An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Chemical Analysis
2.3.1. UPLC-Q-Orbitrap MS/MS Analysis
2.3.2. HS-SPME-GC-MS Analysis
2.3.3. HS-GC-IMS Analysis
2.4. Antioxidant Activity
3. Results and Discussion
3.1. UPLC-Q-Orbitrap MS/MS Analysis
3.2. HS-SPME-GC-MS Analysis
3.3. HS-GC-IMS Analysis
3.4. Antioxidant Activity
3.5. Comprehensive Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadam, R.A.; Dhumal, N.D.; Khyade, V.B. The Mulberry, Morus alba (L.): The Medicinal Herbal Source for Human Health. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2941–2964. [Google Scholar] [CrossRef]
- Ma, G.; Chai, X.; Hou, G.; Zhao, F.; Meng, Q. Phytochemistry, bioactivities and future prospects of mulberry leaves: A review. Food Chem. 2022, 372, 131335. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef]
- Yan, F.; Chen, X.; Zheng, X. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions. Food Res. Int. 2017, 102, 213–224. [Google Scholar] [CrossRef]
- Cheng, K.C.; Wang, C.J.; Chang, Y.C.; Hung, T.W.; Lai, C.J.; Kuo, C.W.; Huang, H.P. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J. Food Drug Anal. 2020, 28, 84–93. [Google Scholar] [CrossRef]
- Wang, R.S.; Dong, P.H.; Shuai, X.X.; Chen, M.S. Evaluation of Different Black Mulberry Fruits (Morus nigra L.) Based on Phenolic Compounds and Antioxidant Activity. Foods 2022, 11, 1252. [Google Scholar] [CrossRef]
- Sriwastva, M.K.; Deng, Z.B.; Wang, B.; Teng, Y.; Kumar, A.; Sundaram, K.; Mu, J.; Lei, C.; Dryden, G.W.; Xu, F.; et al. Exosome-like nanoparticles from Mulberry bark prevent DSS-induced colitis via the AhR/COPS8 pathway. EMBO Rep. 2022, 23, e53365. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Wong, S.K.; Tangah, J.; Inoue, T.; Chan, H.T. Phenolic constituents and anticancer properties of Morus alba (white mulberry) leaves. J. Integr. Med. 2020, 18, 189–195. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, W.; Bai, S.; Ye, L.; Du, J.; Zhong, M.; Liu, J.; Zhao, R.; Shen, B. White mulberry fruit polysaccharides enhance endothelial nitric oxide production to relax arteries in vitro and reduce blood pressure in vivo. Biomed. Pharmacother. 2019, 116, 109022. [Google Scholar] [CrossRef]
- Kaewmool, C.; Udomruk, S.; Phitak, T.; Pothacharoen, P.; Kongtawelert, P. Cyanidin-3-O-Glucoside Protects PC12 Cells Against Neuronal Apoptosis Mediated by LPS-Stimulated BV2 Microglial Activation. Neurotox. Res. 2020, 37, 111–125. [Google Scholar] [CrossRef]
- Kim, I.; Lee, J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants 2020, 9, 242. [Google Scholar] [CrossRef]
- Gomez-Mejia, E.; Roriz, C.L.; Heleno, S.A.; Calhelha, R.; Dias, M.I.; Pinela, J.; Rosales-Conrado, N.; Leon-Gonzalez, M.E.; Ferreira, I.; Barros, L. Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chem. 2021, 337, 127998. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, W.J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef]
