0.71 e | 190.50 ± 1.41 ab | 487.50 ± 2.83 a | 10.88 ± 0.31 b |
8 | 22.93 ± 0.03 bc | 40.49 ± 0.26 cd | 22.06 ± 0.06 b | 14.38 ± 0.28 a | 203.75 ± 1.77 bc | 138.75 ± 1.77 de | 188.00 ± 1.41 bc | 485.50 ± 4.24 a | 12.07 ± 0.21 a |
12 | 23.03 ± 0.07 bc | 40.82 ± 0.13 c | 22.23 ± 0.09 b | 14.22 ± 0.01 a | 200.75 ± 4.60 bc | 144.25 ± 1.06 cd | 186.00 ± 1.41 bcd | 481.50 ± 5.66 ab | 12.40 ± 0.16 a |
16 | 22.74 ± 0.12 cd | 40.31 ± 0.26 d | 21.49 ± 0.18 cd | 14.38 ± 0.35 a | 198.75 ± 1.77 c | 146.50 ± 1.41 bcd | 179.75 ± 0.35 de | 475.25 ± 3.18 bc | 12.03 ± 0.16 a |
20 | 22.24 ± 0.64 d | 41.38 ± 0.18 b | 21.64 ± 0.11 c | 14.31 ± 0.25 a | 190.50 ± 2.83 d | 149.75 ± 3.89 bc | 176.10 ± 4.10 e | 473.65 ± 4.45 bc | 12.10 ± 0.05 a |
24 | 23.01 ± 0.03 bc | 41.34 ± 0.20 b | 21.76 ± 0.19 c | 14.39 ± 0.08 a | 182.50 ± 3.54 e | 154.00 ± 4.95 ab | 183.50 ± 5.66 cd | 466.75 ± 1.06 cd | 12.44 ± 0.21 a |
28 | 22.68 ± 0.18 cd | 42.37 ± 0.47 a | 21.21 ± 0.24 d | 14.21 ± 0.22 a | 173.75 ± 1.77 f | 159.85 ± 0.21 a | 186.65 ± 1.63 bc | 461.00 ± 4.95 d | 11.21 ± 0.05 b |
Hardness | Springness | Resilience | Chewiness | |
---|---|---|---|---|
Within 12 days of storage at 25 °C | ||||
CFI | −0.940 ** | 0.745 | 0.959 ** | −0.743 |
TVB-N | 0.950 ** | −0.728 | −0.972 ** | 0.781 * |
Moisture contents | −0.604 | 0.378 | 0.597 | −0.575 |
Storage at 25 °C for more than 12 days | ||||
CFI | 0.954 ** | 0.932 ** | 0.985 ** | 0.847 * |
TVB-N | −0.994 ** | −0.988 ** | −0.965 ** | −0.955 ** |
Moisture contents | 0.942 ** | 0.921 ** | 0.969 ** | 0.835 * |
Within 20 days of storage at 4 °C | ||||
CFI | −0.989 ** | 0.923 ** | 0.925 ** | 0.338 |
TVB-N | 0.964 ** | −0.950 ** | −0.967 ** | −0.425 |
A23 | −0.961 ** | 0.814 * | 0.786 | 0.145 |
Storage at 4 °C for more than 20 days | ||||
CFI | 0.981 ** | 0.879 ** | 0.974 ** | 0.986 ** |
TVB-N | −0.992 ** | −0.904 ** | −0.987 ** | −0.995 ** |
A23 | 0.974 ** | 0.961 ** | 0.996 ** | 0.984 ** |
α-Helix | β-Sheet | β-Turn | Random Coil | SA | SB | SC | SD | Free SH | |
---|---|---|---|---|---|---|---|---|---|
Within 12 days of storage at 25 °C | |||||||||
Hardness | −0.668 | 0.726 | −0.653 | 0.700 | −0.945 ** | 0.990 ** | −0.534 | −0.940 ** | 0.763 * |
Springness | 0.356 | −0.538 | 0.490 | −0.507 | 0.698 | −0.820 * | 0.166 | 0.733 | −0.609 |
Resilience | 0.708 | −0.723 | 0.735 | −0.769 * | 0.958 ** | −0.966 ** | 0.620 | 0.967 ** | −0.825 * |
Chewiness | −0.780 * | 0.760 * | −0.701 | 0.797 * | −0.746 | 0.643 | −0.911 ** | −0.809 * | 0.710 |
