The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Search and Study Selection
2.2. Data Extraction
3. Results
3.1. Eligibility of Studies
3.2. Types and Action Mechanism of Non-Nutritional Factors in KBs
3.2.1. Lectin
3.2.2. Trypsin Inhibitor
3.2.3. Phytic Acid
3.2.4. Tannin
3.2.5. Saponin
3.3. Control Measures of Non-Nutritional Factors in Food Processing
3.3.1. Elimination of Heat-Sensitive Non-Nutritional Factors
3.3.2. Elimination of Heat-Stable Non-Nutritional Factors
3.3.3. Fermentation Treatment
4. Conclusions and Prospective Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montanha, G.S.; Romeu, S.L.Z.; Marques, J.P.R.; Rohr, L.A.; de Almeida, E.; dos Reis, A.R.; Linhares, F.S.; Sabatini, S.; Pereira de Carvalho, H.W. Microprobe-XRF assessment of nutrient distribution in soybean, cowpea, and kidney bean seeds: A Fabaceae family case study. ACS Agric. Sci. Technol. 2022, 2, 1318–1324. [Google Scholar] [CrossRef]
- Henn, K.; Zhang, X.; Thomsen, M.; Rinnan, Å.; Bredie, W.L. The versatility of pulses: Are consumption and consumer perception in different European countries related to the actual climate impact of different pulse types? Future Foods 2022, 6, 100202. [Google Scholar] [CrossRef]
- Aydar, E.F.; Mertdinç, Z.; Demircan, E.; Çetinkaya, S.K.; Özçelik, B. Kidney bean (Phaseolus vulgaris L.) milk substitute as a novel plant-based drink: Fatty acid profile, antioxidant activity, in-vitro phenolic bio-accessibility and sensory characteristics. Innov. Food Sci. Emerg. 2023, 83, 103254. [Google Scholar] [CrossRef]
- Punia, S.; Dhull, S.B.; Sandhu, K.S.; Kaur, M.; Purewal, S.S. Kidney bean (Phaseolus vulgaris) starch: A review. Legume Sci. 2020, 2, e52. [Google Scholar] [CrossRef]
- Awasthi, A.; Tripathi, A.; Baran, C.; Sharma, S.; Sharma, S.; Uttam, K. Potential of confocal micro-Raman spectroscopy for the nutrient profiling of kidney beans. Natl. Acad. Sci. Lett. 2023, 46, 133–135. [Google Scholar] [CrossRef]
- Mungkung, R.; Dangsiri, S.; Satmalee, P.; Surojanametakul, V.; Saejew, K.; Gheewala, S.H. The nutrition-environment nexus assessment of Thai Riceberry product for supporting environmental product declaration. Environ. Dev. Sustain. 2023, 1–17. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, Z.; Ma, Y.; Wang, A.; Chen, Z.; Wang, L.; Wang, F.; Tong, L.T. The multi-step process optimisation of candied kidney beans with high nutrients and γ-aminobutyric acid retention. Int. J. Food Sci. Tech. 2023, 58, 205–212. [Google Scholar] [CrossRef]
- Wani, I.A.; Sogi, D.S.; Shivhare, U.S.; Gill, B.S. Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Res. Int. 2015, 76, 11–18. [Google Scholar] [CrossRef]
- Yan, X.; Jia, Y.; Man, H.; Sun, S.; Huang, Y.; Qi, B.; Li, Y. Tracking the driving forces for the unfolding and folding of kidney bean protein isolates: Revealing mechanisms of dynamic changes in structure and function. Food Chem. 2023, 402, 134230. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I. Effects of Hydrothermal Processing on Volatile and Fatty Acids Profile of Cowpeas (Vigna unguiculata), Chickpeas (Cicer arietinum) and Kidney Beans (Phaseolus vulgaris). Molecules 2022, 27, 8204. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Martínez-Tequitlalpan, Y.; Gallardo-Velazquez, T.; Sánchez-Chino, X.M.; Martínez-Herrera, J.; Corzo-Ríos, L.J.; Jiménez-Martínez, C. Effect of instant controlled pressure-drop on the non-nutritional compounds of seeds and sprouts of common black bean (Phaseolus vulgaris L.). Molecules 2020, 25, 1464. [Google Scholar] [CrossRef]
- Smułek, W.; Rojewska, M.; Pacholak, A.; Machrowicz, O.; Prochaska, K.; Kaczorek, E. Co-interaction of nitrofurantoin and saponins surfactants with biomembrane leads to an increase in antibiotic’s antibacterial activity. J. Mol. Liq. 2022, 364, 120070. [Google Scholar] [CrossRef]
