Effects of Roasting on the Quality of Moringa oleifera Leaf Powder and Loaf Volume of Moringa oleifera-Supplemented Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Roasted Sample Preparation
2.2. Bread Baking
2.3. Proximate Analysis
2.4. Water Absorption Capacity
2.5. Color Measurements
2.6. Determination of Physical Properties of Bread
2.7. Extraction of MLP
2.8. DPPH Radical Scavenging Activity
2.9. Determination of Total Polyphenol Content
2.10. Quantitative Analysis of the Antioxidant Quercetin-3-Glucoside (Q3G)
2.11. Fermentation Tests
2.12. Determination of Yeast Viability
2.13. Scanning Electron Microscopy
2.14. Sensory Evaluation
2.15. Statistical Analysis
3. Results and Discussion
3.1. General Nutritional Composition of MLP
3.2. Physicochemical Characteristics of RMLP Obtained under Various Roasting Conditions
3.3. Antioxidant Activity of RMLP Obtained under Various Roasting Conditions
3.4. Effect of MLP Roasting Conditions on Bread Loaf Volume
3.5. Effect of RMLP on Bread Dough Fermentation
3.6. Effect of RMLP on Gluten Formation and Bread Structure
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, A.; Pradheep, K.; Gupta, R.; Nayar, E.R.; Bhandari, D.C. ‘Drumstick tree’ (Moringa oleifera Lam.): A multipurpose potential species in India. Genet. Resour. Crop Evol. 2011, 58, 453–460. [Google Scholar] [CrossRef]
- Verdcourt, B. A synopsis of the Moringaceae. Kew Bull. 1985, 40, 1–23. [Google Scholar] [CrossRef]
- Fuglie, L.J. The Miracle Tree: Moringa oleifera, Natural Nutrition for the Tropics; Church World Service: Dakar, Senegal, 1999. [Google Scholar]
- Sengev, I.A.; Abu, J.O.; Gernah, D.I. Effect of Moringa oleifera leaf powder supplementation on some quality characteristics of wheat bread. Food Nutr. Sci. 2013, 4, 270–275. [Google Scholar]
- Foidl, N.; Makkar, H.P.S.; Becker, K. The potential of Moringa oleifera for agricultural and industrial uses. In The Miracle Tree: The Multiple Attributes of Moringa; Fuglie, L.J., Ed.; Church World Service: Dakar, Senegal, 2001; pp. 47–67. [Google Scholar]
- Price, M.L. The Moringa Tree. ECHO Tech. Note 1985, 1–19. Available online: https://allaboutmoringa.info/wp-content/uploads/2020/11/Ebook-The-Moringa-Tree-echo.pdf (accessed on 1 January 2020).
- Ramachandran, C.; Peter, K.V.; Gopalakrishnan, P.K. Drumstick (Moringa oleifera): A multipurpose Indian vegetable. Econ. Bot. 1980, 34, 276–283. [Google Scholar] [CrossRef]
- Leone, A.; Fiorillo, G.; Criscuoli, F.; Ravasenghi, S.; Santagostini, L.; Fico, G.; Spadafranca, A.; Battezzati, A.; Schiraldi, A.; Pozzi, F.; et al. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi Refugee Camps, and Haiti. Int. J. Mol. Sci. 2015, 16, 18923–18937. [Google Scholar] [CrossRef]
