Selenium Modification of Natural Products and Its Research Progress
Abstract
:1. Introduction
2. Absorption and Metabolism of Selenium
3. Selenium Modification of Polysaccharides
3.1. Biological Activity of Selenium Polysaccharides
3.2. Polysaccharide Selenization Pathway
3.3. Selenium Content of Selenopolysaccharides
4. Selenium Modification of Protein/Polypeptides
4.1. Protein Selenization Modification
4.2. Selenium Modification of Polypeptides
5. Selenium Modification of Polyphenols
6. Other Selenization Modification
6.1. Selenium-Modified Cyclic Compounds
6.2. Selenated Lipids
6.3. Selenium Nanoparticles (SeNPs)
7. Application and Prospect of Seleno-Modified Natural Products
7.1. Biomedical Field
7.2. Food Field
7.3. Beauty and Skin Care Field
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guan, Q.-Y.; Lin, Y.-R.; Li, L.-Y.; Tang, Z.-M.; Zhao, X.-H.; Shi, J. In Vitro Immunomodulation of the Polysaccharides from Yam (Dioscorea opposita Thunb.) in Response to a Selenylation of Lower Extent. Foods 2021, 10, 2788. [Google Scholar] [CrossRef]
- Liang, H.; Huang, J.; Wang, L.; Chen, J.; Tian, M.-L. Recent research progress of selenium polysaccharides from medicinal plants. China J. Chin. Mater. Med. 2018, 43, 3080–3092. [Google Scholar] [CrossRef]
- Ahmed, K.; Ashraf, D.; Chotana, G.A.; Faisal, A.; Khan, K.M.; Saleem, R.S.Z. Selenium-containing Peptides and their Biological Applications. Curr. Med. Chem. 2022, 29, 6379–6421. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Li, S.; Zhang, K.; Li, J.; Han, Y.; Zhao, Q.; Guo, X.; Qin, Y.; Yin, J.; Zhang, J. Selenium Deficiency Induces Pathological Cardiac Lipid Metabolic Remodeling and Inflammation. Mol. Nutr. Food Res. 2022, 66, e2100644. [Google Scholar] [CrossRef] [PubMed]
- Yi, R.; Li, X. Research progress on applying polypeptide-selenium chelates. Stud. Trace Elem. Health 2022, 39, 74–76. [Google Scholar]
- Ye, Q.; Wu, X.; Zhang, X.; Wang, S. Organic selenium derived from chelation of soybean peptide-selenium and its functional properties in vitro and in vivo. Food Funct. 2019, 10, 4761–4770. [Google Scholar] [CrossRef]
- Zhou, S.; Li, M.; Zhou, C.; Jiang, Z.; Wen, X.; Cong, W.; Ni, Y.; Zhang, F. Flow of Selenium in “Soil-Crop-Food-Human” Chain. Food Sci. 2023, 44, 231–244. [Google Scholar] [CrossRef]
- Winkel, L.H.E.; Johnson, C.A.; Lenz, M.; Grundl, T.; Leupin, O.X.; Amini, M.; Charlet, L. Environmental Selenium Research: From Microscopic Processes to Global Understanding. Environ. Sci. Technol. 2012, 46, 571–579. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Wang, C.; Yu, L.; Zhao, M.; Liu, X. Research Progress on the Biological Activities of Selenium Polysaccharides. Food Funct. 2020, 11, 4834–4852. Available online: http://pubs.rsc.org/en/content/articlelanding/2020/fo/c9fo02026h/unauth (accessed on 19 March 2023). [CrossRef]
- Deng, J.; Mou, L.; Tong, Y.; Shi, M.; Zhang, H.; Wei, K.; Cheng, S.; Zhang, S. Research Progress in Preparation, Structure Characterization and Antioxidant Activity of Selenium Polysaccharides. Food Sci. Technol. 2022, 47, 8–15. [Google Scholar] [CrossRef]
- Zhan, Q.; Chen, Y.; Guo, Y.; Wang, Q.; Wu, H.; Zhao, L. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit. Int. J. Biol. Macromol. 2022, 206, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bai, J.; Bu, X.; Yin, Y.; Wang, L.; Yang, Y.; Xu, Y. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase. Carbohydr. Polym. 2021, 259, 117729. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Qiu, Y.; Duan, Y.; He, Y.; Xiang, H.; Sun, W.; Zhang, H.; Ma, H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res. Int. 2022, 153, 110913. [Google Scholar] [CrossRef]
- Minich, W.B. Selenium Metabolism and Biosynthesis of Selenoproteins in the Human Body. Biochemistry 2022, 87, S168–S177. [Google Scholar] [CrossRef]