- Salim, R.; Nehvi, I.B.; Mir, R.A.; Tyagi, A.; Ali, S.; Bhat, O.M. A review on anti-nutritional factors: Unraveling the natural gateways to human health. Front. Nutr. 2023, 10, 1215873. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Aguirre, A.I.; Téllez-Pérez, C.; San Martín-Azócar, A.; Cardador-Martínez, A. Effect of instant controlled pressure-drop (DIC), cooking and germination on non-nutritional factors of common vetch (Vicia sativa spp.). Molecules 2019, 25, 151. [Google Scholar] [CrossRef] [PubMed]
- Bento, J.A.C.; Ribeiro, P.R.V.; Alexandre, L.M.; Alves Filho, E.G.; Bassinello, P.Z.; de Brito, E.S.; Caliari, M.; Júnior, M.S.S. Chemical profile of colorful bean (Phaseolus vulgaris L.) flours: Changes influenced by the cooking method. Food Chem. 2021, 356, 129718. [Google Scholar] [CrossRef]
- Gu, B.J.; Masli, M.D.P.; Ganjyal, G.M. Whole faba bean flour exhibits unique expansion characteristics relative to the whole flours of lima, pinto, and red kidney beans during extrusion. J. Food Sci. 2020, 85, 404–413. [Google Scholar] [CrossRef]
- Roy, M.; Sarker, A.; Azad, M.A.K.; Shaheb, M.R.; Hoque, M.M. Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. J. Food Meas. Charact. 2020, 14, 303–313. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Lv, W.; Lin, R.; Zhao, D. Characterization of pre-gelatinized kidney bean (Phaseolus vulgaris L.) produced using microwave hot-air flow rolling drying technique. LWT—Food Sci. Technol. 2022, 154, 112673. [Google Scholar] [CrossRef]
- Siddiq, A.; Hasan, A.; Alam, S. Dose dependent hepatotoxic effects of dry seed Phaseolus vulgaris linn. (red kidney beans) on rabbits. Acta Aliment. 2018, 47, 291–297. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W-65–W-94. [Google Scholar] [CrossRef]
- Boz, Z.; Koelsch Sand, C. A systematic analysis of the overall nutritional contribution of food loss and waste in tomatoes, spinach, and kidney beans as a function of processing. J. Food Process Eng. 2020, 43, e13509. [Google Scholar] [CrossRef]
- Díaz de Durana, A.; Rosado, A. Allergy to white kidney beans with cross-reactivity to red kidney beans. Report of two cases in children. J. Investig. Allerg. Clin. 2022, 33, 141–142. [Google Scholar] [CrossRef]
- Popoola, J.O.; Ojuederie, O.B.; Aworunse, O.S.; Adelekan, A.; Oyelakin, A.S.; Oyesola, O.L.; Akinduti, P.A.; Dahunsi, S.O.; Adegboyega, T.T.; Oranusi, S.U. Nutritional, functional, and bioactive properties of african underutilized legumes. Front. Plant Sci. 2023, 14, 1105364. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Huang, Y.; Li, M.; Lu, J.; Jin, N.; He, Y.; Fan, B. Phytohemagglutinin content in fresh kidney bean in China. Int. J. Food Prop. 2019, 22, 405–413. [Google Scholar] [CrossRef]
- Yang, Y.; He, S.; Zhang, Y.; Li, X.; Liu, H.; Li, Q.; Cao, X.; Ye, Y.; Sun, H. Comparison of crude prolamins from seven kidney beans (Phaseolus vulgaris L.) based on composition, structure and functionality. Food Chem. 2021, 357, 129748. [Google Scholar] [CrossRef]
- Godrich, J.; Rose, P.; Muleya, M.; Gould, J. The effect of popping, soaking, boiling and roasting processes on antinutritional factors in chickpeas and red kidney beans. Int. J. Food Sci. Tech. 2023, 58, 279–289. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, X.; Xiao, Q.; Zhang, F.; Liu, N.; Tang, L.; Wang, J.; Ma, X.; Tan, B.; Chen, J. Rapeseed meal and its application in pig diet: A review. Agriculture 2022, 12, 849. [Google Scholar] [CrossRef]
- Duraiswamy, A.; Jebakani, S.; Selvaraj, S.; Pramitha, L.; Selvaraj, R.; Sheriff, S.K.; Thinakaran, J.; Rathinamoorthy, S. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. Front. Plant Sci. 2022, 13, 1070398. [Google Scholar] [CrossRef]
- Choe, U.; Chang, L.; Ohm, J.-B.; Chen, B.; Rao, J. Structure modification, functionality and interfacial properties of kidney bean (Phaseolus vulgaris L.) protein concentrate as affected by post-extraction treatments. Food Hydrocoll. 2022, 133, 108000. [Google Scholar] [CrossRef]
- Aminou, H.A.; Alam-Eldin, Y.H.; Hashem, H.A. Effect of Nigella sativa alcoholic extract and oil, as well as Phaseolus vulgaris (kidney bean) lectin on the ultrastructure of Trichomonas vaginalis trophozoites. J. Parasit. Dis. 2016, 40, 707–713. [Google Scholar] [CrossRef][Green Version]
