Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects
Abstract
:1. Introduction
1.1. Propolis and Geopropolis
1.2. Cerumen
1.3. Properties of Propolis, Geopropolis, and Cerumen
2. Characteristics of Propolis
2.1. Physical Properties
2.2. Chemical Compositions
3. Production of Propolis by Bees
4. Factors Affecting the Quality of Propolis
4.1. Botanical Effect on Propolis
4.2. Bee Species Effect on Propolis
4.3. Effect of Extraction Processes on Propolis
5. Chronological Applications of Propolis
6. The Antimicrobial Component of Propolis
7. Quality Control of Propolis
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liberio, S.A.; Pereira, A.L.A.; Dutra, R.P.; Reis, A.S.; Araújo, M.J.A.; Mattar, N.S.; Silva, L.A.; Ribeiro, M.N.S.; Nascimento, F.R.F.; Guerra, R.N.; et al. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith. BMC Complement. Altern. Med. 2011, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, M.G.; Franchin, M.; Galvão, L.; de Ruiz, A.; de Carvalho, J.E.; Ikegaki, M.; de Alencar, S.M.; Koo, H.; Rosalen, P.L. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complement. Altern. Med. 2013, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Salatino, A.; Teixeira, É.W.; Negri, G. Origin and chemical variation of Brazilian propolis. Evid. Based. Complement. Alternat. Med. 2005, 2, 33–38. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharmacol. Pharm. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- Woo, S.O.; Hong, I.-P.; Han, S.-M. Extraction properties of propolis with ethanol concentration. J. Apic. 2015, 30, 211–216. [Google Scholar] [CrossRef]
- Aminimoghadamfarouj, N.; Nematollahi, A. Propolis diterpenes as a remarkable bio-source for drug discovery development: A review. Int. J. Mol. Sci. 2017, 18, 1290. [Google Scholar] [CrossRef]
- Shanahan, M.; Spivak, M. Resin use by stingless bees: A review. Insects 2021, 12, 719. [Google Scholar] [CrossRef]
- Tiveron, A.P.; Rosalen, P.L.; Franchin, M.; Lacerda, R.C.C.; Bueno-Silva, B.; Benso, B.; Denny, C.; Ikegaki, M.; Alencar, S.M.D. Chemical characterization and antioxidant, antimicrobial, and anti-inflammatory activities of South Brazilian organic propolis. PLoS ONE 2016, 11, e0165588. [Google Scholar] [CrossRef] [PubMed]
- Balderas-Cordero, D.; Canales-Alvarez, O.; Sánchez-Sánchez, R.; Cabrera-Wrooman, A.; Canales-Martinez, M.M.; Rodriguez-Monroy, M.A. Anti-Inflammatory and Histological Analysis of Skin Wound Healing through Topical Application of Mexican Propolis. Int. J. Mol. Sci. 2023, 24, 11831. [Google Scholar] [CrossRef] [PubMed]
- Basiri, M.R. A review of antiviral and anti-inflammatory effects of propolis in prevention And treatment of Corona (COVID-19). Honeybee Sci. J. 2021, 11, 125312. [Google Scholar] [CrossRef]
- Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J. Biol. Sci. 2022, 29, 1936–1946. [Google Scholar] [CrossRef] [PubMed]
- Cantero, T.; Silva Junior, P.I.D.; Negri, G.; Nascimento, R.M.D.; Mendonça, R.Z. Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica. Toxin. Rev. 2023, 42, 300–315. [Google Scholar] [CrossRef]
- Farooqui, T.; A Farooqui, A. Molecular mechanism underlying the therapeutic activities of propolis: A critical review. Curr. Nutr. Food. Sci. 2010, 6, 186–199. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef]
- Rivera-Yañez, N.; Ruiz-Hurtado, P.A.; Rivera-Yañez, C.R.; Arciniega-Martínez, I.M.; Yepez-Ortega, M.; Mendoza-Arroyo, B.; Rebollar-Ruíz, X.A.; Méndez-Cruz, A.R.; Reséndiz-Albor, A.A.; Nieto-Yañez, O. The Role of Propolis as a Natural Product with Potential Gastric Cancer Treatment Properties: A Systematic Review. Foods 2023, 12, 415. [Google Scholar] [CrossRef]
- Salatino, A. Perspectives for uses of propolis in therapy against infectious diseases. Molecules 2022, 27, 4594. [Google Scholar] [CrossRef]
- Zulhendri, F.; Chandrasekaran, K.; Kowacz, M.; Ravalia, M.; Kripal, K.; Fearnley, J.; Perera, C.O. Antiviral, antibacterial, antifungal, and antiparasitic properties of propolis: A review. Foods 2021, 10, 1360. [Google Scholar] [CrossRef]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its role and efficacy in human health and diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Christov, R.; Marcucci, C.; Popov, S. Constituents of Brazilian geopropolis. Z. Naturforsch. C. J. Biosci. 1998, 53, 402–406. [Google Scholar] [CrossRef]
- Barth, O.M.; Luz, C.F.P.D. Palynological analysis of Brazilian geopropolis sediments. Grana 2003, 42, 121–127. [Google Scholar] [CrossRef]
- Lavinas, F.C.; Macedo, E.H.B.; Sá, G.B.; Amaral, A.C.F.; Silva, J.R.; Azevedo, M.; Vieira, B.A.; Domingos, T.F.S.; Vermelho, A.B.; Carneiro, C.S. Brazilian stingless bee propolis and geopropolis: Promising sources of biologically active compounds. Rev. Bras. Farmacogn. 2019, 29, 389–399. [Google Scholar] [CrossRef]
- Engel, M.S.; Rasmussen, C.; Ayala, R.; de Oliveira, F.F. Stingless bee classification and biology (Hymenoptera, Apidae): A review, with an updated key to genera and subgenera. ZooKeys 2023, 1172, 239–312. [Google Scholar] [CrossRef]
- Dos Santos, S.; Roselino, A.; Hrncir, M.; Bego, L. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae). Genet. Mol. Res 2009, 8, 751–757. [Google Scholar] [CrossRef]
- Popova, M.; Gerginova, D.; Trusheva, B.; Simova, S.; Tamfu, A.N.; Ceylan, O.; Clark, K.; Bankova, V. A preliminary study of chemical profiles of honey, cerumen, and propolis of the African stingless bee Meliponula ferruginea. Foods 2021, 10, 997. [Google Scholar] [CrossRef]
- Patricio, E.; Cruz-López, L.; Maile, R.; Tentschert, J.; Jones, G.R.; Morgan, E.D. The propolis of stingless bees: Terpenes from the tibia of three Frieseomelitta species. J. Insect Physiol. 2002, 48, 249–254. [Google Scholar] [CrossRef]
- Roubik, D.W. Stingless bee nesting biology. Apidologie 2006, 37, 124–143. [Google Scholar] [CrossRef]
- Roubik, D.W. Nest structure: Stingless bees. In Encyclopedia of Social Insects; Starr, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–6. [Google Scholar]
- Michener, C.D. The meliponini. In Pot-Honey: A Legacy of Stingless Bees; Springer: Berlin/Heidelberg, Germany, 2012; pp. 3–17. [Google Scholar]
- Lehmberg, L.; Dworschak, K.; Blüthgen, N. Defensive behavior and chemical deterrence against ants in the stingless bee genus Trigona (Apidae, Meliponini). J. Apic. Res. 2008, 47, 17–21. [Google Scholar] [CrossRef]
- Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Russell, F.D. Cerumen of Australian stingless bees (Tetragonula carbonaria): Gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 2011, 98, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Chuttong, B.; Burgett, M. Biometric Studies of the Stingless Bee Tetragonula laeviceps Complex (Apidae: Meliponini) from Northern Thailand. J. Apic. 2017, 32, 359–362. [Google Scholar] [CrossRef]
- Chuttong, B.; Chanbang, Y.; Burgett, M. Meliponiculture: Stingless bee beekeeping in Thailand. Bee World 2014, 91, 41–45. [Google Scholar] [CrossRef]
- Martinotti, S.; Ranzato, E. Propolis: A new frontier for wound healing? Burn. Trauma 2015, 3, 9. [Google Scholar] [CrossRef]
- Ramos, A.; Miranda, J.D. Propolis: A review of its anti-inflammatory and healing actions. J. Venom. Anim. Toxins Incl. Trop. Dis. 2007, 13, 697–710. [Google Scholar] [CrossRef]
- Sanpa, S.; Popova, M.; Bankova, V.; Tunkasiri, T.; Eitssayeam, S.; Chantawannakul, P. Antibacterial compounds from propolis of Tetragonula laeviceps and Tetrigona melanoleuca (Hymenoptera: Apidae) from Thailand. PLoS ONE 2015, 10, e0126886. [Google Scholar] [CrossRef]
- Cinegaglia, N.C.; Bersano, P.R.O.; Araújo, M.J.A.M.; Búfalo, M.C.; Sforcin, J.M. Anticancer effects of geopropolis produced by stingless bees on canine osteosarcoma cells in vitro. Evid. Based. Complement. Alternat. Med. 2013, 2013, 737386. [Google Scholar] [CrossRef]