- Rejun, F.; Kaili, Y. The antioxidant and immune effects of selenium and its metabolic regulation pathway. Feed Ind. 2018, 39, 1–7. [Google Scholar] [CrossRef]
- Zhao, M.; Luo, T.; Zhao, Z.; Rong, H.; Zhao, G.; Lei, L. Food Chemistry of Selenium and Controversial Roles of Selenium in Affecting Blood Cholesterol Concentrations. J. Agric. Food Chem. 2021, 69, 4935–4945. [Google Scholar] [CrossRef]
- Pan, L.; Fan, H.; Jiang, J.; Wang, Y. Advance in the in vivo metabolism and the biological effects of selenium. Acta Pharm. Sin. 2017, 52, 1849–1858. [Google Scholar] [CrossRef]
- Yang, W.; Huang, G.; Chen, F.; Huang, H. Extraction/synthesis and biological activities of selenopolysaccharide. Trends Food Sci. Technol. 2021, 109, 211–218. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, L.; Qi, X.; Zhou, T.; Li, Y.; Cai, M.; Yan, Y.; Qian, J.; Peng, D. Immunostimulatory and antioxidant activities of the selenized polysaccharide from edible Grifola frondosa. Food Sci. Nutr. 2022, 10, 1289–1298. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; He, X.; Wei, X. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: A review. Int. J. Biol. Macromol. 2018, 120, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.-X.; Yang, X.-H.; Zhang, H.-F.; Feng, J.; Zhang, M.-Y. Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol. Trace Elem. Res. 2022, 200, 4404–4418. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Hu, J.; Liu, S.; Guo, S.; Jia, Y.; Li, M.; Kong, W.; Liang, J.; Zhang, J.; Wang, J. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity. Carbohydr. Polym. 2020, 246, 116545. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, W.; Huang, G. Preparation and activities of selenium polysaccharide from plant such as Grifola frondosa. Carbohydr. Polym. 2020, 242, 116409. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Huang, G.; Huang, H. Preparation and structure of polysaccharide selenide. Ind. Crops Prod. 2020, 154, 112630. [Google Scholar] [CrossRef]
- Li, J.; Shen, B.; Nie, S.; Duan, Z.; Chen, K. A combination of selenium and polysaccharides: Promising therapeutic potential. Carbohydr. Polym. 2019, 206, 163–173. [Google Scholar] [CrossRef]
- Hu, R.; Li, J.; Li, P.; Zhou, J.; Li, X. Optimization of selenized mulberry leaf polysaccharides preparation by response surface methodology and determination of the antioxidant activity in vitro. J. Cent. South Univ. For. Technol. 2022, 42, 148–157. [Google Scholar] [CrossRef]
- Li, X.; Min, S.; Cao, K.; Duan, S.; Yang, L. Selenization Modification and Antioxidant Activity of Dendrobium devonianum Paxt. Polysaccharide from Longling. Food Res. Dev. 2022, 43, 117–124. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, T. Preparation on the Seleno-polysaccharides from Infructescence of Platycarya Strobilacea via Microwave Assisted Method. Guangdong Chem. Ind. 2019, 46, 17–18+16. [Google Scholar]
- Yue, L.; Song, X.; Cui, X.; Zhang, Q.; Tian, X.; Yang, X.; Wu, Q.; Liu, Y.; Ruan, R.; Wang, Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int. J. Biol. Macromol. 2022, 221, 8–15. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.; Zhao, M. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: Structural characterization and bile acid-binding capacity. Food Funct. 2017, 8, 3043–3052. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, W.; Zhu, Y.; Chen, Y.; Zhang, W.; Yu, P.; Mao, G.; Zhao, T.; Feng, W.; Yang, L.; et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa. Carbohydr. Polym. 2017, 161, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Selenization Modification, Characterization and Evalution of Anti-Tumor Activities of Three Polysaccharides In Vitro. Northwest Normal University. 2017. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkOsSuGHvNoCRcTRpJSuXuqSFMHH8udIlRW4MLvJyJ4YpWcILi64W5FuEbUzNtZq_O&uniplatform=NZKPT (accessed on 21 March 2023).