- Vojdani, A.; Afar, D.; Vojdani, E. Reaction of lectin-specific antibody with human tissue: Possible contributions to autoimmunity. J. Immunol. Res. 2020, 2020, 1438957. [Google Scholar] [CrossRef] [PubMed]
- Wainaina, I.; Wafula, E.; Sila, D.; Kyomugasho, C.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3690–3718. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Leng, X.; Duan, J.; Zhu, Y.; Wang, J.; Yan, Z.; Min, S.; Wei, D.; Wang, X. Functional component isolated from Phaseolus vulgaris lectin exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Molecules 2021, 26, 498. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.B.; Sivaramakrishna, A.; Marimuthu, K.; Saraswathy, R. A comparative study of phytohaemagglutinin and extract of Phaseolus vulgaris seeds by characterization and cytogenetics. Spectro. Acta A Mol. Biomol. Spectrosc. 2015, 134, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Micula-Gondek, W.; Tao, Y.; Guarda, A.S. Atypical purging behaviors in a patient with anorexia nervosa: Consumption of raw red kidney beans as an emetic. Eat. Weight. Disord.—Stud. Anorex. Bulim. Obes. 2018, 23, 537–539. [Google Scholar] [CrossRef]
- Sun, X.; Ye, Y.; He, S.; Wu, Z.; Yue, J.; Sun, H.; Cao, X. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode. Biosens. Bioelectron. 2019, 143, 111607. [Google Scholar] [CrossRef]
- He, S.; Zhao, J.; Elfalleh, W.; Jemaà, M.; Sun, H.; Sun, X.; Tang, M.; He, Q.; Wu, Z.; Lang, F. In silico identification and in vitro analysis of B and T-cell epitopes of the black turtle bean (Phaseolus vulgaris L.) lectin. Cell. Physiol. Bio. 2018, 49, 1600–1614. [Google Scholar] [CrossRef]
- Kochubei, T.; Maksymchuk, O.; Piven, O.; Lukash, L. Isolectins of phytohemagglutinin are able to induce apoptosis in HEp-2 carcinoma cells in vitro. Exp. Hematol. Oncol. 2015, 37, 116–119. [Google Scholar] [CrossRef]
- Chachadi, V.B.; Nayanegali, T.R.; Pujari, B.G.; Umarji, L.V.; Budyhalamath, V.; Inamdar, S.R.; Cheng, P.W. Inhibitory activity of salivary glycoproteins on phytohemagglutins (PHA): Possible molecules to enhance nutritional quality of red kidney beans. Legume Res. 2020, 43, 337–344. [Google Scholar] [CrossRef]
- Wang, Y.; He, S.; Zhou, F.; Sun, H.; Cao, X.; Ye, Y.; Li, J. Detection of lectin protein allergen of kidney beans (Phaseolus vulgaris L.) and desensitization food processing technology. J. Agric. Food Chem. 2021, 69, 14723–14741. [Google Scholar] [CrossRef]
- Sharma, A.; Vashisht, S.; Mishra, R.; Gaur, S.N.; Prasad, N.; Lavasa, S.; Batra, J.K.; Arora, N. Molecular and immunological characterization of cysteine protease from Phaseolus vulgaris and evolutionary cross-reactivity. J. Food Biochem. 2022, 46, e14232. [Google Scholar] [CrossRef]
- Sureda, E.A.; Prykhodko, O.; Weström, B. Early effects on the intestinal barrier and pancreatic function after enteral stimulation with protease or kidney bean lectin in neonatal rats. Brit. J. Nutr. 2018, 119, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- Nciri, N.; Cho, N.; El Mhamdi, F.; Ben Mansour, A.; Haj Sassi, F.; Ben Aissa-Fennira, F. Identification and characterization of phytohemagglutinins from white kidney beans (Phaseolus vulgaris L., var. Beldia) in the rat small intestine. J. Med. Food 2016, 19, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Dan, X.; Ng, C.C.W.; Ng, T.B. Lectins with potential for anti-cancer therapy. Molecules 2015, 20, 3791–3810. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Hu, J.; Min, S.; Chen, C.; Zhu, Y.; Pan, Y.; Wei, D.; Wang, X. Recombinant Phaseolus vulgaris phytohemagglutinin L-form expressed in the Bacillus brevis exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. Int. Immunopharmacol. 2023, 120, 110322. [Google Scholar] [CrossRef]
- Mittal, A.; Kansal, R.; Kalia, V.; Tripathi, M.; Gupta, V.K. A kidney bean trypsin inhibitor with an insecticidal potential against Helicoverpa armigera and Spodoptera litura. Acta Physiol. Plant. 2014, 36, 525–539. [Google Scholar] [CrossRef]