- Oršolić, N. A review of propolis antitumor action in vivo and in vitro. JAAS 2010, 2, 1–20. [Google Scholar] [CrossRef]
- Campos, J.F.; Santos, U.P.D.; Rocha, P.D.S.D.; Damião, M.J.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Estevinho, L.M.; de Picoli Souza, K.; Santos, E.L.D. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evid. Based. Complement. Alternat. Med. 2015, 2015, 296186. [Google Scholar] [CrossRef]
- Aamer, A.A.; Abdul-Hafeez, M.; Sayed, S. Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC) of Honey and Bee Propolis against Multi-Drug Resistant (MDR) Staphylococcus sp. Isolated from Bovine Clinical Mastitis. Altern. Integr. Med. 2014, 3, 171. [Google Scholar] [CrossRef]
- Mohdaly, A.A.; Mahmoud, A.A.; Roby, M.H.; Smetanska, I.; Ramadan, M.F. Phenolic extract from propolis and bee pollen: Composition, antioxidant and antibacterial activities. J. Food Biochem. 2015, 39, 538–547. [Google Scholar] [CrossRef]
- Ristivojević, P.; Dimkić, I.; Trifković, J.; Berić, T.; Vovk, I.; Milojković-Opsenica, D.; Stanković, S. Antimicrobial activity of Serbian propolis evaluated by means of MIC, HPTLC, bioautography and chemometrics. PLoS ONE 2016, 11, e0157097. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.P.; Abreu, B.V.D.B.; Cunha, M.S.; Batista, M.C.A.; Torres, L.M.B.O.; Nascimento, F.R.F.; Ribeiro, M.N.S.; Guerra, R.N.M. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith. J. Agric. Food. Chem. 2014, 62, 2549–2557. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Fernandes-Silva, C.C.; Salatino, A.; Negri, G. Corrigendum to “Antioxidant Activity of a Geopropolis from Northeast Brazil: Chemical Characterization and Likely Botanical Origin”. Evid. Based. Complement. Alternat. Med. 2018, 2018, 7084284. [Google Scholar] [CrossRef]
- Guzmán-Gutiérrez, S.L.; Nieto-Camacho, A.; Castillo-Arellano, J.I.; Huerta-Salazar, E.; Hernández-Pasteur, G.; Silva-Miranda, M.; Argüello-Nájera, O.; Sepúlveda-Robles, O.; Espitia, C.I.; Reyes-Chilpa, R. Mexican propolis: A source of antioxidants and anti-inflammatory compounds, and isolation of a novel chalcone and ε-caprolactone derivative. Molecules 2018, 23, 334. [Google Scholar] [CrossRef]
- da Cunha, M.G.; Franchin, M.; de Paula-Eduardo, L.F.; Freires, I.A.; Beutler, J.A.; de Alencar, S.M.; Ikegaki, M.; Tabchoury, C.P.M.; Cunha, T.M.; Rosalen, P.L. Anti-inflammatory and anti-biofilm properties of ent-nemorosone from Brazilian geopropolis. J. Funct. Foods 2016, 26, 27–35. [Google Scholar] [CrossRef]
- Santos, H.F.D.; Campos, J.F.; Santos, C.M.D.; Balestieri, J.B.P.; Silva, D.B.; Carollo, C.A.; de Picoli Souza, K.; Estevinho, L.M.; Dos Santos, E.L. Chemical profile and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of geopropolis from the stingless bee Melipona orbignyi. Int. J. Mol. Sci. 2017, 18, 953. [Google Scholar] [CrossRef]
- Kustiawan, P.M.; Phuwapraisirisan, P.; Puthong, S.; Palaga, T.; Arung, E.T.; Chanchao, C. Propolis from the stingless bee Trigona incisa from East Kalimantan, Indonesia, induces in vitro cytotoxicity and apoptosis in cancer cell lines. Asian. Pac. J. Cancer. Prev. 2015, 16, 6581–6589. [Google Scholar] [CrossRef]
- Bartolomeu, A.R.; Frión-Herrera, Y.; Da Silva, L.M.; Romagnoli, G.G.; De Oliveira, D.E.; Sforcin, J.M. Combinatorial effects of geopropolis produced by Melipona fasciculata Smith with anticancer drugs against human laryngeal epidermoid carcinoma (HEp-2) cells. Biomed. Pharmacother. 2016, 81, 48–55. [Google Scholar] [CrossRef]
- Molnár, S.; Mikuska, K.; Patonay, K.; Sisa, K.; Daood, H.G.; Nemedi, E.; Kiss, A. Comparative studies on polyphenolic profile and antimicrobial activity of propolis samples selected from distinctive geographical areas of Hungary. Food Sci. Technol. Int. 2017, 23, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Alves de Souza, S.; Camara, C.A.; Monica Sarmento da Silva, E.; Silva, T.M.S. Composition and antioxidant activity of geopropolis collected by Melipona subnitida (Jandaíra) bees. Evid. Based. Complement. Alternat. Med. 2013, 2013, 801383. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, A.C.H.F.; Barbosa da Silva Cunha, I.; Marcucci, M.C. Analytical methods applied to diverse types of Brazilian propolis. Chem. Cent. J. 2011, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Umthong, S.; Puthong, S.; Chanchao, C. Trigona laeviceps propolis from Thailand: Antimicrobial, antiproliferative and cytotoxic activities. Am. J. Chin. Med. 2009, 37, 855–865. [Google Scholar] [CrossRef]
- Gupta, P.D.; Birdi, T.J. Development of botanicals to combat antibiotic resistance. J. Ayurveda. Integr. Med. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef]
- O’neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Rev. Antimicrob. Resist. 2014. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 10 August 2023).
- Bonvehí, J.S.; Gutiérrez, A.L. The antimicrobial effects of propolis collected in different regions in the Basque Country (Northern Spain). World. J. Microbiol. Biotechnol. 2012, 28, 1351–1358. [Google Scholar] [CrossRef]
- Nedji, N.; Loucif-Ayad, W. Antimicrobial activity of Algerian propolis in foodborne pathogens and its quantitative chemical composition. Asian. Pac. J. Trop. Dis. 2014, 4, 433–437. [Google Scholar] [CrossRef]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT—Food. Sci. Technol. 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Pérez-Pérez, E.; Suárez, E.; Peña-Vera, M.; González, A.; Vit, P. Antioxidant Activity and Microorganisms in Nest Products of Tetragonisca angustula Latreille, 1811 from Mérida, Venezuela; Vit, P., Roubik, D.W., Eds.; Facultad de Farmacia y Bioanálisis, Universidad de Los Andes: Mérida, Venezuela, 2013; pp. 1–8. [Google Scholar]
- Nugitrangson, P.; Puthong, S.; Iempridee, T.; Pimtong, W.; Pornpakakul, S.; Chanchao, C. In vitro and in vivo characterization of the anticancer activity of Thai stingless bee (Tetragonula laeviceps) cerumen. Exp. Biol. Med. 2016, 241, 166–176. [Google Scholar] [CrossRef]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Ghisalberti, E. Propolis: A review. Bee World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Zulhendri, F.; Perera, C.O.; Chandrasekaran, K.; Ghosh, A.; Tandean, S.; Abdulah, R.; Herman, H.; Lesmana, R. Propolis of stingless bees for the development of novel functional food and nutraceutical ingredients: A systematic scoping review of the experimental evidence. J. Funct. Foods 2022, 88, 104902. [Google Scholar] [CrossRef]
- Cuesta-Rubio, O.; Piccinelli, A.L.; Campo Fernandez, M.; Marquez Hernandez, I.; Rosado, A.; Rastrelli, L. Chemical characterization of Cuban propolis by HPLC−PDA, HPLC−MS, and NMR: The brown, red, and yellow Cuban varieties of propolis. J. Agric. Food. Chem. 2007, 55, 7502–7509. [Google Scholar] [CrossRef] [PubMed]
- Daugsch, A.; Moraes, C.S.; Fort, P.; Park, Y.K. Brazilian red propolis—Chemical composition and botanical origin. Evid. Based. Complement. Alternat. Med. 2008, 5, 435–441. [Google Scholar] [CrossRef]
- Krell, R. Value-Added Products from Beekeeping; Food & Agriculture Org.: Rome, Italy, 1996. [Google Scholar]
- da Costa, C.C.; Pereira, R.G. Rheological analysis of honey and propolis mixtures. In Proceedings of the 3rd International Symposium on Food Rheology and Structure (ISFRS 2003), Zürich, Switzerland, 9–13 February 2003; Fischer, P., Marti, I., Windhab, E., Eds.; Laboratory of Food Process Engineering (ETH Zürich): Zürich, Switzerland, 2003; p. 435. [Google Scholar]
- Ali, I.; Daoud, A.S.; Shareef, A.Y. Physical properties and chemical analysis of Iraqi propolis. Tikrit. J. Pure. Sci. 2012, 17, 26–31. [Google Scholar]
