A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Production of Avocado Waste Powder (AWP) and Commercial Semolina
- -
- Pulp at a temperature of 75 °C for 28 h;
- -
- Peel and seeds at a temperature of 60 °C for 4 h.
2.3. Determination of Color Characteristics of AWP
2.4. Hygienic Characteristics of AWP
2.5. Bacterial Strains
2.6. Sourdough Propagation
2.7. Bread Doughs and Baking Process
2.8. Acidification Process
2.9. Quality Characteristics of Breads
2.10. Chemical Characterization
2.10.1. Total Phenolic Content Analysis
2.10.2. Radical Scavenging Properties Evaluation, DPPH and ABTS Assay
2.11. Sensory Analysis
2.12. Statistical Analysis
3. Results
3.1. Color Characteristics
3.2. Monitoring of the Fermentation Process
3.3. Bread Quality Attributes
3.4. Chemical Characterization of Raw Materials and Bread Samples
3.5. Bread Sensory Attributes
3.6. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado Fruit and By-Products as Potential Sources of Bioactive Compounds. Food Res. Int. 2020, 138, 109774. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: http://faostat.fao.org2021 (accessed on 12 June 2023).
- FAO_FAOSTAT. Available online: http://data.un.org/Data.aspx?d=FAO&f=itemCode%3A572 (accessed on 25 July 2023).
- Migliore, G.; Farina, V.; Tinervia, S.; Matranga, G.; Schifani, G. Consumer Interest towards Tropical Fruit: Factors Affecting Avocado Fruit Consumption in Italy. Agric. Econ. 2017, 5, 24. [Google Scholar] [CrossRef]
- OECD. Avocados—CBI Ministry of Foreign Affairs; International Standards for Fruit and Vegetables; OECD: Paris, France, 2023; ISBN 978-92-64-01979-9. [Google Scholar]
- Kopec, R.E.; Cooperstone, J.L.; Schweiggert, R.M.; Young, G.S.; Harrison, E.H.; Francis, D.M.; Clinton, S.K.; Schwartz, S.J. Avocado Consumption Enhances Human Postprandial Provitamin A Absorption and Conversion from a Novel High–β-Carotene Tomato Sauce and from Carrots. J. Nutr. 2014, 144, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L.; Dreher, M.; Davenport, A.J. Avocado Consumption Is Associated with Better Diet Quality and Nutrient Intake, and Lower Metabolic Syndrome Risk in US Adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutr. J. 2013, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Araújo, R.G.; Rodriguez-Jasso, R.M.; Ruiz, H.A.; Pintado, M.M.E.; Aguilar, C.N. Avocado By-Products: Nutritional and Functional Properties. Trends Food Sci. Technol. 2018, 80, 51–60. [Google Scholar] [CrossRef]
- Obenland, D.; Collin, S.; Sievert, J.; Negm, F.; Arpaia, M.L. Influence of Maturity and Ripening on Aroma Volatiles and Flavor in ‘Hass’ Avocado. Postharvest Biol. Technol. 2012, 71, 41–50. [Google Scholar] [CrossRef]
- Migliore, G.; Farina, V.; Guccione, G.D.; Schifani, G. Quality Determinants of Avocado Fruit Consumption in Italy. Implic. Small Farms. Calitatea 2018, 19, 148–153. [Google Scholar]
- Gellynck, X.; Kühne, B.; Van Bockstaele, F.; Van de Walle, D.; Dewettinck, K. Consumer Perception of Bread Quality. Appetite 2009, 53, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Harker, R. Consumer Preferences and Choice of Fruit: The Role of Avocado Quality; Plant & Food Research: Auckland, New Zealand, 2009; p. 48. [Google Scholar]