- Wati, R.K.; Theppakorn, T.; Benjakul, S.; Rawdkuen, S. Trypsin inhibitor from 3 legume seeds: Fractionation and proteolytic inhibition study. J. Food Sci. 2010, 75, C223–C228. [Google Scholar] [CrossRef]
- Bosmali, I.; Giannenas, I.; Christophoridou, S.; Ganos, C.G.; Papadopoulos, A.; Papathanasiou, F.; Kolonas, A.; Gortzi, O. Microclimate and Genotype Impact on Nutritional and Antinutritional Quality of Locally Adapted Landraces of Common Bean (Phaseolus vulgaris L.). Foods 2023, 12, 1119. [Google Scholar] [CrossRef]
- Pal, R.S.; Bhartiya, A.; Kant, L.; Aditya, J.P.; Mishra, K.K.; Pattanayak, A. Common and lesser-known pulses from Northwestern Himalaya: A comparison study for quality traits. Legume Res. 2020, 43, 386–393. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, Z.; Guo, Y.; Li, B.; Yu, W.; Zhou, L.; Jiang, L.; Teng, F.; Wang, Z. Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocoll. 2021, 119, 106835. [Google Scholar] [CrossRef]
- Negi, P.; Chand, S.; Thakur, N.; Nath, A.K. Biological activity of serine protease inhibitor isolated from the seeds of Phaseolus vulgaris. Agric. Res. 2018, 7, 265–270. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Akbar, Z.; Choudhary, M.I. Insight into the structural basis of the dual inhibitory mode of Lima bean (Phaseolus lunatus) serine protease inhibitor. Proteins. 2023, 91, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Sibian, M.S.; Riar, C.S. Effect of germination on chemical composition, antinutritional factors, functional properties and nutritional value of kidney bean (Phaseolus lunatus). Carpathian J. Food Sci. Technol. 2023, 15, 208–219. [Google Scholar] [CrossRef]
- Handa, V.; Thakur, K.; Arya, S.K. Exploit of oxalate and phytate from the oilseeds with phytase treated seeds for dietary improvement. Biocatal. Agric. Biotechnol. 2021, 37, 102168. [Google Scholar] [CrossRef]
- Jha, R.; Yadav, H.K.; Raiya, R.; Singh, R.K.; Jha, U.C.; Sathee, L.; Singh, P.; Thudi, M.; Singh, A.; Chaturvedi, S.K.; et al. Integrated breeding approaches to enhance the nutritional quality of food legumes. Front. Plant Sci. 2022, 13, 984700. [Google Scholar] [CrossRef]
- Rousseau, S.; Pallares, A.P.; Vancoillie, F.; Hendrickx, M.; Grauwet, T. Pectin and phytic acid reduce mineral bioaccessibility in cooked common bean cotyledons regardless of cell wall integrity. Food Res. Int. 2020, 137, 109685. [Google Scholar] [CrossRef]
- Singh, P.; Prasad, S. Spectroscopic review of chelating agents and their influence on the bioavailability of Fe, Zn and Ca in Fijian foods. Appl. Spectrosc. Rev. 2020, 55, 574–592. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, A.K.; Das, M.; Jain, S.; Dwivedi, P.D. Clinical complications of kidney bean (Phaseolus vulgaris L.) consumption. Nutrition 2013, 29, 821–827. [Google Scholar] [CrossRef]
- Sarkhel, S.; Roy, A. Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. J. Food Process Eng. 2022, 45, e14030. [Google Scholar] [CrossRef]
- Kumar, A.; Dash, G.K.; Sahoo, S.K.; Lal, M.K.; Sahoo, U.; Sah, R.P.; Ngangkham, U.; Kumar, S.; Baig, M.J.; Sharma, S. Phytic acid: A reservoir of phosphorus in seeds plays a dynamic role in plant and animal metabolism. Phytochem. Rev. 2023, 22, 1281–1304. [Google Scholar] [CrossRef]
- Sanchis, P.; Rivera, R.; Berga, F.; Fortuny, R.; Adrover, M.; Costa-Bauza, A.; Masmiquel, L. Phytate decreases formation of advanced glycation end-products in patients with type II diabetes: Randomized crossover trial. Sci. Rep 2018, 8, 9619. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-España, M.; Figueroa-Hernández, C.Y.; de Dios Figueroa-Cárdenas, J.; Rayas-Duarte, P.; Hernández-Estrada, Z.J. Effects of germination and lactic acid fermentation on nutritional and rheological properties of sorghum: A graphical review. Curr. Res. Nutr. Food Sci. 2022, 5, 807–812. [Google Scholar] [CrossRef]