- Gundogdu, M.; Tuncturk, M.; Berk, S.; Sekeroglu, N.; Gezici, S. Antioxidant Capacity and Bioactive Contents of Mulberry Species from Eastern Anatolia Region of Turkey. Indian J. Pharm. Educ. Res. 2018, 52, s96–s101. [Google Scholar] [CrossRef]
- Jan, B.; Parveen, R.; Zahiruddin, S.; Khan, M.U.; Mohapatra, S.; Ahmad, S. Nutritional constituents of mulberry and their potential applications in food and pharmaceuticals: A review. Saudi J. Biol. Sci. 2021, 28, 3909–3921. [Google Scholar] [CrossRef]
- Ramappa, V.K.; Srivastava, D.; Singh, P.; Kumar, U.; Kumar, D.; Gosipatala, S.B.; Saha, S.; Kumar, D.; Raj, R. Mulberries: A Promising Fruit for Phytochemicals, Nutraceuticals, and Biological Activities. Int. J. Fruit Sci. 2020, 20, S1254–S1279. [Google Scholar] [CrossRef]
- Parida, S.; Rayaguru, K.; Panigrahi, J. Mulberry cultivation and its phytochemical benefits: A review. J. Nat. Remedies 2020, 21, 33–48. [Google Scholar]
- Natic, M.M.; Dabic, D.C.; Papetti, A.; Fotiric Aksic, M.M.; Ognjanov, V.; Ljubojevic, M.; Tesic, Z. Analysis and characterisation of phytochemicals in mulberry (Morus alba L.) fruits grown in Vojvodina, North Serbia. Food Chem. 2015, 171, 128–136. [Google Scholar] [CrossRef]
- Sanchez-Salcedo, E.M.; Tassotti, M.; Del Rio, D.; Hernandez, F.; Martinez, J.J.; Mena, P. (Poly)phenolic fingerprint and chemometric analysis of white (Morus alba L.) and black (Morus nigra L.) mulberry leaves by using a non-targeted UHPLC-MS approach. Food Chem. 2016, 212, 250–255. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Jin, Q.; Yang, L.; Li, J.; Chen, F. Free and bound volatile chemicals in mulberry (Morus atropurpurea Roxb.). J. Food Sci. 2015, 80, C975–C982. [Google Scholar] [CrossRef]
- Hwang, I.S.; Kim, M.K. Influence of Processing Conditions on the Flavor Profiles of Mulberry (Morus alba Linn) Fruits Using Instrumental Flavor Analysis and Descriptive Sensory Analysis. Foods 2020, 9, 581. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Fu, Y.; Shi, Y.G.; Chen, F.L.; Guan, H.N.; Liu, L.L.; Zhang, C.Y.; Zhu, P.Y.; Liu, Y.; et al. HS-GC-IMS with PCA to analyze volatile flavor compounds across different production stages of fermented soybean whey tofu. Food Chem. 2021, 346, 128880. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Afzal, N.; Kausar, R.; Ilyas, S.; Shoaib, M. Influence of ripening stages and drying methods on polyphenolic content and antioxidant activities of mulberry fruits. J. Food Meas. Charact. 2017, 11, 2171–2179. [Google Scholar] [CrossRef]
- Wen, L.; Zhao, Y.; Jiang, Y.; Yu, L.; Zeng, X.; Yang, J.; Tian, M.; Liu, H.; Yang, B. Identification of a flavonoid C-glycoside as potent antioxidant. Free Radic. Biol. Med. 2017, 110, 92–101. [Google Scholar] [CrossRef]
- Chaiyana, W.; Charoensup, W.; Sriyab, S.; Punyoyai, C.; Neimkhum, W. Herbal Extracts as Potential Antioxidant, Anti-Aging, Anti-Inflammatory, and Whitening Cosmeceutical Ingredients. Chem. Biodivers. 2021, 18, e2100245. [Google Scholar] [CrossRef]