- Bo, R.; Ji, X.; Yang, H.; Liu, M.; Li, J. The characterization of optimal selenized garlic polysaccharides and its immune and antioxidant activity in chickens. Int. J. Biol. Macromol. 2021, 182, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, J.; Qiu, S.; Li, Y.; Wang, D.; Liu, C.; Li, X.; Hou, R.; Yue, C.; Liu, J.; et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity. Carbohydr. Polym. 2016, 136, 560–569. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, J.; Yao, J.; Song, S.; Yin, Z.; Gao, Q. Selenylation modification can enhance antioxidant activity of Potentilla anserina L. polysaccharide. Int. J. Biol. Macromol. 2013, 58, 320–328. [Google Scholar] [CrossRef]
- Li, R.; Qin, X.; Liu, S.; Zhang, X.; Zeng, X.; Guo, H.; Wang, T.; Zhang, Y.; Zhang, J.; Zhang, J.; et al. [HNMP]HSO4 catalyzed synthesis of selenized polysaccharide and its immunomodulatory effect on RAW264.7 cells via MAPKs pathway. Int. J. Biol. Macromol. 2020, 160, 1066–1077. [Google Scholar] [CrossRef]
- Ru, Y.; Liu, K.; Kong, X.; Li, X.; Shi, X.; Chen, H. Synthesis of selenylated polysaccharides from Momordica charantia L. and its hypoglycemic activity in streptozotocin-induced diabetic mice. Int. J. Biol. Macromol. 2020, 152, 295–304. [Google Scholar] [CrossRef]
- Li, Z.-W.; Du, Z.-M.; Wang, Y.-W.; Feng, Y.-X.; Zhang, R.; Yan, X.-B. Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers 2022, 14, 4161. [Google Scholar] [CrossRef]
- Bai, G.; Chen, S.; Zhang, P.; Xiong, S.; Wu, Z.; Wang, Y. Research progress on chemical structure characterization and biological activities of Lilii Bulbus polysaccharides. Chin. Tradit. Herb. Drugs 2022, 53, 6583–6592. [Google Scholar] [CrossRef]
- Li, X.; Hou, R.; Yue, C.; Liu, J.; Gao, Z.; Chen, J.; Lu, Y.; Wang, D.; Liu, C.; Hu, Y. The Selenylation Modification of Epimedium Polysaccharide and Isatis Root Polysaccharide and the Immune-enhancing Activity Comparison of Their Modifiers. Biol. Trace Elem. Res. 2016, 171, 224–234. [Google Scholar] [CrossRef]
- Mangiavacchi, F.; Coelho Dias, I.F.; Di Lorenzo, I.; Grzes, P.; Palomba, M.; Rosati, O.; Bagnoli, L.; Marini, F.; Santi, C.; Lenardao, E.J.; et al. Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals 2020, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Huang, Y.; Li, L.; Liu, Y.; Liu, L.; Wang, L.; Tong, L.; Wang, F.; Fan, B. A Review of Plant Selenium-Enriched Proteins/Peptides: Extraction, Detection, Bioavailability, and Effects of Processing. Molecules 2023, 28, 1223. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Bian, J.; Xu, S.; Liu, C.; Sun, Y.; Zhang, G.; Li, D.; Liu, X. Structural features, selenization modification, antioxidant and anti-tumor effects of polysaccharides from alfalfa roots. Int. J. Biol. Macromol. 2020, 149, 207–214. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, M.; Ma, Y.; Sun, Y.; Wang, S. Cytoprotective effect and safety of Morchella esculenta protein hydrolysate and its selenized derivative. Food Ferment. Ind. 2021, 47, 116–123. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, H.; Wang, X.; Huang, R.; Enomoto, H.; He, Z.; Li, C.-P. Characteristics and Enhanced Antioxidant Activity of Egg White Protein Selenized by Dry-Heating in the Presence of Selenite. J. Agric. Food Chem. 2013, 61, 3131–3139. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Dong, X.; Wang, L.; Ji, H.; Liu, A. Antitumor effects of seleno-β-lactoglobulin (Se-β-Lg) against human gastric cancer MGC-803 cells. Eur. J. Pharmacol. 2018, 833, 109–115. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, C.; Wang, T.; Sun, Y.; Li, T.; Fan, G. Improvement of Biological Activity of Morchella esculenta Protein Hydrolysate by Microwave-Assisted Selenization. J. Food Sci. 2019, 84, 73–79. [Google Scholar] [CrossRef]
- Li, C.-P.; He, Z.; Wang, X.; Yang, L.; Yin, C.; Zhang, N.; Lin, J.; Zhao, H. Selenization of ovalbumin by dry-heating in the presence of selenite: Effect on protein structure and antioxidant activity. Food Chem. 2014, 148, 209–217. [Google Scholar] [CrossRef]