- Campa, A.; Rodríguez Madrera, R.; Jurado, M.; García-Fernández, C.; Suárez Valles, B.; Ferreira, J.J. Genome-wide association study for the extractable phenolic profile and coat color of common bean seeds (Phaseolus vulgaris L.). BMC Plant Biol. 2023, 23, 158. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.; Tyler, R.; Toews, R.; Gawalko, E. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int. 2010, 43, 589–594. [Google Scholar] [CrossRef]
- Anino, C.; Onyango, A.N.; Imathiu, S.; Maina, J.; Onyangore, F. Chemical composition of the seed and ‘milk’ of three common bean (Phaseolus vulgaris L.) varieties. J. Food Meas. Charact. 2019, 13, 1242–1249. [Google Scholar] [CrossRef]
- Parmar, N.; Singh, N.; Kaur, A.; Thakur, S. Comparison of color, anti-nutritional factors, minerals, phenolic profile and protein digestibility between hard-to-cook and easy-to-cook grains from different kidney bean (Phaseolus vulgaris) accessions. J. Food Sci. Technol. 2017, 54, 1023–1034. [Google Scholar] [CrossRef]
- Wodajo, D.; Emire, S.A. Haricot beans (Phaseolus vulgaris L.) flour: Effect of varieties and processing methods to favor the utilization of underconsumed common beans. Int. J. Food Prop. 2022, 25, 1186–1202. [Google Scholar] [CrossRef]
- Kitum, V.C.; Kinyanjui, P.K.; Mathara, J.M.; Sila, D.N. Oligosaccharide and antinutrient content of whole red haricot bean fermented in salt-sugar and salt-only solutions. Legum. Sci. 2022, 4, e110. [Google Scholar] [CrossRef]
- Thummajitsakul, S.; Piyaphan, P.; Khamthong, S.; Unkam, M.; Silprasit, K. Comparison of FTIR fingerprint, phenolic content, antioxidant and anti-glucosidase activities among Phaseolus vulgaris L., Arachis hypogaea L. and Plukenetia volubilis L. Electron. J. Biotechnol. 2023, 61, 14–23. [Google Scholar] [CrossRef]
- Tong, Z.; He, W.; Fan, X.; Guo, A. Biological function of plant tannin and its application in animal health. Front. Vet. Sci. 2022, 8, 803657. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Martínez-Villaluenga, C.; Limón, R.I.; Peñas, E.; Frias, J. Effect of germination and elicitation on phenolic composition and bioactivity of Kidney Beans. Food Res. Int. 2015, 70, 55–63. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Althwab, S.A.; Qiu, H.; Zbasnik, R.; Urrea, C.; Carr, T.P.; Schlegel, V. Great northern beans (Phaseolus vulgaris L.) lower cholesterol in hamsters fed a high-saturated-fat diet. J. Nutr. 2022, 152, 2080–2087. [Google Scholar] [CrossRef]
- Bento, J.A.C.; Bassinello, P.Z.; Carvalho, R.N.; Souza Neto, M.A.D.; Caliari, M.; Soares Junior, M.S. Functional and pasting properties of colorful bean (Phaseolus vulgaris L.) flours: Influence of the cooking method. J. Food Process. Preserv. 2021, 45, e15899. [Google Scholar] [CrossRef]
- Bljahhina, A.; Pismennõi, D.; Kriščiunaite, T.; Kuhtinskaja, M.; Kobrin, E.G. Quantitative analysis of oat (Avena sativa L.) and pea (Pisum sativum L.) saponins in plant-based food products by hydrophilic interaction liquid chromatography coupled with mass spectrometry. Foods 2023, 12, 991. [Google Scholar] [CrossRef]
- Pathaw, N.; Devi, K.S.; Sapam, R.; Sanasam, J.; Monteshori, S.; Phurailatpam, S.; Devi, H.C.; Chanu, W.T.; Wangkhem, B.; Mangang, N.L. A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Front. Nutr. 2022, 9, 988964. [Google Scholar] [CrossRef]
- Guzmán, D.C.; Olguin, H.J.; Corona, Q.V.; Herrera, M.O.; Brizuela, N.O.; Mejía, G.B. Consumption of cooked common beans or saponins could reduce the risk of diabetic complications. Diabetes Metab. Syndr. Obes. 2020, 13, 3481–3486. [Google Scholar] [CrossRef]
- Kenar, J.A.; Felker, F.C.; Singh, M.; Byars, J.A.; Berhow, M.A.; Bowman, M.J.; Winkler-Moser, J.K. Comparison of composition and physical properties of soluble and insoluble navy bean flour components after jet-cooking, soaking, and cooking. LWT—Food Sci. Technol. 2020, 130, 109765. [Google Scholar] [CrossRef]
- Ravoninjatovo, M.; Ralison, C.; Servent, A.; Morel, G.; Achir, N.; Andriamazaoro, H.; Dornier, M. Effects of soaking and thermal treatment on nutritional quality of three varieties of common beans (Phaseolus vulgaris L.) from Madagascar. Legum. Sci. 2022, 4, e143. [Google Scholar] [CrossRef]