- Palada, M.C. Moringa (Moringa oleifera Lam.): A versatile tree crop with horticultural potential in the subtropical United States. Hortic. Sci. 1996, 31, 794–797. [Google Scholar] [CrossRef]
- Saini, R.K.; Shetty, N.P.; Giridhar, P. Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–APCI–MS. Eur. Food Res. Technol. 2014, 238, 971–978. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Ding, H.; Liu, S.; Han, X.; Gui, J.; Liu, D. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. 2017, 218, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Shetty, N.P.; Prakash, M.; Giridhar, P. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of a RTE product. J. Food Sci. Technol. 2014, 51, 2176–2182. [Google Scholar] [CrossRef]
- Govender, L.; Siwela, M. The Effect of Moringa oleifera Leaf Powder on the Physical Quality, Nutritional Composition and Consumer Acceptability of White and Brown Breads. Foods 2020, 9, 1910. [Google Scholar] [CrossRef] [PubMed]
- Sengev, I.A.; Agbanyi, M.M.; Sule, S. Effect of dry shredded Moringa oleifera leaves and vitamin C on the physicochemical properties of the dough and bread. J. Curr. Res. Food Sci. 2021, 2, 35–39. [Google Scholar]
- Ning, J.; Hou, G.G.; Sun, J.; Wan, X.; Dubat, A. Effect of green tea powder on the quality attributes and antioxidant activity of whole-wheat flour pan bread. L.W.T. Food Sci. Technol. 2017, 79, 342–348. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Y.; Chao, H.; Zhang, M.; Zhou, Y.; Wang, M. Effects of celery powder on wheat dough properties and textural, antioxidant and starch digestibility properties of bread. J. Food Sci. Technol. 2020, 57, 1710–1718. [Google Scholar] [CrossRef]
- Lim, P.Y.; Sim, Y.Y.; Nyam, K.L. Influence of kenaf (Hibiscus cannabinus L.) leaves powder on the physico-chemical, antioxidant and sensorial properties of wheat bread. J. Food Meas. Charact. 2020, 14, 2425–2432. [Google Scholar] [CrossRef]
- Odunlade, T.V.; Famuwagun, A.A.; Taiwo, K.A.; Gbadamosi, S.O.; Oyedele, D.J.; Adebooye, O.C. Chemical composition and quality characteristics of wheat bread supplemented with leafy vegetable powders. J. Food Qual. 2017, 2017, 9536716. [Google Scholar] [CrossRef]
- Bourekoua, H.; Różyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Evaluation of physical, sensorial, and antioxidant properties of gluten-free bread enriched with Moringa oleifera leaf powder. Eur. Food Res. Technol. 2018, 244, 189–195. [Google Scholar] [CrossRef]
- Gan, Z.; Ellis, P.R.; Schofield, J.D. Gas cell stabilisation and gas retention in wheat bread dough. J. Cereal Sci. 1995, 21, 215–230. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Monro, J.; Burlingame, B. Carbohydrates and related food components: INFOODS tagnames, meanings, and uses. J. Food Compos. Anal. 1996, 9, 100–118. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods of the AACC, 10th ed.; Methods 56-11; The Association: St. Paul, MN, USA, 2000. [Google Scholar]