- Dong, F.; Wang, X.; Zhu, X.; Zhang, M.; Yu, Z.; Feng, F. Optimization of extraction process of glycoprotein from Nostoc commune Vaucher and antioxidant activity of its selenide in vivo. China Food Addit. 2022, 33, 38–46. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, N.; Gao, J.; Wu, D.; Liu, A. Anti-tumor activity of selenium modification of the bovine milk component β-Lg (Se-β-Lg) on H22 cells. Food Funct. 2019, 10, 3626–3636. [Google Scholar] [CrossRef]
- Ahmed, K.; Chotana, G.A.; Faisal, A.; Saleem, R.S.Z. Chemical Synthesis of Selenium-containing Peptides. Mini-Rev. Med. Chem. 2022, 22, 1090–1117. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, Ö.; Waliczek, M.; Kijewska, M.; Stefanowicz, P. Selenium in Peptide Chemistry. Molecules 2023, 28, 3198. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, P.; Hou, Y.; Chen, W.; Liao, A.; Pan, L.; Li, Y.; Yang, S.; Li, Y. Research progress on the preparation technology and function of selenium-enriched bioactive peptide. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2022, 43, 125–132+140. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Bond-length distributions for ions bonded to oxygen: Results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4. Acta Crystallogr. Sect. B 2018, 74, 79–96. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Liu, G.; Xu, Y.; Wu, X.; Yi, R.; Jin, F.; Sa, C.; Su, X. Antioxidant stress and anticancer activity of peptide-chelated selenium in vitro. Int. J. Mol. Med. 2021, 48, 153. [Google Scholar] [CrossRef] [PubMed]
- Doan, N.; Liu, Y.; Xiong, X.; Kim, K.; Wu, Z.; Bravo, D.M.; Blanchard, A.; Ji, P. Organic selenium supplement partially alleviated diquat-induced oxidative insults and hepatic metabolic stress in nursery pigs. Br. J. Nutr. 2020, 124, 23–33. [Google Scholar] [CrossRef]
- Qin, X.-Y.; Zhang, J.-T.; Li, G.-M.; Zhou, M.; Gu, R.-Z.; Lu, J.; Liu, W.-Y. Structure and composition of a potential antioxidant obtained from the chelation of pea oligopeptide and sodium selenite. J. Funct. Foods 2020, 64, 103619. [Google Scholar] [CrossRef]
- Yang, K.; Zhou, R.; Xiao, Y.; Fang, R. Synergistic Biological Function of Selenium and Tea Polyphenols and Its Application in Animal Production. Chin. J. Anim. Nutr. 2021, 33, 68–76. [Google Scholar] [CrossRef]
- Zhou, W. Synthesis and Characterization of Tea-PolyphenolS/Selenium Complex. Fine Chem. 2007, 248–251. [Google Scholar] [CrossRef]
- Fiorito, S.; Epifano, F.; Marchetti, L.; Genovese, S. Semisynthesis of Selenoauraptene. Molecules 2021, 26, 2798. [Google Scholar] [CrossRef]
- Marć, M.A.; Kincses, A.; Rácz, B.; Nasim, M.J.; Sarfraz, M.; Lázaro-Milla, C.; Domínguez-Álvarez, E.; Jacob, C.; Spengler, G.; Almendros, P. Antimicrobial, Anticancer and Multidrug-Resistant Reversing Activity of Novel Oxygen-, Sulfur- and Selenoflavones and Bioisosteric Analogues. Pharmaceuticals 2020, 13, 453. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Xu, B.; Yu, J.; Ren, Y.; Wang, J.; Xie, P.; Pittman, C.U.; Zhou, A. Copper-catalyzed generation of flavone selenide and thioether derivatives using KSeCN and KSCN via C-H functionalization. Org. Biomol. Chem. 2018, 16, 5999–6005. [Google Scholar] [CrossRef]
- Logeswaran, R.; Jeganmohan, M. Synthesis of Selenoflavones via Ruthenium-Catalyzed Selenylation of Unsaturated Acids. J. Org. Chem. 2023, 88, 4554–4568. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-S.; Kim, D.-M.; Kim, Y.-J.; Yang, S.; Lee, K.-T.; Ryu, J.H.; Jeong, J.-H. Synthesis and Evaluation of Neuroprotective Selenoflavanones. Int. J. Mol. Sci. 2015, 16, 29574–29582. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Li, X.; Xin, G.; Yang, J.; Yang, W.; Liu, X. Preparation of selenizing DMY and its inhibition on proliferation/metastasis of tumor cells. Fine Chem. 2022, 39, 950–955. [Google Scholar] [CrossRef]
- Jialiexi, ·M.; Wang, J.; Wan, Y.; Ma, F. Optimization of simultaneous extraction process of tea polyphenols and polysaccharides and preparation of selenium complexes. Chem. Res. Appl. 2021, 33, 1805–1810. [Google Scholar]
- Chen, X.; Tong, Y.; Chou, P. Synthesis and Structure Analysis of Two Complexes of Flavonoids with Selenium. J. Wenzhou Med. Coll. 2009, 39, 63–65. [Google Scholar]
- Álvarez-Pérez, M.; Ali, W.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and Diselenides: A Review of Their Anticancer and Chemopreventive Activity. Molecules 2018, 23, 628. [Google Scholar] [CrossRef]