- Kong, X.; Li, Y.; Liu, X. A review of thermosensitive antinutritional factors in plant-based foods. J. Food Biochem. 2022, 46, e14199. [Google Scholar] [CrossRef]
- Ertaş, N. Improving the cake quality by using red kidney bean applied different traditional processing methods. J. Food Process. Preserv. 2021, 45, e15527. [Google Scholar] [CrossRef]
- Faria, M.A.; Araújo, A.; Pinto, E.; Oliveira, C.; Oliva-Teles, M.T.; Almeida, A.; Delerue-Matos, C.; Ferreira, I.M. Bioaccessibility and intestinal uptake of minerals from different types of home-cooked and ready-to-eat beans. J. Funct. Foods 2018, 50, 201–209. [Google Scholar] [CrossRef]
- Kambabazi, M.R.; Okoth, M.W.; Ngala, S.; Njue, L.; Vasanthakaalam, H. Physicochemical properties and sensory evaluation of a bean-based composite soup flour. Legum. Sci. 2022, 4, e139. [Google Scholar] [CrossRef]
- Alagbe, E.; Okoye, G.; Amoo, T.; Adekeye, B.; Taiwo, O.; Adeyemi, A.; Daniel, E. Spontaneous and controlled fermentation to improve nutritional value of Ikpakpa beans, Phaseolus vulgaris. Cogent Eng. 2022, 9, 2066823. [Google Scholar] [CrossRef]
- Rojas, J.U.; Verreth, J.A.J.; Van Weerd, J.H.; Huisman, E.A. Effect of different chemical treatments on nutritional and antinutritional properties of coffee pulp. Anim. Feed. Sci. Technol. 2022, 99, 195–204. [Google Scholar] [CrossRef]
- Jiménez-Martínez, C.; Mora-Escobedo, R.; Cardador Martínez, A.; Muzquiz, M.; Martin Pedrosa, M.; Dávila-Ortiz, G. Effect of aqueous, acid, and alkaline thermal treatments on antinutritional factors content and protein quality in Lupinus campestris seed flour. J. Agric. Food Chem. 2010, 58, 1741–1745. [Google Scholar] [CrossRef]
- Wu, X.; Tan, M.; Zhu, Y.; Duan, H.; Ramaswamy, H.S.; Bai, W.; Wang, C. The influence of high pressure processing and germination on anti-nutrients contents, in vitro amino acid release and mineral digestibility of soybeans. J. Food Compos. Anal. 2023, 115, 104953. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Leong, S.Y.; Kebede, B.; Oey, I. Effects of hydrothermal processing duration on the texture, starch and protein in vitro digestibility of cowpeas, chickpeas and kidney beans. Foods 2021, 10, 1415. [Google Scholar] [CrossRef]
- Wiesinger, J.A.; Cichy, K.A.; Hooper, S.D.; Hart, J.J.; Glahn, R.P. Processing white or yellow dry beans (Phaseolus vulgaris L.) into a heat treated flour enhances the iron bioavailability of bean-based pastas. J. Funct. Foods 2020, 71, 104018. [Google Scholar] [CrossRef]
- Une, S.; Nonaka, K.; Akiyama, J. Effects of hull scratching, soaking, and boiling on Antinutrients in Japanese red sword bean (Canavalia gladiata). J. Food Sci. 2016, 81, C2398–C2404. [Google Scholar] [CrossRef]
- Wiesinger, J.A.; Cichy, K.A.; Glahn, R.P.; Grusak, M.A.; Brick, M.A.; Thompson, H.J.; Tako, E. Demonstrating a nutritional advantage to the fast-cooking dry bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2016, 64, 8592–8603. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.; Arntfield, S. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT—Food Sci. Technol. 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Sparvoli, F.; Laureati, M.; Pilu, R.; Pagliarini, E.; Toschi, I.; Giuberti, G.; Fortunati, P.; Daminati, M.G.; Cominelli, E.; Bollini, R. Exploitation of common bean flours with low antinutrient content for making nutritionally enhanced biscuits. Front. Plant Sci. 2016, 7, 928. [Google Scholar] [CrossRef] [PubMed]
- Mbassi, J.E.G.; Alban, N.; Bertrand, Z.Z.; Mikhail, A.; Eileen Bogweh, N. Nutritional, organoleptic, and physical properties of biscuits made with cassava flour: Effects of eggs substitution with kidney bean milk (Phaseolus vulgaris L.). Int. J. Food Prop. 2022, 25, 695–707. [Google Scholar] [CrossRef]
- Margier, M.; Georgé, S.; Hafnaoui, N.; Remond, D.; Nowicki, M.; Du Chaffaut, L.; Amiot, M.J.; Reboul, E. Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients 2018, 10, 1668. [Google Scholar] [CrossRef]