- Autio, K.; Laurikainen, T. Relationships between flour/dough microstructure and dough handling and baking properties. Trends Food Sci. Technol. 1997, 8, 181–185. [Google Scholar] [CrossRef]
- MEXT. Standard Tables of Food Composition in Japan—2015—(Seventh Revised Version); Ministry of Education, Culture, Sports, Science and Technology (MEXT): Tokyo, Japan, 2015.
- Karim, O.; Kayode, R.; Oyeyinka, S.; Oyeyinka, A. Physicochemical properties of stiff dough ‘amala’ prepared from plantain (Musa paradisca) flour and moringa (Moringa oleifera) leaf powder. Food Health Dis. 2015, 4, 48–58. [Google Scholar]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Mocoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in proceeded foods. Trends Food Sci. Technol. 2001, 11, 340–346. [Google Scholar] [CrossRef]
- Maiyo, F.C.; Moodley, R.; Singh, M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-o glucoside and 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anticancer. Agents Med. Chem. 2016, 16, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Hayase, F.; Hirashima, S.; Okamoto, G.; Kato, H. Scavenging of active oxygens by melanoidins. Agric. Biol. Chem. 1989, 53, 3383–3385. [Google Scholar]
- Jogihalli, P.; Singh, L.; Kumar, K.; Sharanagat, V.S. Physico-functional and antioxidant properties of sand-roasted chickpea (Cicer arietinum). Food Chem. 2017, 237, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Koriyama, T.; Teranaka, K.; Tsuchida, M.; Kasai, M. Effects of storage and roasting condition on the antioxidant activity of soybeans with different colors of seed coat. Foods 2022, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Kokoh, A.; Elleingand, E.; Koffi, E. Physico-chemical and sensory properties of breads produced from wheat and fermented yam composite flour fortified with moringa leaves powder. J. Food Nutr. Res. 2019, 7, 772–777. [Google Scholar] [CrossRef]
- Grenier, D.; Rondeau-Mouro, C.; Dedey, K.B.; Morel, M.H.; Lucas, T. Gas Cell Opening in Bread Dough During Baking. Trends Food Sci. Technol. 2021, 109, 482–498. [Google Scholar] [CrossRef]
- Aida, S.S.; Wafaa, M.S.; Hassanein, A.M.; El-Ghandour, H.M.A. Enhancement of nutritional and biological values of labneh by adding dry leaves of Moringa oleifera as innovative dairy products. World Appl. Sci. J. 2013, 22, 1594–1602. [Google Scholar]
- El-Fataah Mohamed, F.A.; Hassan Salama, H.; El-Sayed, S.M.; El-Sayed, H.S.; Abdel-Hady Zahran, H. Utilization of natural antimicrobial and antioxidant of Moringa oleifera leaves extract in manufacture of cream cheese. J. Biol. Sci. 2018, 18, 92–106. [Google Scholar] [CrossRef]