- Rios, E.A.M.; Gomes, C.M.B.; Silvério, G.L.; Luz, E.Q.; Ali, S.; D’Oca, C.d.R.M.; Albach, B.; Campos, R.B.; Rampon, D.S. Silver-catalyzed direct selanylation of indoles: Synthesis and mechanistic insights. RSC Adv. 2023, 13, 914–925. [Google Scholar] [CrossRef]
- Li, B.; Hu, M.; Ge, J.; Xu, W.; Wu, J.; Tong, Y.; Zhao, Z.; Liu, X.; He, L. Regioselective C-H chalcogenylation and halogenation of arenes and alkenes under metal-free conditions. Org. Biomol. Chem. 2023, 21, 2910–2916. [Google Scholar] [CrossRef]
- Jakubczyk, M.; Mkrtchyan, S.; Madura, I.D.; Marek, P.H.; Iaroshenko, V.O. Copper-catalyzed direct C–H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Adv. 2019, 9, 25368–25376. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, C.; Meng, J.; Huang, Y.; Fu, J.; Liu, B.; Liu, Y.; Chen, N. Recent Progress in the Selenocyclization Reactions with Organic Selenides. Chin. J. Org. Chem. 2020, 41, 1012. [Google Scholar] [CrossRef]
- Kundu, D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Adv. 2021, 11, 6682–6698. [Google Scholar] [CrossRef] [PubMed]
- Kour, J.; Khajuria, P.; Verma, P.K.; Kapoor, N.; Kumar, A.; Sawant, S.D. Selective Synthesis of Bis-Heterocycles via Mono- and Di-Selenylation of Pyrazoles and Other Heteroarenes. ACS Omega 2022, 7, 13000–13009. [Google Scholar] [CrossRef]
- Parekh, K.D.; Dash, R.P.; Pandya, A.N.; Vasu, K.K.; Nivsarkar, M. Implication of novel bis-imidazopyridines for management of Alzheimer’s disease and establishment of its role on protein phosphatase 2A activity in brain. J. Pharm. Pharmacol. 2013, 65, 1785–1795. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, H.; Mo, Z.; Ma, X.; Chen, Y.; Tang, H.; Pan, Y.; Xu, Y. Visible-Light-Promoted Selenylative Spirocyclization of Indolyl-ynones toward the Formation of 3-Selenospiroindolenine Anticancer Agents. Chem.-Asian J. 2020, 15, 1536–1539. [Google Scholar] [CrossRef]
- He, S.; Zhang, H.; Wu, H.; Zhou, S.; Xiao, Y.; You, X.; Chen, J. ICl-Catalyzed Csp2—H Selenation of Aminocoumarin Derivatives. Chin. J. Org. Chem. 2021, 41, 4378–4383. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Sun, K.; Meng, J.; Zhang, B. Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles. Chin. J. Org. Chem. 2021, 41, 4588–4609. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Scientific opinion on the safety of selenite triglycerides as a source of selenium added for nutritional purposes to food supplements. EFSA J. 2020, 18, e06134. [Google Scholar] [CrossRef]
- Bierla, K.; Flis-Borsuk, A.; Suchocki, P.; Szpunar, J.; Lobinski, R. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography–Inductively Coupled Plasma Mass Spectrometry/Electrospray–Orbitrap Tandem Mass Spectrometry. J. Agric. Food Chem. 2016, 64, 4975–4981. [Google Scholar] [CrossRef]
- Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawski, K. Selenium Compounds as Novel Potential Anticancer Agents. Int. J. Mol. Sci. 2021, 22, 1009. [Google Scholar] [CrossRef] [PubMed]
- Sonet, J.; Mosca, M.; Bierla, K.; Modzelewska, K.; Flis-Borsuk, A.; Suchocki, P.; Ksiazek, I.; Anuszewska, E.; Bulteau, A.-L.; Szpunar, J.; et al. Selenized Plant Oil Is an Efficient Source of Selenium for Selenoprotein Biosynthesis in Human Cell Lines. Nutrients 2019, 11, 1524. [Google Scholar] [CrossRef] [PubMed]
- Grosicka-Maciąg, E.; Kurpios-Piec, D.; Woźniak, K.; Kowalewski, C.; Szumiło, M.; Drela, N.; Kiernozek, E.; Suchocki, P.; Rahden-Staroń, I. Selol (Se IV) modulates adhesive molecules in control and TNF-α-stimulated HMEC-1 cells. J. Trace Elem. Med. Biol. 2019, 51, 106–114. [Google Scholar] [CrossRef]
- Śliwka, L.; Wiktorska, K.; Suchocki, P.; Milczarek, M.; Mielczarek, S.; Lubelska, K.; Cierpiał, T.; Łyżwa, P.; Kiełbasiński, P.; Jaromin, A.; et al. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS ONE 2016, 11, e0155772. [Google Scholar] [CrossRef]
- Flis, A.; Suchocki, P.; Krolikowska, M.A.; Suchocka, Z.; Remiszewska, M.; Śliwka, L.; Książek, I.; Sitarz, K.; Sochacka, M.; Hoser, G.; et al. Selenitetriglycerides—Redox-active agents. Pharmacol. Rep. 2015, 67, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rana, T. Nano-selenium on reproduction and immunocompetence: An emerging progress and prospect in the productivity of poultry research. Trop. Anim. Health Prod. 2021, 53, 324. [Google Scholar] [CrossRef]