- Badar, H.; Ariyawardana, A.; Collins, R. Capturing Consumer Preferences for Value Chain Improvements in the Mango Industry of Pakistan. Int. Food Agribus. Manag. Rev. 2015, 18, 131–148. [Google Scholar]
- Gamble, J.; Harker, F.R.; Jaeger, S.R.; White, A.; Bava, C.; Beresford, M.; Stubbings, B.; Wohlers, M.; Hofman, P.J.; Marques, R. The Impact of Dry Matter, Ripeness and Internal Defects on Consumer Perceptions of Avocado Quality and Intentions to Purchase. Postharvest Biol. Technol. 2010, 57, 35–43. [Google Scholar] [CrossRef]
- Bill, M.; Sivakumar, D.; Thompson, A.K.; Korsten, L. Avocado Fruit Quality Management during the Postharvest Supply Chain. Food Rev. Int. 2014, 30, 169–202. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Dokou, Z. Water Management and Salinity Adaptation Approaches of Avocado Trees: A Review for Hot-Summer Mediterranean Climate. Agric. Water Manag. 2021, 252, 106923. [Google Scholar] [CrossRef]
- Dalle Mulle Santos, C.; Pagno, C.H.; Haas Costa, T.M.; Jung Luvizetto Faccin, D.; Hickmann Flôres, S.; Medeiros Cardozo, N.S. Biobased Polymer Films from Avocado Oil Extraction Residue: Production and Characterization. J. Appl. Polym. Sci. 2016, 133, 43957. [Google Scholar] [CrossRef]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado By-Products as Inhibitors of Color Deterioration and Lipid and Protein Oxidation in Raw Porcine Patties Subjected to Chilled Storage. Meat Sci. 2011, 89, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Escalona-Buendía, H.B.; Medina-Campos, O.N.; Pedraza-Chaverri, J.; Pedroza-Islas, R.; Ponce-Alquicira, E. Optimization of the Antioxidant and Antimicrobial Response of the Combined Effect of Nisin and Avocado Byproducts. LWT-Food Sci. Technol. 2016, 65, 46–52. [Google Scholar] [CrossRef]
- Melgar, B.; Dias, M.I.; Ciric, A.; Sokovic, M.; Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Barros, L.; Ferreira, I.C. Bioactive Characterization of Persea Americana Mill. by-Products: A Rich Source of Inherent Antioxidants. Ind. Crops Prod. 2018, 111, 212–218. [Google Scholar] [CrossRef]
- Tinebra, I.; Passafiume, R.; Scuderi, D.; Pirrone, A.; Gaglio, R.; Palazzolo, E.; Farina, V. Effects of Tray-Drying on the Physicochemical, Microbiological, Proximate, and Sensory Properties of White-and Red-Fleshed Loquat (Eriobotrya japonica Lindl.) Fruit. Agronomy 2022, 12, 540. [Google Scholar] [CrossRef]
- Karam, M.C.; Petit, J.; Zimmer, D.; Baudelaire Djantou, E.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, M.; Adhikari, B. 21—Fruit and Vegetable Powders. In Handbook of Food Powders; Woodhead Publishing Series in Food Science, Technology and Nutrition; Bhandari, B., Bansal, N., Zhang, M., Schuck, P., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 532–552. ISBN 978-0-85709-513-8. [Google Scholar]
- Camire, M.E.; Dougherty, M.P.; Briggs, J.L. Functionality of Fruit Powders in Extruded Corn Breakfast Cereals. Food Chem. 2007, 101, 765–770. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Mujumdar, A.; Wang, S. Trends in Microwave-Related Drying of Fruits and Vegetables. Trends Food Sci. Technol. 2006, 17, 524–534. [Google Scholar] [CrossRef]