Ingredient | Wheat Flour | MLP | ||||
---|---|---|---|---|---|---|
Water content (%) | 14.3 | ± | 0.35 | 3.7 | ± | 0.49 |
Protein (% dwb) | 13.5 | ± | 0.39 | 27.7 | ± | 8.22 |
Carbohydrate (% dwb) | 84.6 | ± | 1.06 | 53.2 | ± | 7.95 |
Dietary fiber (total, % dwb) | 3.2 | ± | 0.04 | 29.1 | ± | 4.34 |
Dietary fiber (water soluble, % dwb) | 1.4 | ± | 0.02 | 5.1 | ± | 0.75 |
Dietary fiber (insoluble, % dwb) | 1.8 | ± | 0.02 | 24.0 | ± | 3.59 |
Crude fat (% dwb) | 2.6 | ± | 0.77 | 8.8 | ± | 1.13 |
Ash (% dwb) | 0.5 | ± | 0.08 | 10.8 | ± | 0.06 |
Energy (kcal/100 g dwb) | 420 | ± | 9.80 | 371 | ± | 36.4 |
Na (mg/100 g dwb) | 0 | ± | 0.00 | 127 | ± | 0.65 |
K (mg/100 g dwb) | 102 | ± | 2.39 | 2570 | ± | 26.4 |
Ca (mg/100 g dwb) | 20 | ± | 0.46 | 2024 | ± | 225 |
Mg (mg/100 g dwb) | 26 | ± | 0.62 | 470 | ± | 74.1 |
Fe (mg/100 g dwb) | 1 | ± | 0.09 | 10 | ± | 0.54 |
Wheat Flour | MLP | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unroasted | 110 °C | 130 °C | 150 °C | 170 °C | ||||||||||
10 min | 20 min | 30 min | 10 min | 20 min | 30 min | 10 min | 20 min | 30 min | 10 min | 20 min | ||||
Flour | ||||||||||||||
Moisture content (%) Water absobing capacity (%) | 14.5 ± 0.01 a | 4.9 ± 0.31 b | 3.7 ± 0.11 c | 2.7 ± 0.25 d | 1.8 ± 0.26 e | 2.1 ± 0.23 de | 1.8 ± 0.25 e | 1.6 ± 0.41 e | 1.9 ± 0.30 de | 1.9 ± 0.23 e | 1.8 ± 0.20 e | 2.1 ± 0.46 de | 1.5 ± 0.50 e | |
119 ± 6.77 g | 515 ± 17.2 ab | 464 ± 22.1 ab | 465 ± 18.6 ab | 461 ± 22.7 ab | 506 ± 16.1 a | 405 ± 20.3 bcd | 341 ± 15.1 cde | 411 ± 24.2 bc | 314 ± 6.65 ef | 323 ± 3.84 def | 342 ± 22.9 cde | 244 ± 13.1 f | ||
Color | L* | 90.1 ± 0.01 a | 57.9 ± 0.68 b | 56.4 ± 0.06 c | 54.9 ± 0.05 d | 53.9 ± 0.05 e | 53.1 ± 0.06 e | 48.7 ± 0.03 fg | 48.3 ± 0.26 g | 49.5 ± 0.05 f | 39.4 ± 0.19 h | 38.1 ± 0.06 i | 40.0 ± 0.06 h | 32.8 ± 0.20 j |
a* | −0.8 ± 0.10 f | −12.7 ± 0.13 m | −13.2 ± 0.11 l | −10.6 ± 0.07 k | −7.3 ± 0.06 i | −9.9 ± 0.16 j | −2.1 ± 0.08 g | 0.3 ± 0.04 e | −2.4 ± 0.05 h | 4.3 ± 0.09 c | 4.7 ± 0.01 b | 3.0 ± 0.04 d | 5.5 ± 0.07 a | |
b* | 9.72 ± 0.05 h | 37.2 ± 1.01 b | 38.4 ± 0.08 a | 37.1 ± 0.21 b | 35.2 ± 0.07 c | 36.6 ± 0.14 b | 32.3 ± 0.06 d | 31.4 ± 0.21 d | 34.6 ± 0.03 e | 26.9 ± 0.07 ef | 25.5 ± 0.03 f | 27.1 ± 0.03 e | 22.3 ± 0.19 g | |
ΔE | — | — | 1.8 ± 0.07 | 3.2 ± 0.03 | 6.7 ± 0.09 | 6.4 ± 0.17 | 15.5 ± 0.06 | 17.7 ± 0.25 | 13.9 ± 0.07 | 27.6 ± 0.21 | 29.1 ± 0.05 | 26.3 ± 0.05 | 28.7 ± 7.91 | |
DPPH radical scavenging activity (IC50, mg/mL) | N/A | 1.7 ± 0.07 b | 1.6 ± 0.05 bc | 1.7 ± 0.08 b | 1.4 ± 0.07 de | 1.6 ± 0.05 bcd | 1.4 ± 0.03 cde | 1.4 ± 0.06 cde | 1.3 ± 0.06 e | 1.6 ± 0.04 bcde | 1.7 ± 0.05 b | 1.4 ± 0.05 e | 2.3 ± 0.07 a | |