- Serov, D.A.; Khabatova, V.V.; Vodeneev, V.; Li, R.; Gudkov, S.V. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. Materials 2023, 16, 5363. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; et al. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomed. 2018, 13, 2107–2128. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, L.; Cai, J.; Zhou, J.; Cheng, S.; Zhu, Z.; Deng, S. Selenium Nanoparticles Synthesis and Their Application in Food and Agriculture. Food Sci. Technol. 2021, 46, 26–33. [Google Scholar] [CrossRef]
- Al Jahdaly, B.A.; Al-Radadi, N.S.; Eldin, G.M.G.; Almahri, A.; Ahmed, M.K.; Shoueir, K.; Janowska, I. Selenium nanoparticles synthesized using an eco-friendly method: Dye decolorization from aqueous solutions, cell viability, antioxidant, and antibacterial effectiveness. J. Mater. Res. Technol. 2021, 11, 85–97. [Google Scholar] [CrossRef]
- Bi, S.-S.; Talukder, M.; Jin, H.-T.; Lv, M.-W.; Ge, J.; Zhang, C.; Li, J.-L. Nano-selenium alleviates cadmium-induced cerebellar injury by activating metal regulatory transcription factor 1 mediated metal response. Anim. Nutr. 2022, 11, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.-H.; Li, L.-L.; Zhou, N.-Q.; Liu, J.-H.; Huang, Q.; Wang, H.-J.; Tian, J.; Yu, H.-Q. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzym. Microb. Technol. 2016, 95, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Samynathan, R.; Venkidasamy, B.; Ramya, K.; Muthuramalingam, P.; Shin, H.; Kumari, P.S.; Thangavel, S.; Sivanesan, I. A Recent Update on the Impact of Nano-Selenium on Plant Growth, Metabolism, and Stress Tolerance. Plants 2023, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Song, Z.; Shi, L.; Zhou, L.; Zhang, J.; Cui, J.; Li, Y.; Jin, D.-Q.; Ohizumi, Y.; Xu, J.; et al. A dandelion polysaccharide and its selenium nanoparticles: Structure features and evaluation of anti-tumor activity in zebrafish models. Carbohydr. Polym. 2021, 270, 118365. [Google Scholar] [CrossRef]
- Khan, Z.; Thounaojam, T.C.; Chowdhury, D.; Upadhyaya, H. The role of selenium and nano selenium on physiological responses in plant: A review. Plant Growth Regul. 2023, 100, 409–433. [Google Scholar] [CrossRef]
- Tang, S.; Wang, T.; Jiang, M.; Huang, C.; Lai, C.; Fan, Y.; Yong, Q. Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int. J. Biol. Macromol. 2019, 128, 444–451. [Google Scholar] [CrossRef]
- Alvi, G.B.; Iqbal, M.S.; Ghaith, M.M.S.; Haseeb, A.; Ahmed, B.; Qadir, M.I. Biogenic selenium nanoparticles (SeNPs) from citrus fruit have anti-bacterial activities. Sci. Rep. 2021, 11, 4811. [Google Scholar] [CrossRef]
- Su, Q.; Zhao, X.; Zhang, X.; Wang, Y.; Zeng, Z.; Cui, H.; Wang, C. Nano Functional Food: Opportunities, Development, and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 234. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Shi, L.; Li, Y.; Tuerhong, M.; Abudukeremu, M.; Cui, J.; Li, Y.; Jin, D.-Q.; Xu, J.; et al. Structure features, selenylation modification, and improved anti-tumor activity of a polysaccharide from Eriobotrya japonica. Carbohydr. Polym. 2021, 273, 118496. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Li, Y.; Li, Y.; Gong, X.; Zhou, L.; Xu, J.; Guo, Y. Structure, selenization modification, and anti-tumor activity of a glucomannan from Platycodon grandiflorum. Int. J. Biol. Macromol. 2022, 220, 1345–1355. [Google Scholar] [CrossRef]
- Sun, S.-J.; Deng, P.; Peng, C.-E.; Ji, H.-Y.; Mao, L.-F.; Peng, L.-Z. Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis. Cancer Manag. Res. 2022, 14, 3335–3345. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, C.; Jing, L.; Feng, M.; Li, R.; Yang, Y. The structural characterization and immune modulation activitives comparison of Codonopsis pilosula polysaccharide (CPPS) and selenizing CPPS (sCPPS) on mouse in vitro and vivo. Int. J. Biol. Macromol. 2020, 160, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Amporndanai, K.; Rogers, M.; Watanabe, S.; Yamanaka, K.; O’Neill, P.M.; Hasnain, S.S. Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. eBioMedicine 2020, 59, 102980. [Google Scholar] [CrossRef]