- Salehi, F. Recent Applications of Powdered Fruits and Vegetables as Novel Ingredients in Biscuits: A Review. Nutrire 2020, 45, 1. [Google Scholar] [CrossRef]
- Argyropoulos, D.; Heindl, A.; Müller, J. Assessment of Convection, Hot-air Combined with Microwave-vacuum and Freeze-drying Methods for Mushrooms with Regard to Product Quality. Int. J. Food Sci. Technol. 2011, 46, 333–342. [Google Scholar] [CrossRef]
- Betoret, E.; Rosell, C.M. Enrichment of Bread with Fruits and Vegetables: Trends and Strategies to Increase Functionality. Cereal Chem. 2020, 97, 9–19. [Google Scholar] [CrossRef]
- Melilli, M.G.; Di Stefano, V.; Sciacca, F.; Pagliaro, A.; Bognanni, R.; Scandurra, S.; Virzì, N.; Gentile, C.; Palumbo, M. Improvement of Fatty Acid Profile in Durum Wheat Breads Supplemented with Portulaca oleracea L. Qual. Trait. Purslane-Fortif. Bread. Foods 2020, 9, 764. [Google Scholar]
- Sablani, S.S.; Andrews, P.K.; Davies, N.M.; Walters, T.; Saez, H.; Bastarrachea, L. Effects of Air and Freeze Drying on Phytochemical Content of Conventional and Organic Berries. Dry. Technol. 2011, 29, 205–216. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Shamsi, Q.H.; Bengtsson, G.B.; Sablani, S.S.; Al-Alawi, A. Drying Kinetics and Allicin Potential in Garlic Slices during Different Methods of Drying. Dry. Technol. 2009, 27, 467–477. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and Vegetable By-Products as Novel Ingredients to Improve the Nutritional Quality of Baked Goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.; Leelavathi, K.; Rao, U.P. Improvement of Dietary Fiber Content and Antioxidant Properties in Soft Dough Biscuits with the Incorporation of Mango Peel Powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Sánchez-Quezada, V.; Campos-Vega, R.; Loarca-Piña, G. Prediction of the Physicochemical and Nutraceutical Characteristics of ‘Hass’ Avocado Seeds by Correlating the Physicochemical Avocado Fruit Properties According to Their Ripening State. Plant Foods Hum. Nutr. 2021, 76, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Pandey, P.; Mishra, H.N. Novel Approaches for Co-Encapsulation of Probiotic Bacteria with Bioactive Compounds, Their Health Benefits and Functional Food Product Development: A Review. Trends Food Sci. Technol. 2021, 109, 340–351. [Google Scholar] [CrossRef]
- Messina, C.M.; Gaglio, R.; Morghese, M.; Tolone, M.; Arena, R.; Moschetti, G.; Santulli, A.; Francesca, N.; Settanni, L. Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods 2019, 8, 400. [Google Scholar] [CrossRef]
- Gaglio, R.; Tesoriere, L.; Maggio, A.; Viola, E.; Attanzio, A.; Frazzitta, A.; Badalamenti, N.; Bruno, M.; Franciosi, E.; Moschetti, G. Reuse of Almond By-Products: Functionalization of Traditional Semolina Sourdough Bread with Almond Skin. Int. J. Food Microbiol. 2023, 395, 110194. [Google Scholar] [CrossRef]