- Kumar, Y.; Basu, S.; Goswami, D.; Devi, M.; Shivhare, U.S.; Vishwakarma, R.K. Anti-nutritional compounds in pulses: Implications and alleviation methods. Legum. Sci. 2022, 4, e111. [Google Scholar] [CrossRef]
- Nakitto, A.M.; Muyonga, J.H.; Nakimbugwe, D. Effects of combined traditional processing methods on the nutritional quality of beans. Food Sci. Nutr. 2015, 3, 233–241. [Google Scholar] [CrossRef]
- Yasmin, A.; Zeb, A.; Khalil, A.W.; Paracha, G.M.U.D.; Khattak, A.B. Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) grains. Food Bioproc. Tech. 2008, 1, 415–419. [Google Scholar] [CrossRef]
- Zhu, L.; Mukherjee, A.; Kyomugasho, C.; Chen, D.; Hendrickx, M. Calcium transport and phytate hydrolysis during chemical hardening of common bean seeds. Food Res. Int. 2022, 156, 111315. [Google Scholar] [CrossRef]
- Haileslassie, H.A.; Henry, C.J.; Tyler, R.T. Impact of pre-treatment (soaking or germination) on nutrient and anti-nutrient contents, cooking time and acceptability of cooked red dry bean (Phaseolus vulgaris L.) and chickpea (Cicer arietinum L.) grown in Ethiopia. Int. J. Food Sci. Tech. 2019, 54, 2540–2552. [Google Scholar] [CrossRef]
- Hu, M.; Du, X.; Liu, G.; Zhang, S.; Wu, H.; Li, Y. Germination improves the functional properties of soybean and enhances soymilk quality. Int. J. Food Sci. Technol. 2022, 57, 3892–3902. [Google Scholar] [CrossRef]
- Ikram, A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Tufail, T.; Hussain, M.; Anjum, F.M. Nutritional and end-use perspectives of sprouted grains: A comprehensive review. Food Sci. Nutr. 2021, 9, 4617–4628. [Google Scholar] [CrossRef] [PubMed]
- Nciri, N.; Cho, N.; Mhamdi, F.E.; Ismail, H.B.; Mansour, A.B.; Sassi, F.H.; Aissa-Fennira, F.B. Toxicity assessment of common beans (Phaseolus vulgaris L.) widely consumed by Tunisian population. J. Med. Food. 2015, 18, 1049–1064. [Google Scholar] [CrossRef] [PubMed]
- Owuamanam, C.; Ogueke, C.; Iwouno, J.; Edom, T. Use of seed sprouting in modification of food nutrients and pasting profile of tropical legume flours. Niger. Food J. 2014, 32, 117–125. [Google Scholar] [CrossRef]
- Limón, R.I.; Peñas, E.; Martínez-Villaluenga, C.; Frias, J. Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT—Food Sci. Technol. 2014, 56, 328–334. [Google Scholar] [CrossRef]
- Mugabo, E.; Afoakwa, E.O.; Annor, G.; Rwubatse, B. Effect of pretreatments and processing conditions on anti-nutritional factors in climbing bean flours. Int. J. Food Stud. 2017, 6, 34–43. [Google Scholar] [CrossRef]
- Zhao, J.; He, S.; Tang, M.; Sun, X.; Zhang, Z.; Ye, Y.; Cao, X.; Sun, H. Low-pH induced structural changes, allergenicity and in vitro digestibility of lectin from black turtle bean (Phaseolus vulgaris L.). Food Chem. 2019, 283, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; He, S.; Ye, Y.; Cao, X.; Liu, H.; Wu, Z.; Yue, J.; Jin, R.; Sun, H. Combined effects of pH and thermal treatments on IgE-binding capacity and conformational structures of lectin from black kidney bean (Phaseolus vulgaris L.). Food Chem. 2020, 329, 127183. [Google Scholar] [CrossRef]
- He, Q.; Sun, X.; He, S.; Wang, T.; Zhao, J.; Yang, L.; Wu, Z.; Sun, H. PEGylation of black kidney bean (Phaseolus vulgaris L.) protein isolate with potential functironal properties. Colloids Surf. B 2018, 164, 89–97. [Google Scholar] [CrossRef]
- Yang, Y.; He, Q.; Sun, H.; Cao, X.; Elfalleh, W.; Wu, Z.; Zhao, J.; Sun, X.; Zhang, Y.; He, S. PEGylation may reduce allergenicity and improve gelling properties of protein isolate from black kidney bean (Phaseolus vulgaris L.). Food Biosci. 2018, 25, 83–90. [Google Scholar] [CrossRef]
- Israr, B.; Frazier, R.A.; Gordon, M.H. Enzymatic hydrolysis of phytate and effects on soluble oxalate concentration in foods. Food Chem. 2017, 214, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.M.; Sitohy, M.Z.; Ahmed, A.I.; Rabie, N.A.; Amin, S.A.; Aboelenin, S.M.; Soliman, M.M.; El-Saadony, M.T. Biochemical and functional characterization of kidney bean protein alcalase-hydrolysates and their preservative action on stored chicken meat. Molecules 2021, 26, 4690. [Google Scholar] [CrossRef] [PubMed]