- Farooqui, T.; Farooqui, A.A. Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling; Farooqui, T., Farooqui, A.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid. Based. Complement. Alternat. Med. 2013, 2013, 964149. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis volatile compounds: Chemical diversity and biological activity: A review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef]
- Ahangari, Z.; Naseri, M.; Vatandoost, F. Propolis: Chemical composition and its applications in endodontics. Iran. Endod. J. 2018, 13, 285–292. [Google Scholar] [CrossRef]
- Piccinelli, A.L.; Mencherini, T.; Celano, R.; Mouhoubi, Z.; Tamendjari, A.; Aquino, R.P.; Rastrelli, L. Chemical composition and antioxidant activity of Algerian propolis. J. Agric. Food. Chem. 2013, 61, 5080–5088. [Google Scholar] [CrossRef]
- Miguel, M.G.; Nunes, S.; Dandlen, S.A.; Cavaco, A.M.; Antunes, M.D. Phenols, flavonoids and antioxidant activity of aqueous and methanolic extracts of propolis (Apis mellifera L.) from Algarve, South Portugal. Food. Sci. Technol. 2014, 34, 16–23. [Google Scholar] [CrossRef]
- Khacha-Ananda, S.; Tragoolpua, K.; Chantawannakul, P.; Tragoolpua, Y. Antioxidant and anti-cancer cell proliferation activity of propolis extracts from two extraction methods. Asian. Pac. J. Cancer. Prev. 2013, 14, 6991–6995. [Google Scholar] [CrossRef] [PubMed]
- Musa, T.N.; Salih, N.M.; Ulaiwi, W.S. Detection of some active compounds in aqueous and ethanolic extracts of Iraqi propolis and examine their antibacterial effects. Pak. J. Nutr. 2012, 11, 83–87. [Google Scholar] [CrossRef]
- Sameni, H.R.; Ramhormozi, P.; Bandegi, A.R.; Taherian, A.A.; Mirmohammadkhani, M.; Safari, M. Effects of ethanol extract of propolis on histopathological changes and anti-oxidant defense of kidney in a rat model for type 1 diabetes mellitus. J. Diabetes Investig. 2016, 7, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid. Based. Complement. Alternat. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef]
- Righi, A.A.; Negri, G.; Salatino, A. Comparative chemistry of propolis from eight Brazilian localities. Evid. Based. Complement. Alternat. Med. 2013, 2013, 267878. [Google Scholar] [CrossRef]
- Hernandez Zarate, M.S.; Abraham Juarez, M.d.R.; Ceron Garcia, A.; Ozuna Lopez, C.; Gutierrez Chavez, A.J.; Segoviano Garfias, J.D.J.N.; Avila Ramos, F. Flavonoids, phenolic content, and antioxidant activity of propolis from various areas of Guanajuato, Mexico. Food. Sci. Technol. 2018, 38, 210–215. [Google Scholar] [CrossRef]
- Oliveira, A.P.; França, H.; Kuster, R.; Teixeira, L.; Rocha, L. Chemical composition and antibacterial activity of Brazilian propolis essential oil. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 121–130. [Google Scholar] [CrossRef]
- Trusheva, B.; Todorov, I.; Ninova, M.; Najdenski, H.; Daneshmand, A.; Bankova, V. Antibacterial mono-and sesquiterpene esters of benzoic acids from Iranian propolis. Chem. Cent. J. 2010, 4, 8. [Google Scholar] [CrossRef]
- Souza, E.C.A.D.; Silva, E.J.G.D.; Cordeiro, H.K.C.; Lage Filho, N.M.; Silva, F.; Reis, D.L.S.D.; Porto, C.; Pilau, E.J.; Costa, L.A.; de Souza, A.D.; et al. Chemical compositions and antioxidant and antimicrobial activities of propolis produced by Frieseomelitta longipes and Apis mellifera bees. Quim. Nova. 2018, 41, 485–491. [Google Scholar] [CrossRef]
- Guo, X.; Chen, B.; Luo, L.; Zhang, X.; Dai, X.; Gong, S. Chemical compositions and antioxidant activities of water extracts of Chinese propolis. J. Agric. Food. Chem. 2011, 59, 12610–12616. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.; Ulrich, W. ‘Propolis bees’ and their activities. Bee World 1956, 37, 25–36. [Google Scholar] [CrossRef]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based. Complement. Alternat. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Salatino, M.; Salatino, A. Production of propolis and geopropolis by stingless bees. MOJ Food. Process. Technol. 2020, 8, 1–3. [Google Scholar] [CrossRef]
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complement. Altern. Med. 2015, 15, 156. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Kolarov, R.; Gergova, G.; Mitov, I. In vitro activity of Bulgarian propolis against 94 clinical isolates of anaerobic bacteria. Anaerobe 2006, 12, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tezuka, Y.; Prasain, J.K.; Matsushige, K.; Saiki, I.; Kadota, S. Chemical constituents of Brazilian propolis and their cytotoxic activities. J. Nat. Prod. 1998, 61, 896–900. [Google Scholar] [CrossRef]
- Surek, M.; Fachi, M.M.; de Fátima Cobre, A.; de Oliveira, F.F.; Pontarolo, R.; Crisma, A.R.; de Souza, W.M.; Felipe, K.B. Chemical composition, cytotoxicity, and antibacterial activity of propolis from Africanized honeybees and three different Meliponini species. J. Ethnopharmacol. 2021, 269, 113662. [Google Scholar] [CrossRef]
- de Sá Assis, M.A.; de Paula Ramos, L.; Abu Hasna, A.; de Queiroz, T.S.; Pereira, T.C.; Nagai de Lima, P.M.; Berretta, A.A.; Marcucci, M.C.; Talge Carvalho, C.A.; de Oliveira, L.D. Antimicrobial and antibiofilm effect of brazilian green propolis aqueous extract against dental Anaerobic bacteria. Molecules 2022, 27, 8128. [Google Scholar] [CrossRef]
- Paulino, N.; Abreu, S.R.L.; Uto, Y.; Koyama, D.; Nagasawa, H.; Hori, H.; Dirsch, V.M.; Vollmar, A.M.; Scremin, A.; Bretz, W.A. Anti-inflammatory effects of a bioavailable compound, Artepillin C, in Brazilian propolis. Eur. J. Pharmacol. 2008, 587, 296–301. [Google Scholar] [CrossRef]
- Chikaraishi, Y.; Izuta, H.; Shimazawa, M.; Mishima, S.; Hara, H. Angiostatic effects of Brazilian green propolis and its chemical constituents. Mol. Nutr. Food Res. 2010, 54, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Rufatto, L.C.; Luchtenberg, P.; Garcia, C.; Thomassigny, C.; Bouttier, S.; Henriques, J.A.P.; Roesch-Ely, M.; Dumas, F.; Moura, S. Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol. Res. 2018, 214, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.-R.; Kumazawa, S.; Usui, Y.; Nakamura, J.; Matsuka, M.; Zhu, F.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007, 101, 1383–1392. [Google Scholar] [CrossRef]
- Tatlısulu, S.; Özgör, E. Identification of Cyprus propolis composition and evaluation of its antimicrobial and antiproliferative activities. Food. Biosci. 2023, 51, 102273. [Google Scholar] [CrossRef]
- Refaat, H.; Mady, F.M.; Sarhan, H.A.; Rateb, H.S.; Alaaeldin, E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharm. 2021, 592, 120028. [Google Scholar] [CrossRef]
- Afata, T.N.; Dekebo, A. Chemical composition and antimicrobial effect of western Ethiopian propolis. Chem. Biodivers. 2023, 20, e202200922. [Google Scholar] [CrossRef]
- Afata, T.N.; Nemo, R.; Ishete, N.; Tucho, G.T.; Dekebo, A. Phytochemical investigation, physicochemical characterization, and antimicrobial activities of Ethiopian propolis. Arab. J. Chem. 2022, 15, 103931. [Google Scholar] [CrossRef]
- Widelski, J.; Okińczyc, P.; Paluch, E.; Mroczek, T.; Szperlik, J.; Żuk, M.; Sroka, Z.; Sakipova, Z.; Chinou, I.; Skalicka-Woźniak, K.; et al. The antimicrobial properties of poplar and aspen–poplar propolises and their active components against selected microorganisms, including Helicobacter pylori. Pathogens 2022, 11, 191. [Google Scholar] [CrossRef]
- Kasiotis, K.M.; Anastasiadou, P.; Papadopoulos, A.; Machera, K. Revisiting Greek propolis: Chromatographic analysis and antioxidant activity study. PLoS ONE 2017, 12, e0170077. [Google Scholar] [CrossRef]
- Pyrgioti, E.; Graikou, K.; Cheilari, A.; Chinou, I. Assessment of Antioxidant and Antimicrobial Properties of Selected Greek Propolis Samples (North East Aegean Region Islands). Molecules 2022, 27, 8198. [Google Scholar] [CrossRef]
- Laskar, R.A.; Sk, I.; Roy, N.; Begum, N.A. Antioxidant activity of Indian propolis and its chemical constituents. Food. Chem. 2010, 122, 233–237. [Google Scholar] [CrossRef]