Total phenol content (μg GAE/mL) | N/A | 149 ± 2.75 d | 152 ± 9.96 d | 149 ± 7.77 d | 173 ± 6.66 bcd | 159 ± 6.06 cd | 178 ± 5.01 bc | 180 ± 21.18 abc | 187 ± 5.39 ab | 174 ± 0.13 bcd | 161 ± 4.92 bcd | 204 ± 9.29 a | 123 ± 6.71 e | |
Q3G content (mg/g) | N/A | 10.3 ± 1.11 abcd | 9.3 ± 0.96 cd | 9.7 ± 1.11 bcd | 10.6 ± 0.85 abcd | 10.4 ± 0.57 abcd | 11.5 ± 0.57 abc | 12.0 ± 0.58 ab | 12.3 ± 0.87 a | 10.3 ± 0.83 abcd | 8.7 ± 1.11 d | 12.4 ± 1.21 a | 1.9 ± 0.47 e | |
Bread (1) | ||||||||||||||
Moisture content (%) | 38.5 ± 0.24 a | 37.1 ± 0.88 abcd | 37.4 ± 0.42 abcd | 36.6 ± 1.39 cd | 36.2 ± 0.38 d | 37.1 ± 1.09 abcd | 37.1 ± 1.19 abcd | 37.8 ± 0.17 abc | 38.2 ± 0.27 ab | 37.1 ± 0.50 abcd | 37.5 ± 0.21 abcd | 36.7 ± 0.93 bcd | 37.4 ± 0.30 abcd | |
Loaf volume (cm3) | 1844 ± 40.2 a | 990 ± 41.3 j | 1002 ± 42.1 i | 1250 ± 43.2 g | 1389 ± 45.4 f | 1118 ± 44.9 h | 1624 ± 56.6 d | 1703 ± 52.1 c | 1545 ± 47.8 e | 1818 ± 58.7 b | 1763 ± 42.6 bc | 1723 ± 52.7 c | 1856 ± 59.9 a | |
Specific volume (cm3/g) | 4.6 ± 0.12 a | 2.4 ± 0.1 f | 2.5 ± 0.02 f | 3.1 ± 0.11 e | 3.4 ± 0.03 d | 2.8 ± 0.08 ef | 4.0 ± 0.02 c | 4.2 ± 0.07 bc | 3.8 ± 0.12 c | 4.4 ± 0.03 b | 4.4 ± 0.03 b | 4.3 ± 0.05 b | 4.6 ± 0.08 a | |
Hardness (N) | 3.5 ± 0.91 bef | 26.8 ± 3.47 a | 18.2 ± 3.56 b | 14.5 ± 5.13 c | 7.2 ± 1.9 de | 7.5 ± 1.51 d | 3.1 ± 0.55 def | 3.4 ± 0.68 def | 3.6 ± 0.47 def | 3.2 ± 0.79 def | 2.8 ± 1.04 def | 2.5 ± 0.32 ef | 2.2 ± 0.22 f | |
Elasticity | 1.2 ± 0.25 ab | 0.9 ± 0.02 b | 0.9 ± 0.05 b | 0.9 ± 0.02 ab | 1.0 ± 0.01 ab | 1.0 ± 0.01 ab | 1.0 ± 0.04 a | 1.0 ± 0.01 ab | 1.0 ± 0.01 ab | 1.1 ± 0.12 ab | 1.0 ± 0.02 ab | 1.0 ± 0.03 ab | 1.1 ± 0.03 ab | |
Chewiness | 3.2 ± 0.88 c | 11.9 ± 2.33 a | 9.9 ± 2.06 a | 7.8 ± 2.63 b | 4.6 ± 0.91 bc | 4.6 ± 1.09 bc | 2.7 ± 1.76 c | 2.6 ± 0.52 c | 2.1 ± 0.34 c | 2.4 ± 0.36 c | 2.6 ± 0.62 c | 2.3 ± 0.71 c | 1.9 ± 0.64 c | |
VRC (2)% | 0.4 ± 0.03 a | 0.2 ± 0.01 g | 0.3 ± 0.06 fg | 0.2 ± 0.04 ef | 0.2 ± 0.0 cde | 0.3 ± 0.03 bc | 0.3 ± 0.02 b | 0.3 ± 0.02 b | 0.3 ± 0.01 ab | 0.3 ± 0.01 bcd | 0.3 ± 0.01 bcd | 0.3 ± 0.02 bc | 0.3 ± 0.01 ab | |
Crumb color | L* | 79.1 ± 0.76 a | 42.6 ± 1.39 cd | 41.7 ± 0.25 de | 45.0 ± 0.64 bcd | 46.0 ± 0.77 bc | 43.6 ± 1.32 cd | 46.0 ± 0.99 bc | 47.0 ± 0.67 b | 46.1 ± 0.09 bc | 42.9 ± 2.18 de | 40.9 ± 0.81 e | 41.5 ± 0.83 de | 40.8 ± 1.39 de |
a* | −0.9 ± 0.27 de | −1.9 ± 0.85 e | −0.9 ± 0.34 e | −1.0 ± 0.39 e | −1.0 ± 0.11 e | −0.3 ± 0.15 de | 1.5 ± 0.74 c | 1.9 ± 0.11 bc | 0.9 ± 0.65 cd | 4.5 ± 0.48 a | 4.6 ± 0.34 ab | 3.1 ± 0.26 ab | 5.07 ± 0.65 a | |
b* | 17.5 ± 0.32 f | 32.9 ± 0.72 a | 32.3 ± 1.26 ab | 32.9 ± 0.33 ab | 31.5 ± 0.78 ab | 30.4 ± 1.02 bc | 25.1 ± 2.49 d | 24.5 ± 1.13 d | 28.2 ± 1.21 c | 20.7 ± 0.99 e | 23.2 ± 0.36 de | 23.2 ± 0.36 de | 15.5 ± 0.46 f | |