Storage at 25 °C for more than 12 days | |||||||||
Hardness | 0.916 ** | −0.861 * | 0.851 * | −0.762 * | 0.856 * | −0.967 ** | −0.395 | 0.901 ** | 0.668 |
Springness | 0.881 ** | −0.828 * | 0.805 * | −0.706 | 0.813 * | −0.986 ** | −0.468 | 0.868 * | 0.610 |
Resilience | 0.952 ** | −0.929 ** | 0.933 ** | −0.854 * | 0.938 ** | −0.898 ** | −0.212 | 0.964 ** | 0.780 * |
Chewiness | 0.787 * | −0.709 | 0.690 | −0.573 | 0.695 | −0.997 ** | −0.626 | 0.762 * | 0.454 |
Within 20 days of storage at 4 °C | |||||||||
Hardness | −0.916 * | 0.843 * | −0.881 * | 0.801 | −0.931 ** | 0.956 ** | −0.955 ** | −0.873 * | 0.842 * |
Springness | 0.922 ** | −0.837 * | 0.688 | −0.578 | 0.885 * | −0.935 ** | 0.954 ** | 0.952 ** | −0.652 |
Resilience | 0.910 * | −0.774 | 0.603 | −0.475 | 0.942 ** | −0.976 ** | 0.966 ** | 0.997 ** | −0.551 |
Chewiness | 0.319 | −0.099 | −0.054 | 0.170 | 0.481 | −0.490 | 0.443 | 0.599 | 0.160 |
Storage at 4 °C for more than 20 days | |||||||||
Hardness | 0.131 | −0.923 ** | 0.891 ** | −0.233 | 0.987 ** | −0.990 ** | −0.946 ** | 0.978 ** | 0.797 * |
Springness | 0.508 | −0.983 ** | 0.964 ** | −0.508 | 0.918 ** | −0.888 ** | −0.815 * | 0.883 ** | 0.553 |
Resilience | 0.261 | −0.964 ** | 0.941 ** | −0.305 | 0.990 ** | −0.985 ** | −0.922 ** | 0.972 ** | 0.730 |
Chewiness | 0.164 | −0.933 ** | 0.904 ** | −0.239 | 0.994 ** | −0.995 ** | −0.948 ** | 0.984 ** | 0.781 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Wang, J.; Lin, W.; Li, B.; Ma, R.; Huang, Y.; Obadi, M. Predict the Gelling Properties of Alkali-Induced Egg White Gel Based on the Freshness of Duck Eggs. Foods 2023, 12, 4028. https://doi.org/10.3390/foods12214028
Sun J, Wang J, Lin W, Li B, Ma R, Huang Y, Obadi M. Predict the Gelling Properties of Alkali-Induced Egg White Gel Based on the Freshness of Duck Eggs. Foods. 2023; 12(21):4028. https://doi.org/10.3390/foods12214028
Chicago/Turabian StyleSun, Jun, Jialei Wang, Wan Lin, Baochang Li, Ruipeng Ma, Yuqian Huang, and Mohammed Obadi. 2023. "Predict the Gelling Properties of Alkali-Induced Egg White Gel Based on the Freshness of Duck Eggs" Foods 12, no. 21: 4028. https://doi.org/10.3390/foods12214028
APA StyleSun, J., Wang, J., Lin, W., Li, B., Ma, R., Huang, Y., & Obadi, M. (2023). Predict the Gelling Properties of Alkali-Induced Egg White Gel Based on the Freshness of Duck Eggs. Foods, 12(21), 4028. https://doi.org/10.3390/foods12214028