- Choudhari, M.K.; Punekar, S.A.; Ranade, R.V.; Paknikar, K.M. Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India. J. Ethnopharmacol. 2012, 141, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Miyata, R.; Mukaide, K.; Honda, S.; Sukito, A.; Sahlan, M.; Taniguchi, T.; Kumazawa, S. New compound from the plant origin of propolis from Lombok, Indonesia and its antibacterial activity. Results. Chem. 2022, 4, 100276. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Shariatpanahi, M.; Hamedi, M.; Ahmadkhaniha, R.; Samadi, N.; Ostad, S.N. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food. Chem. 2007, 103, 1097–1103. [Google Scholar] [CrossRef]
- Widelski, J.; Okińczyc, P.; Suśniak, K.; Malm, A.; Paluch, E.; Sakipov, A.; Zhumashova, G.; Ibadullayeva, G.; Sakipova, Z.; Korona-Glowniak, I. Phytochemical Profile and Antimicrobial Potential of Propolis Samples from Kazakhstan. Molecules 2023, 28, 2984. [Google Scholar] [CrossRef]
- Ahn, M.-R.; Kumazawa, S.; Hamasaka, T.; Bang, K.-S.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of Korea. J. Agric. Food Chem. 2004, 52, 7286–7292. [Google Scholar] [CrossRef]
- Syed Salleh, S.N.A.; Mohd Hanapiah, N.A.; Ahmad, H.; Wan Johari, W.L.; Osman, N.H.; Mamat, M.R. Determination of total phenolics, flavonoids, and antioxidant activity and GC-MS analysis of Malaysian stingless bee propolis water extracts. Scientifica 2021, 2021, 3789351. [Google Scholar] [CrossRef]
- Arung, E.T.; Syafrizal; Kusuma, I.W.; Paramita, S.; Amen, Y.; Kim, Y.-U.; Naibaho, N.M.; Ramadhan, R.; Ariyanta, H.A.; Fatriasari, W.; et al. Antioxidant, anti-inflammatory and anti-acne activities of stingless bee (Tetragonula biroi) propolis. Fitoterapia 2023, 164, 105375. [Google Scholar] [CrossRef]
- Li, F.; Awale, S.; Zhang, H.; Tezuka, Y.; Esumi, H.; Kadota, S. Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J. Nat. Prod. 2009, 72, 1283–1287. [Google Scholar] [CrossRef]
- Bhargava, P.; Mahanta, D.; Kaul, A.; Ishida, Y.; Terao, K.; Wadhwa, R.; Kaul, S.C. Experimental evidence for therapeutic potentials of propolis. Nutrients 2021, 13, 2528. [Google Scholar] [CrossRef]
- Okińczyc, P.; Paluch, E.; Franiczek, R.; Widelski, J.; Wojtanowski, K.K.; Mroczek, T.; Krzyżanowska, B.; Skalicka-Woźniak, K.; Sroka, Z. Antimicrobial activity of Apis mellifera L. and Trigona sp. propolis from Nepal and its phytochemical analysis. Biomed. Pharmacother. 2020, 129, 110435. [Google Scholar] [CrossRef] [PubMed]
- Celińska-Janowicz, K.; Zaręba, I.; Lazarek, U.; Teul, J.; Tomczyk, M.; Pałka, J.; Miltyk, W. Constituents of propolis: Chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Front. Pharmacol. 2018, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Silici, S.; Kutluca, S. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacol. 2005, 99, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, M.C.; Laranjo, M.; Andrade, N.; Marques, M.; Costa, A.R.; Antunes, C.M. Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics 2023, 12, 347. [Google Scholar] [CrossRef]
- Nichitoi, M.M.; Josceanu, A.M.; Isopescu, R.D.; Isopencu, G.O.; Geana, E.-I.; Ciucure, C.T.; Lavric, V. Polyphenolics profile effects upon the antioxidant and antimicrobial activity of propolis extracts. Sci. Rep. 2021, 11, 20113. [Google Scholar] [CrossRef]
- ALaerjani, W.M.A.; Khan, K.A.; Al-Shehri, B.M.; Ghramh, H.A.; Hussain, A.; Mohammed, M.E.A.; Imran, M.; Ahmad, I.; Ahmad, S.; Al-Awadi, A.S. Chemical Profiling, Antioxidant, and Antimicrobial Activity of Saudi Propolis Collected by Arabian Honey Bee (Apis mellifera jemenitica) Colonies. Antioxidants 2022, 11, 1413. [Google Scholar] [CrossRef]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food. Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Rocha, B.A.; Bueno, P.C.P.; Vaz, M.M.d.O.L.L.; Nascimento, A.P.; Ferreira, N.U.; Moreno, G.d.P.; Rodrigues, M.R.; Costa-Machado, A.R.d.M.; Barizon, E.A.; Campos, J.C.L.; et al. Evaluation of a propolis water extract using a reliable RP-HPLC methodology and in vitro and in vivo efficacy and safety characterisation. Evid. Based. Complement. Alternat. Med. 2013, 2013, 670451. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Vitchayakitti, W.; Sanguandeekul, R. Antioxidant and antimicrobial properties of T hai propolis extracted using ethanol aqueous solution. Int. J. Food Sci. Technol. 2013, 48, 22–27. [Google Scholar] [CrossRef]
- Sanpa, S.; Popova, M.; Tunkasiri, T.; Eitssayeam, S.; Bankova, V.; Chantawannakul, P. Chemical profiles and antimicrobial activities of Thai propolis collected from Apis mellifera. Chiang Mai J. Sci 2017, 44, 438–448. [Google Scholar]
- Duran, N.; Muz, M.; Culha, G.; Duran, G.; Ozer, B. GC-MS analysis and antileishmanial activities of two Turkish propolis types. Parasitol. Res. 2011, 108, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; Nguyen, M.T.T.; Nguyen, N.T.; Awale, S. Chemical constituents of propolis from Vietnamese Trigona minor and their antiausterity activity against the PANC-1 human pancreatic cancer cell line. J. Nat. Prod. 2017, 80, 2345–2352. [Google Scholar] [CrossRef] [PubMed]
- Isidorov, V.A.; Maslowiecka, J.; Szoka, L.; Pellizzer, N.; Miranda, D.; Olchowik-Grabarek, E.; Zambrzycka, M.; Swiecicka, I. Chemical composition and biological activity of Argentinian propolis of four species of stingless bees. Molecules 2022, 27, 7686. [Google Scholar] [CrossRef]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Massaro, C.F.; Smyth, T.J.; Smyth, W.F.; Heard, T.; Leonhardt, S.D.; Katouli, M.; Wallace, H.M.; Brooks, P. Phloroglucinols from anti-microbial deposit-resins of Australian stingless bees (Tetragonula carbonaria). Phytother. Res. 2015, 29, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.J.A.M.; Bosco, S.d.M.G.; Sforcin, J.M. Pythium insidiosum: Inhibitory effects of propolis and geopropolis on hyphal growth. Braz. J. Microbiol. 2016, 47, 863–869. [Google Scholar] [CrossRef]
- Velikova, M.; Bankova, V.; Marcucci, M.C.; Tsvetkova, I.; Kujumgiev, A. Chemical composition and biological activity of propolis from Brazilian meliponinae. Z. Naturforsch. C. J. Biosci. 2000, 55, 785–789. [Google Scholar] [CrossRef]
- Campos, J.F.; Bonamigo, T.; Rocha, P.d.S.d.; Paula, V.M.B.; Santos, U.P.d.; Balestieri, J.B.P.; Silva, D.B.; Carollo, C.A.; Estevinho, L.M.; de Picoli Souza, K.; et al. Antimicrobial Activity of Propolis from the Brazilian Stingless Bees Melipona quadrifasciata anthidioides and Scaptotrigona depilis (Hymenoptera, Apidae, Meliponini). Microorganisms 2022, 11, 68. [Google Scholar] [CrossRef]
- Torres, A.; Sandjo, L.; Friedemann, M.; Tomazzoli, M.; Maraschin, M.; Mello, C.; Santos, A. Chemical characterization, antioxidant and antimicrobial activity of propolis obtained from Melipona quadrifasciata quadrifasciata and Tetragonisca angustula stingless bees. Braz. J. Med. Biol. 2018, 51, e7118. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Zullkiflee, N.; Zaini, S.N.Z.; Taha, H.; Hashim, F.; Usman, A. Phytochemicals, mineral contents, antioxidants, and antimicrobial activities of propolis produced by Brunei stingless bees Geniotrigona thoracica, Heterotrigona itama, and Tetrigona binghami. Saudi J. Biol. Sci. 2020, 27, 2902–2911. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Ja’afar, F.; Yasin, H.M.; Taha, H.; Petalcorin, M.I.; Mamit, M.H.; Kusrini, E.; Usman, A. Physicochemical analyses, antioxidant, antibacterial, and toxicity of propolis particles produced by stingless bee Heterotrigona itama found in Brunei Darussalam. Heliyon 2019, 5, e02476. [Google Scholar] [CrossRef] [PubMed]
- Zullkiflee, N.; Taha, H.; Abdullah, N.A.; Hashim, F.; Usman, A. Antibacterial and antioxidant activities of ethanolic and water extracts of stingless bees Tetrigona binghami, Heterotrigona itama, and Geniotrigona thoracica propolis found in Brunei. Philipp. J. Sci 2022, 151, 1455–1462. [Google Scholar] [CrossRef]
