Initial Formulation of Novel Peanut Butter-like Products from Glandless Cottonseed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Butter-like Product Preparation
2.3. Color and Water Activity Measurements
2.4. Microstructural Imaging Analysis
2.5. Texture Analysis
2.6. Butter Stability
3. Results and Discussion
3.1. Color and Water Activity
3.2. Microstructural Analysis
3.3. Texture Characteristics
3.4. Butter Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorrepati, K.; Balasubramanian, S.; Chandra, P. Plant based butters. J. Food Sci. Technol. 2015, 52, 3965–3976. [Google Scholar] [CrossRef] [Green Version]
- Dimić, E.B.; Vujasinović, V.B.; Radočaj, O.F.; Borić, B.D. Sensory Evaluation of commercial fat spread based on oil seeds and walnut. Acta Period. Technol. 2013, 44, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Shakerardekani, A.; Karim, R.; Ghazali, H.M.; Chin, N.L. Development of pistachio (Pistacia vera L.) spread. J. Food Sci. 2013, 78, S484–S489. [Google Scholar] [CrossRef]
- Lima, I.M.; Guraya, H.S. Optimization analysis of sunflower butter. J. Food Sci. 2005, 70, s365–s370. [Google Scholar] [CrossRef]
- Wagener, E.A.; Kerr, W.L. Effects of oil content on the sensory, textural, and physical properties of pecan butter (Carya illinoinensis). J. Texture Stud. 2018, 49, 286–292. [Google Scholar] [CrossRef]
- Radoĉaj, O.F.; Dimić, E.B.; Vujasinović, V.B. Optimization of the texture of fat-based spread containing hull-less pumpkin (Cucurbita pepo L.) seed press-cake. Acta Period. Technol. 2011, 42, 131–143. [Google Scholar] [CrossRef]
- Nikolić, I.; Dokić, L.; Rakić, D.; Tomović, V.; Maravić, N.; Vidosavljević, S.; Šereš, Z.; Šoronja-Simović, D. The role of two types of continuous phases based on cellulose during textural, color, and sensory characterization of novel food spread with pumpkin seed flour. J. Food Process. Preserv. 2018, 42, e13684. [Google Scholar] [CrossRef]
- Tanti, R.; Barbut, S.; Marangoni, A.G. Oil stabilization of natural peanut butter using food grade polymers. Food Hydrocoll. 2016, 61, 399–408. [Google Scholar] [CrossRef]
- Shahidi-Noghabi, M.; Naji-Tabasi, S.; Sarraf, M. Effect of emulsifier on rheological, textural and microstructure properties of walnut butter. J. Food Measur. Character. 2019, 13, 785–792. [Google Scholar] [CrossRef]
- Norazatul Hanim, M.; Chin, N.; Yusof, Y. Effects of grinding time on rheological, textural and physical properties of natural peanut butter stored at different temperatures. J. Texture Stud. 2016, 47, 131–141. [Google Scholar] [CrossRef]
- Chu, C.; Resurreccion, A. Sensory profiling and characterization of chocolate peanut spread using response surface methodology. J. Sens. Stud. 2005, 20, 243–274. [Google Scholar] [CrossRef]
- Di Monaco, R.; Giancone, T.; Cavella, S.; Masi, P. Predicting texture attributes from microstructural, rheological and thermal properties of hazelnut spreads. J. Texture Stud. 2008, 39, 460–479. [Google Scholar] [CrossRef]
- Zhang, J.; Wedegaertner, T. Genetics and breeding for glandless upland cotton with improved yield potential and disease resistance: A review. Front. Plant Sci. 2021, 12, 753426. [Google Scholar] [CrossRef]
- Lawhon, J.T.; Cater, C.M.; Mattil, K.F. Preparation of a high-protein low-cost nut-like food product from glandless cottonseed kernels. Food Technol. 1970, 24, 701–709. [Google Scholar]
- Lusas, E.; Jividen, G. Glandless cottonseed: A review of the first 25 years of processing and utilization research. J. Am. Oil Chem. Soc. 1987, 64, 839–854. [Google Scholar] [CrossRef]