- Lhomme, E.; Lattanzi, A.; Dousset, X.; Minervini, F.; De Angelis, M.; Lacaze, G.; Onno, B.; Gobbetti, M. Lactic Acid Bacterium and Yeast Microbiotas of Sixteen French Traditional Sourdoughs. Int. J. Food Microbiol. 2015, 215, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Alfonzo, A.; Urso, V.; Corona, O.; Francesca, N.; Amato, G.; Settanni, L.; Di Miceli, G. Development of a Method for the Direct Fermentation of Semolina by Selected Sourdough Lactic Acid Bacteria. Int. J. Food Microbiol. 2016, 239, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Barbera, M.; Tesoriere, L.; Osimani, A.; Busetta, G.; Matraxia, M.; Attanzio, A.; Restivo, I.; Aquilanti, L.; Settanni, L. Sourdough “Ciabatta” Bread Enriched with Powdered Insects: Physicochemical, Microbiological, and Simulated Intestinal Digesta Functional Properties. Innov. Food Sci. Emerg. Technol. 2021, 72, 102755. [Google Scholar] [CrossRef]
- Corona, O.; Alfonzo, A.; Ventimiglia, G.; Nasca, A.; Francesca, N.; Martorana, A.; Moschetti, G.; Settanni, L. Industrial Application of Selected Lactic Acid Bacteria Isolated from Local Semolinas for Typical Sourdough Bread Production. Food Microbiol. 2016, 59, 43–56. [Google Scholar] [CrossRef] [PubMed]
- American Association of Cereal Chemists. Approved Methods Committee Approved Methods of the American Association of Cereal Chemists; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Alfonzo, A.; Gaglio, R.; Barbera, M.; Francesca, N.; Moschetti, G.; Settanni, L. Evaluation of the Fermentation Dynamics of Commercial Baker’s Yeast in Presence of Pistachio Powder to Produce Lysine-Enriched Breads. Fermentation 2019, 6, 2. [Google Scholar] [CrossRef]
- Francesca, N.; Gaglio, R.; Alfonzo, A.; Corona, O.; Moschetti, G.; Settanni, L. Characteristics of Sourdoughs and Baked Pizzas as Affected by Starter Culture Inoculums. Int. J. Food Microbiol. 2019, 293, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Cirlincione, F.; Venturella, G.; Gargano, M.L.; Ferraro, V.; Gaglio, R.; Francesca, N.; Rizzo, B.A.; Russo, G.; Moschetti, G.; Settanni, L. Functional Bread Supplemented with Pleurotus eryngii Powder: A Potential New Food for Human Health. Int. J. Gastron. Food Sci. 2022, 27, 100449. [Google Scholar] [CrossRef]
- Bonacci, S.; Di Stefano, V.; Sciacca, F.; Buzzanca, C.; Virzì, N.; Argento, S.; Melilli, M.G. Hemp Flour Particle Size Affects the Quality and Nutritional Profile of the Enriched Functional Pasta. Foods 2023, 12, 774. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Ruisi, P.; Ingraffia, R.; Urso, V.; Giambalvo, D.; Alfonzo, A.; Corona, O.; Settanni, L.; Frenda, A.S. Influence of Grain Quality, Semolinas and Baker’s Yeast on Bread Made from Old Landraces and Modern Genotypes of Sicilian Durum Wheat. Food Res. Int. 2021, 140, 110029. [Google Scholar] [CrossRef] [PubMed]
- ISO. Sensory Analysis: Methodology: General Guidance for Establishing a Sensory Profile; ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Martorana, A.; Alfonzo, A.; Settanni, L.; Corona, O.; La Croce, F.; Caruso, T.; Moschetti, G.; Francesca, N. An Innovative Method to Produce Green Table Olives Based on “Pied de Cuve” Technology. Food Microbiol. 2015, 50, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Ktenioudaki, A.; Gallagher, E. Recent Advances in the Development of High-Fibre Baked Products. Trends Food Sci. Technol. 2012, 28, 4–14. [Google Scholar] [CrossRef]