- Wang, J.; Cao, L.; Wei, C.; Wang, W.; Zhao, S.; Liu, D.; Quan, Z.; Wang, Y.; Wu, Y.; Su, Y. Antioxidant Activity of Selenium-Modified Soluble Dietary Fiber from Millet and Its Effect on the Tryptophan-Producing Capability of Mouse Intestinal Flora. Food Sci. 2021, 42, 144. [Google Scholar] [CrossRef]
- Qin, S.; Peng, Y.; She, F.; Zhang, J.; Li, L.; Chen, F. Positive effects of selenized-oligochitosan on zearalenone-induced intestinal dysfunction in piglets. Front. Vet. Sci. 2023, 10, 1184969. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Chen, H. Kappa—Selenocarrageenan and its Applications in Food Industry. China Food Addit. 2003, 9, 80–82. [Google Scholar]
- Kieliszek, M. Selenium–Fascinating Microelement, Properties and Sources in Food. Molecules 2019, 24, 1298. [Google Scholar] [CrossRef]
- Tangjaidee, P.; Swedlund, P.; Xiang, J.; Yin, H.; Quek, S.Y. Selenium-enriched plant foods: Selenium accumulation, speciation, and health functionality. Front. Nutr. 2023, 9, 962312. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2022.962312 (accessed on 15 June 2023). [CrossRef]
- Kieliszek, M.; Błażejak, S.; Bzducha-Wróbel, A.; Kot, A.M. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biol. Trace Elem. Res. 2019, 187, 316–327. [Google Scholar] [CrossRef]
- Banerjee, M.; Chakravarty, D.; Kalwani, P.; Ballal, A. Voyage of selenium from environment to life: Beneficial or toxic? J. Biochem. Mol. Toxicol. 2022, 36, e23195. Available online: https://onlinelibrary.wiley.co (accessed on 22 August 2023). [CrossRef]
- Ye, Y.; Cai, J.; Li, N.; Zhang, D.; Cheng, S.; Hu, Y.; Zhu, Z.; Ding, W. A Review of The Application of Nano-Selenium in Food Field. Food Sci. Technol. 2020, 45, 11–18. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Cheng, H.; Xia, W. Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci. Technol. 2022, 129, 339–352. [Google Scholar] [CrossRef]
- Huang, S.; Chen, F.; Cheng, H.; Huang, G. Modification and application of polysaccharide from traditional Chinese medicine such as Dendrobium officinale. Int. J. Biol. Macromol. 2020, 157, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, H.; Aguh, C.; Andriessen, A.; Benjamin, L.; Ferberg, A.; Hooper, D.; Jarizzo, J.; Lio, P.; Tlougan, B.; Woolery-Lloyd, H.; et al. Atopic Dermatitis and the Role of the Skin Microbiome in Choosing Prevention, Treatment, and Maintenance Options. J. Drugs Dermatol. JDD 2020, 19, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Guo, C.; Zhu, J.; Wei, Y.; Wu, M.; Huang, X.; Zhang, M.; Li, J.; Wang, X.; Wang, Y.; et al. The Whitening, Moisturizing, Anti-aging Activities, and Skincare Evaluation of Selenium-Enriched Mung Bean Fermentation Broth. Front. Nutr. 2022, 9, 837168. Available online: https://www.frontiersin.org/articles/10.3389/fnut.2022.837168 (accessed on 31 May 2023). [CrossRef] [PubMed]
Selenization System | Principal Operating Parameter | Selenium Content/(mg/g) | Combination | Reference |
---|---|---|---|---|
Aluminum chloride–sodium selenite (AlCl3-Na2SeO3) | (m(Na2SeO3):m(Platycarya infructescence polysaccharide)) = 1.60 The volume fraction of AlCl3 saturated aqueous solution is 4.56% microwave-assisted synthesis Reaction at 75 °C for 35 min | 3.58 | \ | [29] |
Nitric acid–sodium selenite (HNO3-Na2SeO3) | (m(Na2SeO3):m(garlic polysaccharide)) = 0.80 Reaction at 70 °C for 6 h pH = 5.5 Centrifugation at 3000 r/min for 10 min | 38.27 | Se-O-C Se=O | [30] |
Glacial acetic acid–selenous acid (C2H4O2-H2SeO3) | (m(H2SeO3):m(garlic polysaccharide)) = 1.20 1% C2H4O2 solution 50 mL Reaction at 25 °C to complete dissolution Stir at 90 °C for 2 h 2 mL of 10% HNO3 solution was added and reacted for 8 h | 26.3 | C-O-Se Se=O | [31] |
Nitric acid–selenous acid (HNO3-H2SeO3) | The polysaccharide was added to the HNO3 solution and stirred until completely dissolved Microwave power 190 W Stirring at 63 °C for 116 min Na2CO3 solution was adjusted to pH 6–7 | 2.6901 | Se-O-C | [32] |
Glacial acetic acid–sodium selenite (C2H4O2-Na2SeO3) | Dendrobium devonianum Paxt. polysaccharide: C2H4O2 = 1:1.5 (g/mL) Dendrobium devonianum Paxt. polysaccharide: Na2SeO3 = 1:1.5 (g/g) Water bath reaction at 60 °C for 24 h | 12.37 | O-Se-O Se=O | [28] |
Selenium oxychloride (SOC) | 500 mg polysaccharide was dissolved in 20 mL Fm solution. Stir at room temperature for 2 h SOC was dissolved by stirring at 60 °C for 3 h Reaction at 60 °C for 60 min | 22.4 | Se4+ replaced the C6 position | [23] |