- Kothai, S.; Jayanthi, B. Evaluation of antioxidant and antimicrobial activity of stingless bee propolis (Tetragonula iridipennis) of Tamilnadu, India. Int. J. Pharm. Pharm. Sci. 2014, 6, 81–85. [Google Scholar]
- Lim, J.R.; Chua, L.S.; Soo, J. Study of stingless bee (Heterotrigona itama) propolis using LC-MS/MS and TGA-FTIR. Appl. Food. Res. 2023, 3, 100252. [Google Scholar] [CrossRef]
- Ibrahim, N.; Niza, N.; Rodi, M.M.; Zakaria, A.J.; Ismail, Z.; Mohd, K.S. Chemical and biological analyses of Malaysian stingless bee propolis extracts. MJAS 2016, 20, 413–422. [Google Scholar] [CrossRef]
- Lim, J.R.; Chua, L.S.; Dawood, D.A.S. Evaluating Biological Properties of Stingless Bee Propolis. Foods 2023, 12, 2290. [Google Scholar] [CrossRef]
- Kustiawan, P.M.; Zulfa, A.F.; Batistuta, M.A.; Hanifa, D.N.C.; Setiawan, I.M. Comparative Analysis of Phytochemical, Total Phenolic Content, Antioxidant and Antibacterial Activity of Two Species Stingless Bee Propolis from East Kalimantan. Malays. J. Med. Health Sci. 2022, 18, 50–55. [Google Scholar]
- Ramón-Sierra, J.; Peraza-López, E.; Rodríguez-Borges, R.; Yam-Puc, A.; Madera-Santana, T.; Ortiz-Vázquez, E. Partial characterization of ethanolic extract of Melipona beecheii propolis and in vitro evaluation of its antifungal activity. Rev. Bras. Farmacogn. 2019, 29, 319–324. [Google Scholar] [CrossRef]
- Ruiz Ruiz, J.C.; Pacheco López, N.A.; Rejón Méndez, E.G.; Samos López, F.A.; Medina Medina, L.; Quezada-Euán, J.J.G. Phenolic Content and Bioactivity as Geographical Classifiers of Propolis from Stingless Bees in Southeastern Mexico. Foods 2023, 12, 1434. [Google Scholar] [CrossRef]
- Anibijuwon, I.; Gbala, I.; Adeyemi, J.; Abioye, J. Antibacterial activity of stingless bee (Dactylurina studingeri) propolis on bacteria isolated from wound. SMU Med. J. 2017, 4, 43–50. [Google Scholar]
- Mamoon, K.; Thammasit, P.; Iadnut, A.; Kitidee, K.; Anukool, U.; Tragoolpua, Y.; Tragoolpua, K. Unveiling the properties of Thai stingless bee propolis via diminishing cell wall-associated Cryptococcal melanin and enhancing the fungicidal activity of macrophages. Antibiotics 2020, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Auamcharoen, W.; Phankaew, C. Antibacterial activity and phenolic content of propolis from four different areas of Thailand. Int. J. Pharm. Sci. Rev. Res 2016, 37, 77–82. [Google Scholar]
- Cumbao, J.L.T.; Alvarez, P.L.J.; Belina-Aldemita, M.D.; Micor, J.R.L.; Angelia, M.R.N.; Manila-Fajardo, A.C.; Cervancia, C.R. Total phenolics, total flavonoids, antioxidant activity and antibacterial property of propolis produced by the stingless bee, Tetragonula biroi (Friese) from Laguna and Quezon, Philippines. Philipp. Entomol. 2016, 30, 63–74. [Google Scholar]
- Georgieva, K.; Popova, M.; Dimitrova, L.; Trusheva, B.; Thanh, L.N.; Phuong, D.T.L.; Lien, N.T.P.; Najdenski, H.; Bankova, V. Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS ONE 2019, 14, e0216074. [Google Scholar] [CrossRef]
- Thanh, L.N.; Thoa, H.T.; Oanh, N.T.T.; Giap, T.H.; Quyen, V.T.; Ha, N.T.T.; Phuong, D.T.L.; Lien, N.T.P.; Hang, N.T.M. Cycloartane triterpenoids and biological activities from the propolis of the stingless bee Lisotrigona furva. Vietnam J. Chem. 2021, 59, 426–430. [Google Scholar]
- Phuong, D.T.L.; Van Phuong, N.; Le Tuan, N.; Cong, N.T.; Hang, N.T.; Thanh, L.N.; Hue, V.T.; Vuong, N.Q.; Ha, N.T.T.; Popova, M.; et al. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Activities of Ethanol Extract and Chemical Constituents Isolated from Homotrigona apicalis Propolis—In Vitro and Molecular Docking Studies. Life 2023, 13, 1682. [Google Scholar] [CrossRef]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Park, Y.K.; Alencar, S.M.; Aguiar, C.L. Botanical origin and chemical composition of Brazilian propolis. J. Agric. Food. Chem. 2002, 50, 2502–2506. [Google Scholar] [CrossRef]
- Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 2002, 73, S1–S6. [Google Scholar] [CrossRef]
- Franchin, M.; Freires, I.A.; Lazarini, J.G.; Nani, B.D.; da Cunha, M.G.; Colón, D.F.; de Alencar, S.M.; Rosalen, P.L. The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs. Eur. J. Med. Chem. 2018, 153, 49–55. [Google Scholar] [CrossRef]
- Teixeira, É.W.; Negri, G.; Meira, R.M.; Salatino, A. Plant origin of green propolis: Bee behavior, plant anatomy and chemistry. Evid. Based. Complement. Alternat. Med. 2005, 2, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Popova, M.; Trusheva, B. The phytochemistry of the honeybee. Phytochemistry 2018, 155, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Agüero, M.A.B.N.; Gonzalez, M.; Lima, B.; Svetaz, L.; Sánchez, M.; Zacchino, S.; Feresin, G.E.; Schmeda-Hirschmann, G.; Palermo, J.; Wunderlin, D.; et al. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: Phytochemical characterization and antifungal activity. J. Agric. Food. Chem. 2010, 58, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Lotti, C.; Campo Fernandez, M.; Piccinelli, A.L.; Cuesta-Rubio, O.; Marquez Hernandez, I.; Rastrelli, L. Chemical constituents of red Mexican propolis. J. Agric. Food. Chem. 2010, 58, 2209–2213. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.; Igoli, J.O.; Zhang, T.; Gray, A.I.; Ebiloma, G.U.; Clements, C.J.; Fearnley, J.; Edrada Ebel, R.; Paget, T.; De Koning, H.P.; et al. The chemical characterization of Nigerian propolis samples and their activity against Trypanosoma brucei. Sci. Rep. 2017, 7, 923. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.L.; Lotti, C.; Campone, L.; Cuesta-Rubio, O.; Campo Fernandez, M.; Rastrelli, L. Cuban and Brazilian red propolis: Botanical origin and comparative analysis by high-performance liquid chromatography–photodiode array detection/electrospray ionization tandem mass spectrometry. J. Agric. Food. Chem. 2011, 59, 6484–6491. [Google Scholar] [CrossRef]
- Popova, M.; Dimitrova, R.; Al-Lawati, H.T.; Tsvetkova, I.; Najdenski, H.; Bankova, V. Omani propolis: Chemical profiling, antibacterial activity and new propolis plant sources. Chem. Cent. J. 2013, 7, 158. [Google Scholar] [CrossRef]
- Shrestha, S.P.; Narukawa, Y.; Takeda, T. Chemical constituents of Nepalese propolis: Isolation of new dalbergiones and related compounds. J. Nat. Med. 2007, 61, 73–76. [Google Scholar] [CrossRef]
- Silva, B.B.; Rosalen, P.L.; Cury, J.A.; Ikegaki, M.; Souza, V.C.; Esteves, A.; Alencar, S.M. Chemical composition and botanical origin of red propolis, a new type of Brazilian propolis. Evid. Based. Complement. Alternat. Med. 2008, 5, 313–316. [Google Scholar] [CrossRef]
- Tran, V.H.; Duke, R.K.; Abu-Mellal, A.; Duke, C.C. Propolis with high flavonoid content collected by honey bees from Acacia paradoxa. Phytochemistry 2012, 81, 126–132. [Google Scholar] [CrossRef]
- Kardar, M.; Zhang, T.; Coxon, G.; Watson, D.; Fearnley, J.; Seidel, V. Characterisation of triterpenes and new phenolic lipids in Cameroonian propolis. Phytochemistry 2014, 106, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, K.; Inui, S.; Sugiyama, Y.; Kurosawa, M.; Nakamura, J.; Choi, S.-J.; Ahn, M.-R.; Kumazawa, S. Identification of the plant origin of propolis from Jeju Island, Korea, by observation of honeybee behavior and phytochemical analysis. Biosci. Biotechnol. Biochem. 2012, 76, 2135–2138. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, S.; Edrada-Ebel, R.; Fearnley, J.; Igoli, J.O.; Alotaibi, W.; Clements, C.J.; Gray, A.I.; Watson, D.G. Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia. Phytochem. Lett. 2014, 10, 160–163. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Zeilhofer, S.; Blüthgen, N.; Schmitt, T. Stingless bees use terpenes as olfactory cues to find resin sources. Chem. Senses. 2010, 35, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Salatnaya, H.; Fuah, A.; Engel, M.; Sumantri, C.; Widiatmaka, W.; Kahono, S. Diversity, nest preferences, and forage plants of stingless bees (Hymenoptera: Apidae: Meliponini) from West Halmahera, North Moluccas, Indonesia. J. Ilmu. Ternak. Dan. Vet. 2021, 26, 167–178. [Google Scholar] [CrossRef]