- Popoola-Akinola, O.O.; Raji, T.J.; Olawoye, B. Lignocellulose, Dietary Fibre, Inulin and Their Potential Application in Food. Heliyon 2022, 8, e10459. [Google Scholar] [CrossRef]
- Olawoye, B.; Gbadamosi, S.O. Sensory Profiling and Mapping of Gluten-free Cookies Made from Blends Cardaba Banana Flour and Starch. J. Food Process. Preserv. 2020, 44, e14643. [Google Scholar] [CrossRef]
- Sciacca, F.; Virzì, N.; Pecchioni, N.; Melilli, M.G.; Buzzanca, C.; Bonacci, S.; Di Stefano, V. Functional End-Use of Hemp Seed Waste: Technological, Qualitative, Nutritional, and Sensorial Characterization of Fortified Bread. Sustainability 2023, 15, 12899. [Google Scholar] [CrossRef]
- Martín-Garcia, A.; Riu-Aumatell, M.; López-Tamames, E. By-Product Revalorization: Cava Lees Can Improve the Fermentation Process and Change the Volatile Profile of Bread. Foods 2022, 11, 1361. [Google Scholar] [CrossRef] [PubMed]
- Allès, B.; Péneau, S.; Kesse-Guyot, E.; Baudry, J.; Hercberg, S.; Méjean, C. Food Choice Motives Including Sustainability during Purchasing Are Associated with a Healthy Dietary Pattern in French Adults. Nutr. J. 2017, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, A.S.; Law, C.L. Drying Technology: Trends and Applications in Postharvest Processing. Food Bioprocess Technol. 2010, 3, 843–852. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of Different Drying Methods on the Physical Properties, Bioactive Compounds and Antioxidant Activity of Raspberry Powders. J. Sci. Food Agric. 2016, 96, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Dereje, B.; Abera, S. Effect of Pretreatments and Drying Methods on the Quality of Dried Mango (Mangifera indica L.). Slices. Cogent Food Agric. 2020, 6, 1747961. [Google Scholar] [CrossRef]
- Settanni, L.; Ventimiglia, G.; Alfonzo, A.; Corona, O.; Miceli, A.; Moschetti, G. An Integrated Technological Approach to the Selection of Lactic Acid Bacteria of Flour Origin for Sourdough Production. Food Res. Int. 2013, 54, 1569–1578. [Google Scholar] [CrossRef]
- Siepmann, F.B.; de Almeida, B.S.; Ripari, V.; da Silva, B.J.; Peralta-Zamora, P.G.; Waszczynskyj, N.; Spier, M.R. Brazilian Sourdough: Microbiological, Structural, and Technological Evolution. Eur. Food Res. Technol. 2019, 245, 1583–1594. [Google Scholar] [CrossRef]
- Suo, B.; Chen, X.; Wang, Y. Recent Research Advances of Lactic Acid Bacteria in Sourdough: Origin, Diversity, and Function. Curr. Opin. Food Sci. 2021, 37, 66–75. [Google Scholar] [CrossRef]
- Alfonzo, A.; Miceli, C.; Nasca, A.; Franciosi, E.; Ventimiglia, G.; Di Gerlando, R.; Tuohy, K.; Francesca, N.; Moschetti, G.; Settanni, L. Monitoring of Wheat Lactic Acid Bacteria from the Field until the First Step of Dough Fermentation. Food Microbiol. 2017, 62, 256–269. [Google Scholar] [CrossRef]
- Gaglio, R.; Alfonzo, A.; Barbera, M.; Franciosi, E.; Francesca, N.; Moschetti, G.; Settanni, L. Persistence of a Mixed Lactic Acid Bacterial Starter Culture during Lysine Fortification of Sourdough Breads by Addition of Pistachio Powder. Food Microbiol. 2020, 86, 103349. [Google Scholar] [CrossRef]