N-methyl-2-pyrrolidone hydrogen sulfate ([HNMP]HSO4) | (m(DMSO)):m(Artemisia Sphaerocephala polysaccharides)) = 0.10 Stirring at 80 °C for 5 h H2SeO3 was added to DMSO (40 mL) At 80 °C, [HNMP]HSO4 (equal molar ratio to H2SeO3) was added and stirred for 2 h The reaction was carried out under N2 for 6 h and centrifuged for 15 min Freeze-drying for 48 h | 8.744 | C-O-Se Se=O | [33] |
Ascorbic acid–sodium selenite (C₆H₈O₆-Na2SeO3) | Momordica charantia polysaccharide powder (200 mg) dissolved in 200 mL of distilled water 10 mL Momordica charantia polysaccharide solution was mixed with Na2SeO3 solution (0.05 M) Move to 8 mL C₆H₈O₆ solution (0.1 M) oscillation at 28 °C for 12 h, dialyze with H2O for 48 h, freeze-dried | 0.4354 | C-O-Se Se=O | [34] |
Selenization System | Principal Operating Parameter | Selenium Content/(mg/g) | Combination | Reference |
---|---|---|---|---|
Microwave-assisted Na2SeO3 selenization | 5 g Morchella protein hydrolysate, 20 g Na2SeO3 dissolved in 500 mL H2O pH = 5.0 adjusted by 1 M HCl Microwave power was 250 W, irradiation time was 20 min Centrifugation at 4000× g for 15 min | 59 | Se-O Se=O | [45] |
CH3COOH-Na2SeO3 | 0.2 g Nostoc commune glycoprotein 0.2 g Na2SeO3, 0.5 g BaCl2 50 mL 2% CH3COOH solution 2 mL 10% HNO3 solution The reaction was carried out in a 75 °C water bath for 7 h | 1.403 | \ | [50] |
Selenated sulfinic acid | 10% selenated sulfinic acid solution buffer 6% H2O2 The reaction was carried out in a vacuum reactor at 40 °C for 5 h | 75.85 | Se=O | [51] |
Dry-heat selenization | Egg white protein concentration of 2% The freeze-dried samples were kept at 60 °C for 5 d In the presence of H277SeO3, pH = 3.0, dry heating at 60 °C for 3 d | 9.5 | -O-SeHO2 | [46] |
Na₂SeO₃ | Selenized ovalbumin 2% 2% Na₂SeO₃ buffer solution pH = 3.0 The freeze-dried samples were kept at 60 °C for 3 d | 8.8 | S-Se-S | [49] |
Selenization System | Principal Operating Parameter | Combination | Bioactivity | Reference |
---|---|---|---|---|
Na2SeO3-soybean protein isolate polypeptide | Na2SeO3:peptide = 1:2 (v/v) 0.1 mol/L Na2SeO3 solution Chelating at 80 °C for 2 h, pH = 7.0 Centrifuge at 6000 rpm and 4000 rpm for 10 min at 4 °C | −NH2, −NH, −COOH combined with Se | antioxidation | [6] |
Na2SeO3-pea oligopeptides | Pea oligopeptide: Na2SeO3 mass ratio = 2:1 The final concentration is 5% Adjust the pH of the solution to 9.0 Chelating at 80 °C constant temperature H2O bath for 30 min | Se4+coordinated with −NH2 and −COOH | antioxidation | [55] |
Na2SeO3-anticancer bioactive peptide | 0.4 g S-acetyl mercapto succinic anhydride was incorporated into the anticancer bioactive peptide 2 h at 25 °C, pH = 7.4 N2 protection to avoid oxidation The reaction was carried out at 30 °C for 6 h with 0.66 g Na2SeO3 | Se-Se, −C-Se, SH=Se | antioxidation anti-tumor | [56] |
Selenization System | Principal Operating Parameter | Selenium Content/(mg/g) | Combination | Reference |
---|---|---|---|---|
Dihydromyricetin-Na2SeO3 | 2 g dihydromyricetin, 0.54 g Na2SeO3 55% ethanol 60 mL 1 mol/L HCl to adjust pH to 3–4 Reaction at 55 °C for 20 min Vacuum drying for 48 h | 6.54 | C-Se | [66] |
Tea polyphenols-selenium | 0.2 g tea polyphenols were dissolved in H2O and added to the Se4+ solution. pH = 4–5 60 °C for 20 min | \ | Se4+ substituted C-H on the benzene ring | [67] |
Quercetin-SeO₂ | Quercetin 0.75 g (2.5 mmol) 0.14 g (1.25 mmol) of SeO₂ dissolved in 10 mL of absolute ethanol. Keep the pH at 2–3 The reaction was carried out at 60 °C for 10 h under N2 protection | 43.53 | Se-O | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Sun, Y.; Liu, B.; Ming, J.; Wang, L.; Xu, C.; Xiao, Y.; Zhang, C.; Shang, L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023, 12, 3773. https://doi.org/10.3390/foods12203773
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods. 2023; 12(20):3773. https://doi.org/10.3390/foods12203773
Chicago/Turabian StyleCheng, Kaixuan, Yang Sun, Bowen Liu, Jiajia Ming, Lulu Wang, Chenfeng Xu, Yuanyuan Xiao, Chi Zhang, and Longchen Shang. 2023. "Selenium Modification of Natural Products and Its Research Progress" Foods 12, no. 20: 3773. https://doi.org/10.3390/foods12203773