- Lima, L.D.; Andrade, S.P.; Campos, P.P.; Barcelos, L.S.; Soriani, F.M.; AL Moura, S.; Ferreira, M. Brazilian green propolis modulates inflammation, angiogenesis and fibrogenesis in intraperitoneal implant in mice. BMC Complement. Altern. Med. 2014, 14, 177. [Google Scholar] [CrossRef]
- Mouhoubi-Tafinine, Z.; Ouchemoukh, S.; Tamendjari, A. Antioxydant activity of some algerian honey and propolis. Ind. Crops. Prod. 2016, 88, 85–90. [Google Scholar] [CrossRef]
- Kubiliene, L.; Jekabsone, A.; Zilius, M.; Trumbeckaite, S.; Simanaviciute, D.; Gerbutaviciene, R.; Majiene, D. Comparison of aqueous, polyethylene glycol-aqueous and ethanolic propolis extracts: Antioxidant and mitochondria modulating properties. BMC Complement. Altern. Med. 2018, 18, 165. [Google Scholar] [CrossRef]
- Silva, J.C.; Rodrigues, S.; Feás, X.; Estevinho, L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food. Chem. Toxicol. 2012, 50, 1790–1795. [Google Scholar] [CrossRef]
- Chen, Y.-W.; Ye, S.-R.; Ting, C.; Yu, Y.-H. Antibacterial activity of propolins from Taiwanese green propolis. J. Food Drug Anal. 2018, 26, 761–768. [Google Scholar] [CrossRef]
- Fowles, J.R.; Banton, M.I.; Pottenger, L.H. A toxicological review of the propylene glycols. Crit. Rev. Toxicol. 2013, 43, 363–390. [Google Scholar] [CrossRef] [PubMed]
- Robertson, O.; Loosli, C.G.; Puck, T.T.; Wise, H.; Lemon, H.M.; Lester, W. Tests for the chronic toxicity of propylexe glycol and triethylene glycol on monkeys and rats by vapor inhalation and oral administration. J. Pharmacol. Exp. Ther. 1947, 91, 52–76. [Google Scholar] [PubMed]
- Werley, M.S.; McDonald, P.; Lilly, P.; Kirkpatrick, D.; Wallery, J.; Byron, P.; Venitz, J. Non-clinical safety and pharmacokinetic evaluations of propylene glycol aerosol in Sprague-Dawley rats and Beagle dogs. Toxicology 2011, 287, 76–90. [Google Scholar] [CrossRef]
- Ramanauskienė, K.; Inkėnienė, A.M.; Petrikaitė, V.; Briedis, V. Total phenolic content and antimicrobial activity of different lithuanian propolis solutions. Evid. Based. Complement. Alternat. Med. 2013, 2013, 842985. [Google Scholar] [CrossRef] [PubMed]
- Taddeo, V.A.; Epifano, F.; Fiorito, S.; Genovese, S. Comparison of different extraction methods and HPLC quantification of prenylated and unprenylated phenylpropanoids in raw Italian propolis. J. Pharm. Biomed. Anal. 2016, 129, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Pujirahayu, N.; Ritonga, H.; Agustina, S.; Uslinawaty, Z. Antibacterial activity of oil extract of trigona propolis. Int. J. Pharm. Pharm. Sci. 2015, 7, 419–422. [Google Scholar]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radić, B.; Radić, S.; Tlak Gajger, I.; Vlainić, J. Propolis extract and its bioactive compounds—From traditional to modern extraction technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef]
- Tosi, B.; Donini, A.; Romagnoli, C.; Bruni, A. Antimicrobial activity of some commercial extracts of propolis prepared with different solvents. Phytother. Res. 1996, 10, 335–336. [Google Scholar] [CrossRef]
- Freitas, A.S.; Cunha, A.; Parpot, P.; Cardoso, S.M.; Oliveira, R.; Almeida-Aguiar, C. Propolis efficacy: The quest for eco-friendly solvents. Molecules 2022, 27, 7531. [Google Scholar] [CrossRef]
- Atayoglu, A.T.; Atik, D.S.; Bölük, E.; Gürbüz, B.; Ceylan, F.D.; Çapanoğlu, E.; Atayolu, R.; Paradkar, A.; Fearnley, J.; Palabiyik, I. Evaluating bioactivity and bioaccessibility properties of the propolis extract prepared with l-lactic acid: An alternative solvent to ethanol for propolis extraction. Food. Biosci. 2023, 53, 102756. [Google Scholar] [CrossRef]
- Tzani, A.; Pitterou, I.; Divani, F.; Tsiaka, T.; Sotiroudis, G.; Zoumpoulakis, P.; Detsi, A. Green Extraction of Greek Propolis Using Natural Deep Eutectic Solvents (NADES) and Incorporation of the NADES-Extracts in Cosmetic Formulation. Sustain. Chem. 2022, 4, 8–25. [Google Scholar] [CrossRef]
- Funari, C.S.; Sutton, A.T.; Carneiro, R.L.; Fraige, K.; Cavalheiro, A.J.; da Silva Bolzani, V.; Hilder, E.F.; Arrua, R.D. Natural deep eutectic solvents and aqueous solutions as an alternative extraction media for propolis. Food. Res. Int. 2019, 125, 108559. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, R.; Wang, Y.; Li, N.; Lei, L.; Yang, X.; Yu, A.; Qiu, F.; Zhang, H. Determination of phenolic acids and flavonoids in raw propolis by silica-supported ionic liquid-based matrix solid phase dispersion extraction high performance liquid chromatography-diode array detection. J. Chromatogr. B. 2014, 969, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Pale-Ezquivel, I.; Vera-Guzmán, M.; Domínguez, Z.; Matus, M.H. Phenolic compounds extraction from propolis using imidazole-based ionic liquids: A theoretical and experimental study. J. Phys. Org. Chem. 2023, 36, e4497. [Google Scholar] [CrossRef]
- Biscaia, D.; Ferreira, S.R. Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J. Supercrit. Fluids 2009, 51, 17–23. [Google Scholar] [CrossRef]
- Idrus, N.F.M.; Yian, L.N.; Idham, Z.; Aris, N.A.; Putra, N.R.; Aziz, A.H.A.; Yunus, M.A.C. Mini review: Application of supercritical carbon dioxide in extraction of propolis extract. J. Malays. J. Fundam. Appl. Sci. 2018, 14, 387–396. [Google Scholar] [CrossRef]
- Idrus, N.F.M.; Putra, N.R.; Yian, L.N.; Idham, Z.; Tee, T.A.; Soong, C.C.; Aris, N.A.; Norodin, N.S.M.; Yunus, M.A.C. Supercritical Carbon Dioxide Extraction of Malaysian Stingless Bees Propolis: Influence of Extraction Time, Co-modifier and Kinetic Modelling. In Proceedings of the 1st International Conference on Science, Engineering and Technology (ICSET) 2020, Penang, Malaysia, 27 February 2020; IOP Conference Series: Materials Science and Engineering. IOP Publishing: Bristol, UK, 2020; Volume 932, p. 012018. [Google Scholar]
- Pobiega, K.; Kraśniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods. J. Food Sci. Technol. 2019, 56, 5386–5395. [Google Scholar] [CrossRef]
- Bankova, V.; Trusheva, B.; Popova, M. Propolis extraction methods: A review. J. Apic. Res. 2021, 60, 734–743. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef]
- Cui, J.; Duan, X.; Ke, L.; Pan, X.; Liu, J.; Song, X.; Ma, W.; Zhang, W.; Liu, Y.; Fan, Y. Extraction, purification, structural character and biological properties of propolis flavonoids: A review. Fitoterapia 2022, 157, 105106. [Google Scholar] [CrossRef]
- Mahmood, N.M.; Hadi, A.M.A. Effect of water and methanol extracts of Turkish propolis against some species of pathogenic bacteria. Iraqi J. Community Med. 2012, 3, 210–215. [Google Scholar]
- Murray, M.T.; Pizzorno, J.E. Textbook of Natural Medicine; Churchill Livingstone Elsevier: London, UK, 2006. [Google Scholar]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, S14459. [Google Scholar] [CrossRef]
- Foster, T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.-Y.; Tan, T.-Y.; Jureen, R.; Koh, T.-H.; Krishnan, P.; Lin, R.T.-P.; Tee, N.W.-S.; Tambyah, P.A. Antimicrobial drug resistance in Singapore hospitals. Emerg. Infect. Dis 2007, 13, 1944. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.I. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio 2016, 7, e01541-16. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Propolis: Composition, Health, Medicine. Bee Prod. Sci. 2017, 1–40. Available online: http://www.bee-hexagon.net/files/file/fileE/Health/PropolisBookReview.pdf (accessed on 10 August 2023).
- Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Mahabala, K.Y.; Shrikrishna, S.B.; Natarajan, S.; Nayak, A.P. Ethanolic extracts of Aloe vera and propolis as cavity disinfectants: An in vitro study. Dent. Hypotheses. 2016, 7, 61. [Google Scholar] [CrossRef]
- Al-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial activities of European propolis collected from various geographic origins alone and in combination with antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure–activity relationship) models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef]
- Netíková, L.; Bogusch, P.; Heneberg, P. Czech ethanol-free propolis extract displays inhibitory activity against a broad spectrum of bacterial and fungal pathogens. J. Food Sci. 2013, 78, M1421–M1429. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical diversity and challenges in quality control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef] [PubMed]
- Salatino, A.; Salatino, M.L.F. Scientific note: Often quoted, but not factual data about propolis composition. Apidologie 2021, 52, 312–314. [Google Scholar] [CrossRef]
- Contieri, L.S.; de Souza Mesquita, L.M.; Sanches, V.L.; Chaves, J.; Pizani, R.S.; da Silva, L.C.; Vigano, J.; Ventura, S.P.; Rostagno, M.A. Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Sep. Purif. Technol. 2022, 298, 121640. [Google Scholar] [CrossRef]
- Contieri, L.S.; de Souza Mesquita, L.M.; Sanches, V.L.; Viganó, J.; Martinez, J.; da Cunha, D.T.; Rostagno, M.A. Standardization proposal to quality control of propolis extracts commercialized in Brazil: A fingerprinting methodology using a UHPLC-PDA-MS/MS approach. Food. Res. Int. 2022, 161, 111846. [Google Scholar] [CrossRef]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Pietta, P.; Gardana, C.; Pietta, A. Analytical methods for quality control of propolis. Fitoterapia 2002, 73, S7–S20. [Google Scholar] [CrossRef]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Silva-Beltrán, N.P.; Umsza-Guez, M.A.; Ramos Rodrigues, D.M.; Gálvez-Ruiz, J.C.; de Paula Castro, T.L.; Balderrama-Carmona, A.P. Comparison of the biological potential and chemical composition of Brazilian and Mexican propolis. Appl. Sci. 2021, 11, 11417. [Google Scholar] [CrossRef]
Type of Propolis | Plant Source | Main Composition | Function | Reference |
---|---|---|---|---|
Bulgarian | Unknown | Flavonoids and esters of caffeic and ferulic acids | Antimicrobial | [93] |
Brazilian | Baccharis spp., Clusia minor, Clusia major, Araucaria heterophylla | Coniferyl aldehyde, betuletol, kaempferide, and ermanin | Cytotoxic to fibrosarcomas and carcinoma cells | [94] |
Brazilian | Unknown | Cinnamic acids, phenolic acids, flavonoids, fatty acids, diterpenes, triterpenes, polyphenols, and phenolic lipids | Anticancer Antimicrobial | [95] |
Brazillian green | Baccharis dracunculifolia | Caffeic acid, p-coumaric acid, drupanin, kaempferide (as kaempferol), artepillin C, total flavonoids as quercetin, and total phenol content as gallic acid | Antimicrobial | [96] |
Brazilian green | Baccharis dracunculifolia | Artepillin C, baccharin, and drupanin | Anti-inflammatory | [97] |
Bazillian green | Unknown | Caffeoylquinic acid derivatives | Angiostatic | [98] |
Brazil red | Dalbergia ecastophyllum | Formononetin, biochanin A, liquiritigenin, and flavonoids | Antimicrobial | [99] |
Chinese | Probably Populus spp. | Caffeic acid, benzyl caffeate, phenethyl caffeate, 5-methoxy pinobanksin, pinobanksin, pinocembrin, pinobanksin-3-O-acetate, chrysin, and galangin | Antioxidant | [82] |
Chinese | Unknown | Caffeic acid, p-coumaric acid, ferulic acid, 3,4-dimethoxycinnamic acid, pinobanksin, cinnamylideneacetic acid, caffeic acid phenethyl ester, chrysin, pinocembrin, galangin, pinobanksin 3-acetate, cinnamyl caffeate, and tectochrysin | Antioxidant | [100] |
Cyprus | Pinus spp., Cedrus spp., Juniperus spp., maquise trees, olive, carob trees | 8-βH-cedran-8-ol | Antimicrobial | [101] |
Egyptian | Unknown | Caffeic acid phenethyl ester (CAPE) | Antiviral | [102] |
Ethiopian | Unknown | Betulinic acid | Antimicrobial | [103] |
Ethiopian | Unknown | Saponins, tannins, flavonoids, steroids, triterpenes, and glycosides | Antimicrobial | [104] |
Europe and Central Asia (Poland, Ukraine, Kazakhstan, Greece) | Unknown | p-Coumaric acid, chrysin, pinocembrin, sakuranetin, galangin, and pinobanksin-3O-acetate | Antimicrobial | [105] |
Greece | Unknown | Pinocembrin, chrysin, galangin, apigenin, pinobanksin 3-O-acetate, and (±) catechin | Antioxidant | [106] |
Greece | Unknown | Totarol, manoyl-oxide, ferruginol, epitorulosol, 13-epitorreferol, agathadiol, manool, copalol, 14,15-dinor-13-oxo-8(17)labden-19-oic acid, pimaric acid, imbricataloic acid, and 13-epi-cupressic acid | Antimicrobial Antioxidant | [107] |
Indian | Unknown | Pinocembrin and galangin | Antioxidant | [108] |
Indian | Unknown | 3,3,4-trimethyl-4-p-tolyl, naphthalelone derivitives, nicotinic acid, 5-phenoxymethyl-1,3,4-thiadiazol-2-amine, acetate 3-cyclohexen-1-ol, boron (methanamine)tris(trifluromethyl), and 2-methyl,1-penten-3-yne | Antimicrobial | [109] |
Indonesia | Calophyllum inophyllum | Chromanone derivative and calophylloidic acid A | Antimicrobial | [110] |
Iranian | Populus spp. | Pinobanksin, pinobanksin-3-acetate, pinocembrin, pinostrobin, and flavones, like chrysin and galangin | Antimicrobial | [111] |
Kazakhstan | Unknown | Pinocembrin, galangin, pinobanksin and pinobanskin-3-O-acetate, and caffeic acid phenethyl ester | Antimicrobial | [112] |
Korean | Unknown | Caffeic acid, p-coumaric acid, 3,4-dimethoxycinnamic acid, apigenin, kaempferol, pinobanksin, cinnamylideneacetic acid, chrysin, pinocembrin, galangin, pinobanksin 3-acetate, phenethyl caffeate, cinnamyl caffeate, and tectochrysin | Antioxidant | [113] |
Lithuania | Unknown | Ferulic, caffeic, and p-coumaric acids | Antimicrobial Antioxidant | [92] |
Malaysian | Unknown | Phorbol, isolongifolol, germacrene D, isoaromadendrene epoxide, α-eudesmol, propanoic, octadecatrienoic acids, ribitol, arabitol, arabinitol, and D-glucitol | Antioxidant | [114] |
Malaysian | Unknown | 3′-–O-methyldiplacone, nymphaeol A, and 5,7,3′,4′-tetrahydroxy-6-geranyl flavonol | Antioxidant Anti-inflammatory Anti-acne | [115] |
Myanmar | Unknown | (22Z,24E)-3-oxocycloart-22,24-dien-26-oic acid | Cytotoxicity against human pancreatic cancer cell line | [116] |
New Zealand | Unknown | Caffeic acid phenethyl ester | Antiviral | [117] |
Nepal | Unknown | 2’-Hydroxyformononetin, odoratin, 2-(1-Phenylprop-2-enyl)benzene-1,4-diol, vestitol (2’,7-dihydroxy-5-methoxyisoflawan), butein, dalbergin, 7-Hydroxyflavanone, and pinocembrin | Antimicrobial | [118] |
Poland | Unknown | Chrysin, caffeic acid, p-coumaric acid, and ferulic acid | Anticancer | [119] |
Portugal | Unknown | Chrysin, caffeic acid isoprenyl ester, and pinocembrin | Antimicrobial Antioxidant | [120] |
Portugal | Cistus ladanifer, Arbutus unedo, Lavandula stoechas, Thymus serpyllum, Eucalyptus sp. | Pinobanksin, chrysin, acacetin, apigenin, pinocembrin, and kaempferol-dimethyl-ether | Antimicrobial | [121] |
Romanian | Unknown | Chrysin, ferulic acid, galangin, p-coumalic acid, pinocembin, and quercetin | Antimicrobial Antioxidant | [122] |
Saudi Arabia | Unknown | 4-methyl salicylic acid, cinnamic acid, chrysin, gallic acid, apigenin, and myricetin | Antimicrobial, Antioxidant | [123] |
Sonoran | Populus spp. | Pinocembrin, pinobanksin 3-acetate, chrysin, CAPE, acacetin, and galangin | Antioxidant Antiproliferative | [124] |
South | Unknown | Gallic acid, caffeic acid, coumaric acid, artepillin C, and pinocembrin. | Antimicrobial Antioxidant | [12] |
Taiwanese green | Macaranga tanarius | Propolins C, D, F, and G | Antimicrobial | [125] |
Thai | Unknown | Rutin, quercetin, and naringenin | Antimicrobial Antioxidant | [126] |