- Plating, S.J.; Cherry, J.P. Protein and amino acid composition of cottonseed flour fermented with selected filamentous fungi. J. Food Sci. 1979, 44, 1178–1182. [Google Scholar] [CrossRef]
- Cherry, J.P.; Berardi, L.C. Cottonseed. In CRC Handbook of Processing and Utilization in Agriculture. Volume II: Part 2—Plant Products; Wolff, I.A., Ed.; CRC Press: Boca Raton, FL, USA, 1982; pp. 187–255. [Google Scholar]
- Zhang, J.; Wedegaertner, T.; Idowu, O.J.; Flynn, R.; Hughs, S.E.; Jones, D.C. Registration of ‘NuMex COT 15 GLS’glandless cotton. J. Plant Registr. 2016, 10, 223–227. [Google Scholar] [CrossRef]
- He, Z.; Mattison, C.P.; Zhang, D.; Grimm, C.C. Vicilin and legumin storage proteins are abundant in water and alkali soluble protein fractions of glandless cottonseed. Sci. Rep. 2021, 11, 9209. [Google Scholar] [CrossRef]
- He, Z.; Zhang, D.; Olanya, O.M. Antioxidant activities of the water-soluble fractions of glandless and glanded cottonseed protein. Food Chem. 2020, 325, 126907. [Google Scholar] [CrossRef]
- He, Z.; Zhang, D.; Mattison, C.P. Quantitative comparison of the storage protein distribution in glandless and glanded cottonseeds. Agric. Environ. Lett. 2022, 7, e20076. [Google Scholar] [CrossRef]
- Kumar, M.; Hasan, M.; Choyal, P.; Tomar, M.; Gupta, O.P.; Sasi, M.; Changan, S.; Lorenzo, J.M.; Singh, S.; Sampathrajan, V. Cottonseed feedstock as a source of plant-based protein and bioactive peptides: Evidence based on biofunctionalities and industrial applications. Food Hydrocoll. 2022, 131, 107776. [Google Scholar] [CrossRef]
- He, Z.; Nam, S.; Zhang, H.; Olanya, O.M. Chemical composition and thermogravimetric behaviors of glanded and glandless cottonseed kernels. Molecules 2022, 27, 316. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Liu, S.; Nam, S.; Klasson, K.T.; Cheng, H.N. Molecular level characterization of the effect of roasting on the extractable components of glandless cottonseed by Fourier transform ion cyclotron resonance mass spectrometry. Food Chem. 2023, 403, 134404. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Nam, S.; Fang, D.D.; Cheng, H.N.; He, J. Surface and thermal characterization of cotton fibers of phenotypes differing in fiber length. Polymers 2021, 13, 994. [Google Scholar] [CrossRef] [PubMed]
- Pattee, H.E.; Giesbrecht, F.G.; Young, C.T. Comparison of peanut butter color determination by CIELAB L*, a*, b* and Hunter color-difference methods and the relationship of roasted peanut color to roasted peanut flavor response. J. Agric. Food Chem. 1991, 39, 519–523. [Google Scholar] [CrossRef]
- Marzocchi, S.; Pasini, F.; Verardo, V.; Ciemniewska-Żytkiewicz, H.; Caboni, M.F.; Romani, S. Effects of different roasting conditions on physical-chemical properties of Polish hazelnuts (Corylus avellana L. var. Kataloński). LWT 2017, 77, 440–448. [Google Scholar] [CrossRef]
- He, Z.; Zhang, D.; Cheng, H.N. Modeling and thermodynamic analysis of the water sorption isotherms of cottonseed products. Foundations 2021, 1, 32–44. [Google Scholar] [CrossRef]
- Tu, X.H.; Wu, B.f.; Xie, Y.; Xu, S.L.; Wu, Z.Y.; Lv, X.; Wei, F.; Du, L.Q.; Chen, H. A comprehensive study of raw and roasted macadamia nuts: Lipid profile, physicochemical, nutritional, and sensory properties. Food Sci. Nutrit. 2021, 9, 1688–1697. [Google Scholar] [CrossRef]