- Carbonetto, B.; Nidelet, T.; Guezenec, S.; Perez, M.; Segond, D.; Sicard, D. Interactions between Kazachstania humilis Yeast Species and Lactic Acid Bacteria in Sourdough. Microorganisms 2020, 8, 240. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, F.B.; Ripari, V.; Waszczynskyj, N.; Spier, M.R. Overview of Sourdough Technology: From Production to Marketing. Food Bioprocess Technol. 2018, 11, 242–270. [Google Scholar] [CrossRef]
- Korcari, D.; Secchiero, R.; Laureati, M.; Marti, A.; Cardone, G.; Rabitti, N.S.; Ricci, G.; Fortina, M.G. Technological Properties, Shelf Life and Consumer Preference of Spelt-Based Sourdough Bread Using Novel, Selected Starter Cultures. LWT 2021, 151, 112097. [Google Scholar] [CrossRef]
- Dinardo, F.R.; Minervini, F.; De Angelis, M.; Gobbetti, M.; Gänzle, M.G. Dynamics of Enterobacteriaceae and Lactobacilli in Model Sourdoughs Are Driven by pH and Concentrations of Sucrose and Ferulic Acid. LWT 2019, 114, 108394. [Google Scholar] [CrossRef]
- Purlis, E. Browning Development in Bakery Products–A Review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Nour, V.; Ionica, M.E.; Trandafir, I. Bread Enriched in Lycopene and Other Bioactive Compounds by Addition of Dry Tomato Waste. J. Food Sci. Technol. 2015, 52, 8260–8267. [Google Scholar] [CrossRef] [PubMed]
- Kampuse, S.; Ozola, L.; Straumite, E.; Galoburda, R. Quality Parameters of Wheat Bread Enriched with Pumpkin (Cucurbita moschata) by-Products. Acta Univ. Cinbinesis Ser. E Food Technol. 2015, 19. [Google Scholar] [CrossRef]
- Rathnayake, H.; Navaratne, S.; Navaratne, C. Porous Crumb Structure of Leavened Baked Products. Int. J. Food Sci. 2018, 2018, 8187318. [Google Scholar] [CrossRef] [PubMed]
Samples | L* | C* | h° | RGB |
---|---|---|---|---|
Semolina | 86.90 ± 1.63 a | 32.31 ± 0.72 b | 1.35 ± 0.07 | |
AWP | 48.50 ± 1.19 b | 50.72 ± 1.90 a | 1.52 ± 0.02 | |
p value | <0.0001 | <0.0001 | 0.777 | n.a. |
Time | Parameter | Samples | p-Value | |||
---|---|---|---|---|---|---|
Sourdough | CTR | 5-AWP | 10-AWP | |||
0 h | pH | 3.92 ± 0.04 b | 5.50 ± 0.08 a | 5.42 ± 0.05 a | 5.56 ± 0.08 a | <0.0001 |
TTA | 12.10 ± 0.07 a | 7.58 ± 0.04 b | 7.45 ± 0.07 bc | 7.33 ± 0.04 c | <0.0001 | |
2 h | pH | n.a. | 5.38 ± 0.03 | 5.34 ± 0.04 | 5.43 ± 0.13 | 0.440 |
TTA | n.a. | 7.63 ± 0.04 | 7.65 ± 0.07 | 7.58 ± 0.11 | 0.565 | |
4 h | pH | n.a. | 4.82 ± 0.06 b | 4.98 ± 0.01 a | 5.07 ± 0.04 a | 0.001 |
TTA | n.a. | 8.08 ± 0.04 a | 7.90 ± 0.07 b | 7.83 ± 0.04 b | 0.003 | |
6 h | pH | n.a. | 4.48 ± 0.06 b | 4.71 ± 0.02 a | 4.70 ± 0.07 a | 0.003 |
TTA | n.a. | 8.50 ± 0.14 | 8.30 ± 0.07 | 8.28 ± 0.11 | 0.092 | |
8 h | pH | n.a. | 4.19 ± 0.04 b | 4.33 ± 0.02 a | 4.37 ± 0.02 a | 0.001 |
TTA | n.a. | 8.93 ± 0.11 a | 8.65 ± 0.07 b | 8.60 ± 0.07 b | 0.007 |
Media | Time | Samples | p-Value | |||
---|---|---|---|---|---|---|
Sourdough | CTR | 5-AWP | 10-AWP | |||
TMM | 0 h | 7.76 ± 0.20 a | 6.66 ± 0.24 b | 6.62 ± 0.13 b | 6.60 ± 0.16 b | 0.0001 |
8 h | n.a. | 7.22 ± 0.11 | 6.76 ± 0.31 | 7.03 ± 0.14 | 0.087 | |