ΔE | — | — | 1.7 ± 0.77 | 3.5 ± 0.58 | 4.8 ± 0.94 | 4.3 ± 1.34 | 10.1 ± 2.11 | 11.1 ± 1.18 | 8.3 ± 0.91 | 14.4 ± 0.77 | 12.1 ± 0.43 | 26.3 ± 0.05 | 19.3 ± 1.53 | |
Crust color | L* | 56.4 ± 2.27 a | 35.7 ± 0.33 c | 37.1 ± 4.22 c | 36.8 ± 3.53 c | 36.0 ± 3.07 c | 36.0 ± 3.05 c | 35.8 ± 1.68 c | 40.8 ± 0.98 bc | 37.0 ± 3.18 bc | 36.8 ± 2.11 c | 38.6 ± 1.41 bc | 42.3 ± 2.35 b | 39.5 ± 1.94 bc |
a* | 14.1 ± 1.06 a | 7.1 ± 0.58 def | 5.1 ± 1.23 def | 4.4 ± 1.99 f | 4.5 ± 1.19 ef | 6.3 ± 0.89 cdef | 7.1 ± 0.58 bc | 6.6 ± 1.26 cdef | 7.0 ± 0.7 bcd | 8.7 ± 1.54 b | 6.7 ± 1.17 bcde | 7.7 ± 0.95 bc | 6.9 ± 0.35 bcde | |
b* | 32.7 ± 1.08 a | 21.5 ± 0.67 bc | 17.1 ± 2.79 d | 18.0 ± 2.84 cd | 20.1 ± 1.84 bcd | 19.9 ± 0.54 bcd | 21.4 ± 2.04 bc | 23.9 ± 0.85 b | 22.7 ± 2.21 b | 20.1 ± 1.86 bcd | 20.0 ± 2.41 bcd | 23.2 ± 1.62 b | 18.2 ± 0.93 cd | |
ΔE | — | — | 6.5 ± 0.58 | 6.3 ± 1.574 | 4.3 ± 1.54 | 2.5 ± 1.98 | 2.1 ± 1.65 | 5.4 ± 1.28 | 3.0 ± 2.65 | 4.0 ± 1.02 | 4.2 ± 1.16 | 6.8 ± 2.21 | 5.3 ± 1.33 |
MLP | Taste | Aroma | Appearance | Texture | Overall | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unroasted | 6.7 | ± | 1.6 | 6.3 | ± | 1.8 | 7.1 | ± | 1.4 a | 6.5 | ± | 1.8 bc | 6.8 | ± | 1.4 | |
Roasted | 110 °C | 6.3 | ± | 2.0 | 6.6 | ± | 1.7 | 6.9 | ± | 1.5 ab | 6.3 | ± | 2.1 c | 6.3 | ± | 1.9 |
130 °C | 7.3 | ± | 1.5 | 6.6 | ± | 1.8 | 7.2 | ± | 1.5 a | 7.5 | ± | 1.3 ab | 7.0 | ± | 1.5 | |
150 °C | 6.3 | ± | 1.9 | 5.7 | ± | 2.0 | 6.0 | ± | 1.8 b | 7.5 | ± | 1.6 ab | 6.4 | ± | 2.0 | |
170 °C | 7.1 | ± | 1.6 | 5.8 | ± | 2.1 | 6.1 | ± | 2.0 ab | 7.9 | ± | 1.0 a | 6.8 | ± | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koriyama, T.; Saikawa, M.; Kurosu, Y.; Kumagai, M.; Hosoya, T. Effects of Roasting on the Quality of Moringa oleifera Leaf Powder and Loaf Volume of Moringa oleifera-Supplemented Bread. Foods 2023, 12, 3760. https://doi.org/10.3390/foods12203760
Koriyama T, Saikawa M, Kurosu Y, Kumagai M, Hosoya T. Effects of Roasting on the Quality of Moringa oleifera Leaf Powder and Loaf Volume of Moringa oleifera-Supplemented Bread. Foods. 2023; 12(20):3760. https://doi.org/10.3390/foods12203760
Chicago/Turabian StyleKoriyama, Takako, Mika Saikawa, Yuria Kurosu, Michiyo Kumagai, and Takahiro Hosoya. 2023. "Effects of Roasting on the Quality of Moringa oleifera Leaf Powder and Loaf Volume of Moringa oleifera-Supplemented Bread" Foods 12, no. 20: 3760. https://doi.org/10.3390/foods12203760
APA StyleKoriyama, T., Saikawa, M., Kurosu, Y., Kumagai, M., & Hosoya, T. (2023). Effects of Roasting on the Quality of Moringa oleifera Leaf Powder and Loaf Volume of Moringa oleifera-Supplemented Bread. Foods, 12(20), 3760. https://doi.org/10.3390/foods12203760