- Pankaew, P.; Janjai, S.; Nilnont, W.; Phusampao, C.; Bala, B. Moisture desorption isotherm, diffusivity and finite element simulation of drying of macadamia nut (Macadamia integrifolia). Food Bioprod. Process. 2016, 100, 16–24. [Google Scholar] [CrossRef]
- Rozalli, N.H.M.; Chin, N.L.; Yusof, Y.A.; Mahyudin, N. Quality changes of stabilizer-free natural peanut butter during storage. J. Food Sci. Technol. 2016, 53, 694–702. [Google Scholar] [CrossRef] [Green Version]
- Dushkova, M.A.; Simitchiev, A.T.; Kalaydzhiev, H.R.; Ivanova, P.; Menkov, N.D.; Chalova, V.I. Comparison and modeling of moisture sorption isotherms of deproteinized rapeseed meal and model extrudate. J. Food Process. Preserv. 2022, 46, e16978. [Google Scholar] [CrossRef]
- Aryana, K.; Resurreccion, A.; Chinnan, M.; Beuchat, L. Microstructure of peanut butter stabilized with palm oil. J. Food Process. Preserv. 2000, 24, 229–241. [Google Scholar] [CrossRef]
- Delgado, E.; Valles-Rosales, D.; Pámanes-Carrasco, G.; Cooke, P.; Flores, N. Structural, rheological and calorimetric properties of an extruded shrimp feed using glandless cottonseed meal as a protein source. J. Aquac. Res. Develop. 2021, 12, 637. [Google Scholar]
- He, Z.; Cheng, H.N.; Olanya, O.M.; Uknalis, J.; Zhang, X.; Koplitz, B.D.; He, J. Surface characterization of cottonseed meal products by SEM, SEM-EDS, XRD and XPS analysis. J. Mater. Sci. Res. 2018, 7, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Kyriakopoulou, K.; Ndiaye, M.; Bianeis, M.; Keppler, J.; van der Goot, A. Characteristics of soy protein prepared using an aqueous ethanol washing process. Foods 2021, 10, 2222. [Google Scholar] [CrossRef]
- Saatchi, A.; Kiani, H.; Labbafi, M. Stabilization activity of a new protein–carbohydrate complex in sesame paste: Rheology, microstructure, and particle size analysis. J. Sci. Food Agric. 2022, 102, 5523–5530. [Google Scholar] [CrossRef]
Major Component (g·kg−1) | ||||||
---|---|---|---|---|---|---|
Moisture | Gossypol | Oil | Protein | ADF | ADL | Starch |
68.3 | 0.06 | 350 | 421 | 109 | 67.8 | 16.6 |
Macro element (g·kg−1) | ||||||
P | Ca | K | Mg | Na | S | Ash |
11.5 | 2.3 | 12.8 | 6.1 | 0.6 | 4.9 | 47.9 |
Trace element (mg·kg−1) | ||||||
Fe | Zn | Cu | Mn | B | Ni | Al |
111 | 74.3 | 19.0 | 13.3 | 14.2 | 2.1 | 109.8 |
L* | a* | b* | aw | |
---|---|---|---|---|
Kernels | 55.94 ± 0.04 c 1 | 0.69 ± 0.01 a | 16.10 ± 0.10 a | 0.570± 0.004 d |
R15 | 58.02 ± 2.36 cd | 1.63 ± 0.47 b | 20.14 ± 2.99 b | 0.569 ± 0.006 d |
R30 | 60.31 ± 0.01 d | 3.68 ± 0.01 d | 24.36 ± 0.01 c | 0.553 ± 0.004 c |
B15 | 57.18 ± 0.02 d | 3.51 ± 0.01 c | 24.52 ± 0.01 d | 0.544 ± 0.005 c |
B30 | 55.55 ± 0.02 b | 3.85 ± 0.01 e | 24.52 ± 0.03 d | 0.530 ± 0.002 b |
PB | 51.82± 0.01 a | 10.96 ± 0.01 f | 31.4 ± 0.00 e | 0.253 ± 0.036 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Cheng, H.N.; He, J. Initial Formulation of Novel Peanut Butter-like Products from Glandless Cottonseed. Foods 2023, 12, 378. https://doi.org/10.3390/foods12020378
He Z, Cheng HN, He J. Initial Formulation of Novel Peanut Butter-like Products from Glandless Cottonseed. Foods. 2023; 12(2):378. https://doi.org/10.3390/foods12020378
Chicago/Turabian StyleHe, Zhongqi, Huai N. Cheng, and Jibao He. 2023. "Initial Formulation of Novel Peanut Butter-like Products from Glandless Cottonseed" Foods 12, no. 2: 378. https://doi.org/10.3390/foods12020378
APA StyleHe, Z., Cheng, H. N., & He, J. (2023). Initial Formulation of Novel Peanut Butter-like Products from Glandless Cottonseed. Foods, 12(2), 378. https://doi.org/10.3390/foods12020378