Thai | Unknown | Cardols, carnadols, anacardic acids, and triterpenes | Antimicrobial | [127] |
Turkish | Unknown | Caffeic acid phenethyl ester (CAPE), galangin, chrysin, dimethoxycinnamic acid, and caffeic acid | Antiviral | [128] |
Vietnamese (stingless bee) | Unknown | 23-hydroxyisomangiferolic acid and 27-hydroxymangiferolic acid | Cytotoxicity against PANC-1 human pancreatic cancer cell line | [129] |
Geographical | Stingless Bee Species | Main Composition | Antimicrobial Activity Against | Reference |
---|---|---|---|---|
Argentina | Scaptotrigona aff. postica, Tetragona clavipes, Melipona quadrifasciata quadrifasciata, Tetragonisca fiebrigi | Diterpenoids, triterpenoids, resorcinols, salicylates | Bacillus cereus, Bacillus subtilis, Candida albicans, Escherichia coli, Paenibacillus larvae, Pseudomonas aeruginosa, Staphylococcus aureus | [130] |
Australia | Tetragonula carbonaria | C-methyl flavanones, phloroglucinols | P. aeruginosa, S. aureus | [131,132] |
Brazil | Frieseomelitta longipes | Monoterpenes, sesquiterpenes | B. cereus, C. albicans, C. tropicalis, E. coli, P. aeruginosa, S. aureus | [87] |
Brazil | Melipona fasciculata | Flavonoid, hydroalcoholic | C. albicans, Streptococcus mutans | [1] |
Brazil | Melipona fasciculata | Benzoic acid, dihydrocinnamic acid, coumaric acid, caffeic acid, prenyl-p-coumaric acid, flavonoids, artepillin C, trihydroxymethoxy flavonon, tetrahydroxy flavonon, triterpenes | Pythium insidiosum | [133] |
Brazil | Melipona fasciculata | Ethanolic extract | Actinomyces naeslundii m104, Enterococcus faecalis ATCC 29212, P. aeruginosa ATCC 25619, S. aureus ATCC 25923 MRSA, S. mutans UA 159 | [1] |
Brazil | Melipona quadrifasciata anthidioides | Ent-kaurene diterpenoids, kaurenoic acid | S. aureus | [134] |
Brazil | Melipona quadrifasciata anthidioides | Di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, triterpenes | Gram-positive bacteria, Gram-negative bacteria, yeasts | [50] |
Brazil | Melipona quadrifasciata anthidioides, Scaptotrigona depilis | Ethanolic extracts | Vancomycin-resistant Enterococcus (VRE) faecalis | [135] |
Brazil | Melipona quadrifasciata quadrifasciata, Tetragonisca angustula | Flavonoids, terpenes as major constituents | E. faecalis, E. coli, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA) | [136] |
Brazil | Melipona orbignyi | Polyphenol, flavonoid | C. albicans, S. aureus | [42] |
Brazil | Melipona scutellaris | Ethanolic extract | S. aureus, S. mutans, MRSA strains | [5] |
Brazil | Scaptotrigona aff. postica | Ethanolic extract | B. megaterium, C. albicans, C. krusei, C. grabata, C. parapsilosis, C. guilliermondii, C. tropicallis E. coli D31-resistant streptomycin, Micrococcus luteus S. aureus, S. typhimurium | [16] |
Brazil | Scaptotrigona bipunctata Melipona quadrifasciata Plebeia remota | Ethanolic extract | E. faecalis, E. coli, K. pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), S. aureus | [95] |
Brazil | Tetragonisca fiebrigi | Phenolic compounds, alcohol, terpenes | B.subtilis, E. faecalis, E. coli, K. pneumoniae, Proteus mirabilis, P. aeruginosa, S. aureus, S. epidermidis | [42] |
Brunei Darussalam | Geniotrigona thoracica, Heterotrigona itama, Tetrigona binghami | Flavonoids, phenolic acids, terpenes, aromatic acids | S. aureus, P. aeruginosa | [137] |
Brunei Darussalam | Heterotrigona itama | Ethanolic extrtact | B. subtilis, E. coli, P. aeruginosa, S. aureus | [138] |
Brunei Darussalam | Geniotrigona thoracica, Heterotrigona itama, Trigona binghami | Ethanolic extract, water extract | B. subtilis, E. coli, P. aeruginosa, S. aureus | [139] |
India | Tetragonula iridipennis | Flavonoids, phenolics | Aeromonas spp., Bacillus spp., E. coli, Klebsiella spp., Proteus spp., Salmonella spp., Staphylococcus spp., Vibrio spp. | [140] |
India | Tretragonula sp. | Ethanolic extract | Acinetobacter baumannii, B. subtilis ATCC 6633, E. coli ATCC 117, K. pneumoniae, S. typhimurium ATCC 23564, S. abony NCTC 6017 S. aureus ATCC 6538, S. epidermidis ATCC 1228, S. schleiferi, S. pyogenes | [109] |
Indonesia | Tetragonula fuscobalteata | Ethanolic extract | E. coli, S. aureus | [110] |
Malaysia | Heterotrigona itama | Ethanolic extract | S. aureus | [141] |
Malaysia | Heterotrigona itama, Geniotrigona thoracica | Phenolics, flavonoids | B. subtilis, E. faecalis, Listeria monocytogenes, S. aureus | [142] |
Malaysia | Tetragonula biroi | Methanolic extract | Propionibacterium acnes | [115] |
Malaysia | Heterotrigona itama | Ethanolic extract | E. coli, P. aeruginosa, S. aureus | [143] |
Malaysia | Heterotrigona itama, Geniotrigona thoracica | Methanolic extract | S. aureus | [144] |
Mexico | Melipona beecheii | Phenolics, flavonoids, flavanones, dihydroflavonols | C. albicans | [145] |
Mexico | Melipona beecheii | Phenolic compound, flavonoid | Salmonella typhi, S. aureus | [146] |
Nigeria | Dactylurina studingeri | Ethanolic extract | E. coli, Klebsiella sp., P. aeruginosa, S. aureus | [147] |
Tanzania | Axestotrigona ferruginea 1 | Diterpenes, cardanol C17:1, resorcinols, anarcardic acids, quinic acid, caffeoylquinic acids, triterpenes | C. albicans ATCC 10239, E. faecalis ATCC 29212, E. coli ATCC 25922, L. monocytogenes ATCC 7644, P. aeruginosa ATCC 27853, S. typhi ATCC 14028, S. aureus ATCC 25923 | [28] |
Thailand | Tetragonula laeviceps | Water and methanolic extract | Aspergillus niger, C. albicans, E. coli, S. aureus | [56] |
Thailand | Tetragonula laeviceps, Tetrigona melanoleuca | T. laeviceps: α-mangostin, mangostanin, 8-deoxygartanin, gartanin, γ-mangostin, garcinone, dipterocarpol, methylpinoresinol T. melanoleuca: 3-O-acetyl ursolic acid, dipterocarpol, ocotillone I, ocotillone II, mixtures of ursolic and oleanolic aldehydes, cabralealactones | B. cereus, L. monocytogenes, Micrococcus luteus, S. aureus, S. epidermidis, S. pyogenes, MRSA strains E. coli, P. aeruginosa, S. aureus, Serratia marcescens, Salmonella typhimurium | [39] |
Thailand | Tetragonula laeviceps, Tetrigona melanoleuca | Phenolics and flavonoids, gallic acid, pinocembrin, quercetin | Cryptococcus neoformans | [148] |
Thailand | Tetragonula pagdeni | Ethanolic extract | E. coli ATCC 25922, S. aureus ATCC 25923 | [149] |
The Philippines | Tetragonula biroi | Ethanolic extract | E. coli, S. aureus | [150] |
Vietnam | Lisotrigona cacciae | Alk(en)ylresorcinols, anacardic acids, triterpenes, flavonoids, xanthones, other phenols, fatty acids | C. albicans, E. coli, S. aureus | [151] |
Vietnam | Lisotrigona furva | Cycloartenone, cycloartenol, (24E)-3β-hydroxycycloart-24-en-26-al, mangiferonic acid, mangiferolic acid | B. cereus, C. albicans, P. aeruginosa, S. aureus | [152] |
Vietnam | Homotrigona apicalis | Spathulenol, triterpenes, xanthones | B. cereus, C. albicans, E. coli, L. fermentum, P. aeruginosa, S. aureus, Salmonella enterica | [153] |
Different locations in tropics and the temperate zone | Melipona quadrifasciata, Melipona anthidioides | Flavonoids, esters of phenolic acids | C. albicans, E. coli, S. aureus | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuttong, B.; Lim, K.; Praphawilai, P.; Danmek, K.; Maitip, J.; Vit, P.; Wu, M.-C.; Ghosh, S.; Jung, C.; Burgett, M.; et al. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023, 12, 3909. https://doi.org/10.3390/foods12213909
Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu M-C, Ghosh S, Jung C, Burgett M, et al. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods. 2023; 12(21):3909. https://doi.org/10.3390/foods12213909
Chicago/Turabian StyleChuttong, Bajaree, Kaiyang Lim, Pichet Praphawilai, Khanchai Danmek, Jakkrawut Maitip, Patricia Vit, Ming-Cheng Wu, Sampat Ghosh, Chuleui Jung, Michael Burgett, and et al. 2023. "Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects" Foods 12, no. 21: 3909. https://doi.org/10.3390/foods12213909