- Kasera, R.; Singh, A.; Lavasa, S.; Prasad, K.N.; Arora, N. Enzymatic hydrolysis: A method in alleviating legume allergenicity. Food Chem. Toxicol. 2015, 76, 54–60. [Google Scholar] [CrossRef] [PubMed]
- AL-Ansi, W.; Wang, Y.; Fan, M. Effect of kidney bean extract on phytohaemagglutinin activity, functional properties, and the estimated glycaemic index in-vitro. Int. J. Food Sci. Technol. 2023, 58, 3469–3477. [Google Scholar] [CrossRef]
- Tao, L.; Wang, J.; Zhu, Q.; Zhang, J.; Li, Y.; Song, S.; Yu, L. Effect of fermentation with Lactobacillus fermentum FL-0616 on probiotic-rich bean powders. J. Food Sci. Technol. 2023, 60, 1144–1152. [Google Scholar] [CrossRef]
- Sun, W.; He, J.; Wang, H.; Zhang, Q.; Li, W.; Rui, X. Solid-state fermentation alters the fate of red kidney bean protein during buccal and gastrointestinal digestion: Relationship with cotyledon cell wall integrity. Food Chem. 2023, 410, 135370. [Google Scholar] [CrossRef]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef]
- Suprayogi, W.P.S.; Ratriyanto, A.; Akhirini, N.; Hadi, R.F.; Setyono, W.; Irawan, A. Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. Bioresour. Technol. Rep. 2022, 17, 100925. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Optimization of extraction process for legume-based synbiotic beverages, followed by their characterization and impact on antinutrients. Int. J. Gastron. Food Sci. 2022, 28, 100506. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Chakraborty, S. Optimization of fermentation conditions of synbiotic legume-based beverages and study of their antimicrobial and proteolytic activity. J. Food Sci. 2022, 87, 5070–5088. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, C.A.; Andrés-Grau, A.M. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus Fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Páez, E.; Hernández-Luna, C.E.; Longoria-García, S.; Martínez-Silva, P.A.; Ortiz-Rodríguez, I.; Villarreal-Vera, M.T.; Cantú-Saldaña, C.M. Pleurotus ostreatus: A potential concurrent biotransformation agent/ingredient on development of functional foods (cookies). LWT—Food Sci. Technol. 2021, 148, 111727. [Google Scholar] [CrossRef]
- Sáez, G.D.; Hébert, E.M.; Saavedra, L.; Zárate, G. Molecular identification and technological characterization of lactic acid bacteria isolated from fermented kidney beans flours (Phaseolus vulgaris L. and P. coccineus) in northwestern Argentina. Food Res. Int. 2017, 102, 605–615. [Google Scholar] [CrossRef] [PubMed]
Non-Nutritional Factors | Existing Form | Stability Type | Physiological Effects |
---|---|---|---|
Lectin | Protein | Heat-sensitive | Protein digestion and absorption [24] |
Trypsin inhibitor | Protein | Heat-sensitive | Protein digestion and absorption [25] |
Phytic acid | Phytate | Thermal stability | Digestion and utilization of minerals [26] |
Tannin | Polyphenol | Thermal stability | Digestion and utilization of carbohydrates [27] |
Saponin | Glycoside triterpenoids | Thermal stability | Stimulate the immune system [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, C.; Wu, S.; Ma, T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods 2023, 12, 3697. https://doi.org/10.3390/foods12193697
Zhang Z, Liu C, Wu S, Ma T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods. 2023; 12(19):3697. https://doi.org/10.3390/foods12193697
Chicago/Turabian StyleZhang, Zifan, Chunxiu Liu, Sisi Wu, and Tiezheng Ma. 2023. "The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review" Foods 12, no. 19: 3697. https://doi.org/10.3390/foods12193697
APA StyleZhang, Z., Liu, C., Wu, S., & Ma, T. (2023). The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean (Phaseolus vulgaris L.): A Systematic Review. Foods, 12(19), 3697. https://doi.org/10.3390/foods12193697