Sourdough LAB | 0 h | 8.64 ± 0.15 a | 7.60 ± 0.33 b | 7.68 ± 0.28 b | 7.71 ± 0.27 b | 0.004 |
8 h | n.a. | 8.94 ± 0.20 | 8.98 ± 0.19 | 8.51 ± 0.22 | 0.055 | |
Yeasts | 0 h | 7.74 ± 0.25 a | 6.52 ± 0.37 b | 6.63 ± 0.31 b | 6.39 ± 0.27 b | 0.002 |
8 h | n.a. | 7.06 ± 0.16 | 7.03 ± 0.19 | 6.78 ± 0.22 | 0.225 | |
Total coliforms | 0 h | <1 | <1 | <1 | <1 | n.d. |
8 h | n.a. | <1 b | 2.90 ± 0.17 a | 3.02 ± 0.28 a | <0.0001 | |
Enterobacteriaceae | 0 h | <1 | <1 | <1 | <1 | n.d. |
8 h | n.a. | <1 b | 3.06 ± 0.32 a | 2.80 ± 0.17 a | <0.0001 |
Attributes | Samples | p-Value | ||
---|---|---|---|---|
CTR-Bread | 5-AWP Bread | 10-AWP Bread | ||
Weight loss (%) | 11.30 ± 1.37 | 9.48 ± 0.79 | 9.94 ± 1.20 | 0.210 |
Specific volume (cm3/g bread) | 3.18 ± 0.11 a | 3.09 ± 0.16 a | 2.74 ± 0.12 b | 0.014 |
Firmness (N/mm2) | 0.073 ± 0.007 b | 0.102 ± 0.017 a | 0.113 ± 0.006 a | 0.012 |
Crust color | ||||
Lightness (L*) | 57.07 ± 2.58 a | 52.47 ± 1.98 ab | 49.87 ± 2.18 b | 0.021 |
Redness (a*) | 12.16 ± 1.62 a | 5.14 ± 2.70 b | 5.39 ± 2.37 b | 0.015 |
Yellowness (b*) | 33.58 ± 5.52 | 36.58 ± 1.61 | 35.17 ± 0.38 | 0.574 |
Crumb color | ||||
Lightness (L*) | 71.62 ± 0.87 a | 65.37 ± 2.27 b | 59.01 ± 0.96 c | <0.001 |
Redness (a*) | −4.44 ± 0.19 c | −2.80 ± 0.19 b | −1.61 ± 0.17 a | <0.0001 |
Yellowness (b*) | 25.68 ± 0.87 | 25.20 ± 1.19 | 24.42 ± 0.93 | 0.365 |
Void fraction (%) | 34.86 ± 1.75 b | 41.14 ± 0.75 a | 42.96 ± 2.71 a | 0.005 |
Cell density (n/cm2) | 58.22 ± 1.54 | 64.44 ± 10.62 | 72.59 ± 3.45 | 0.091 |
Mean cell area (mm2) | 0.70 ± 0.05 | 0.65 ± 0.11 | 0.59 ± 0.05 | 0.278 |
Samples | TPC | DPPHTEAC | ABTSTEAC |
---|---|---|---|
mgGAE/g | mmol TE/100 g | mmol TE/100 g | |
Semolina | 3.676 ± 0.15 b | 2.656 ± 0.01 b | 2.408 ± 0.04 b |
AWP | 197.775 ± 0.27 a | 38.235 ± 0.09 a | 35.175 ± 0.97 a |
p value | <0.0001 | <0.0001 | <0.0001 |
Samples | TPC | DPPHTEAC | ABTSTEAC |
---|---|---|---|
mgGAE/g | mmol TE/100 g | mmol TE/100 g | |
CTR Bread | 2.972 ± 0.04 | 2.311± 0.02 | 2.102 ± 0.03 |
5-AWP Bread | 23.033 ± 0.38 | 8.796 ± 0.01 | 5.985 ± 0.013 |
10-AWP Bread | 23.882 ± 0.09 | 9.234 ± 0.07 | 6.656 ± 0.04 |
p value | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viola, E.; Buzzanca, C.; Tinebra, I.; Settanni, L.; Farina, V.; Gaglio, R.; Di Stefano, V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods 2023, 12, 3743. https://doi.org/10.3390/foods12203743
Viola E, Buzzanca C, Tinebra I, Settanni L, Farina V, Gaglio R, Di Stefano V. A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods. 2023; 12(20):3743. https://doi.org/10.3390/foods12203743
Chicago/Turabian StyleViola, Enrico, Carla Buzzanca, Ilenia Tinebra, Luca Settanni, Vittorio Farina, Raimondo Gaglio, and Vita Di Stefano. 2023. "A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production" Foods 12, no. 20: 3743. https://doi.org/10.3390/foods12203743
APA StyleViola, E., Buzzanca, C., Tinebra, I., Settanni, L., Farina, V., Gaglio, R., & Di Stefano, V. (2023). A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production. Foods, 12(20), 3743. https://doi.org/10.3390/foods12203743