- An, Q.; Ren, J.N.; Li, X.; Fan, G.; Qu, S.S.; Song, Y.; Li, Y.; Pan, S.Y. Recent updates on bioactive properties of linalool. Food Funct. 2021, 12, 10370–10389. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Chen, W. Comparison of the protective effect of black and white mulberry against ethyl carbamate-induced cytotoxicity and oxidative damage. Food Chem. 2018, 243, 65–73. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, G.; Khan, M.A.; Yan, Z.; Beta, T. Ultrasonic-assisted enzymatic extraction and identification of anthocyanin components from mulberry wine residues. Food Chem. 2020, 323, 126714. [Google Scholar] [CrossRef]
No. | Rt/min | Formula | Ion Type | Detected Mass (m/z) | ppm | MS/MS Fragments | Identification |
---|---|---|---|---|---|---|---|
1 | 0.96 | C4H6O2 | [M + H]+ | 87.04408 | 0.31 | 69.03360 | Crotonic acid |
2 | 1.09 | C6H8O7 | [M − H]− | 191.01857 | −0.28 | 179.05521, 161.04453, 111.00720, 147.02855 | Isocitric acid |
3 | 1.32 | C6H8O7 | [M − H]− | 191.01848 | −0.76 | 111.00717, 147.02855, 129.01785, 85.02780 | Citric acid |
4 * | 1.87 | C7H6O5 | [M − H]− | 169.01337 | 1.28 | 157.01324, 134.01625 | Gallic acid |
5 | 2.15 | C7H10O7 | [M − H]− | 205.03438 | 0.48 | 173.00821, 111.00729 | 3-Hydroxy-3-(methoxycarbonyl) pentanedioic acid |
6 * | 3.48 | C7H6O4 | [M − H]− | 153.01820 | −0.21 | 109.02804 | Protocatechuic acid |
7 | 4.13 | C16H18O9 | [M − H]− | 353.08737 | −1.88 | 191.01785, 163.03912 | 1-Caffeioylquinic acid |
8 | 4.35 | C21H22O11 | [M + H]+ | 451.12396 | 1.05 | 289.07117, 153.09128 | Oxidized resveratrol 2-O-β-D-glucopyranoside or Isomer 1 (+COOH) |
9 | 4.94 | C20H24O13 | [M + H]+ | 473.12946 | 1.03 | 341.08725, 179.07043 | 5-Hydroxycoumarin-7-O-[β-D-furosyl-(1→6)-O-β-D-glucopyranoside |
10 | 5.04 | C21H26O13 | [M + H]+ | 487.14505 | 0.89 | 451.11154, 341.08774, 179.06096 | 7-Hydroxycoumarin-6-O-α-L-rhamnosyl-(1→6)-O-β-D-pyran-Glucoside |
11 | 5.21 | C20H22O9 | [M + H]+ | 407.13403 | 0.92 | 245.08116, 227.12811 | Oxidized resveratrol 2-O-β-D-glucopyranoside or Isomer 2 (+COOH) |
12 | 5.41 | C21H20O11 | [M + H]+ | 449.10803 | 0.43 | 287.05411, 181.04961 | Kaempferol-7-O-glucopyranoside |
13 * | 5.43 | C16H18O9 | [M + H]+ | 355.10233 | −0.34 | 287.05411, 135.04408, 117.03352, 89.03857 | Chlorogenic acid |
14 | 5.46 | C15H14O6 | [M − H]− | 289.17175 | −0.89 | 271.02234, 245.08195, 109.02795 | Catechin |
15 | 5.48 | C27H30O15 | [M + H]+ | 595.16589 | 0.25 | 449.10828, 287.05429 | Cyanidin-3-rutoside |
16 | 5.51 | C27H30O17 | [M + H]+ | 627.15552 | −0.08 | 465.10452, 303.05020 | Delphinidin 3,5-diglucoside |
17 | 5.59 | C16H18O9 | [M − H]− | 353.08707 | 1.01 | 173.04445, 135.04370, 111.04362, 93.03295 | Neochlorogenic acid |
18 | 5.64 | C27H32O16 | [M + H]+ | 613.17639 | 0.14 | 431.15253, 305.06586, 137.02333 | Dihydroquercetin-7-rutinoside |
19 | 5.71 | C21H20O10 | [M + H]+ | 433.11343 | 1.18 | 271.05957, 377.08466 | Pelargonidin-3-glucoside |
20 | 5.71 | C27H30O14 | [M + H]+ | 579.17114 | 0.54 | 433.11343, 377.08466, 271.05957 | Pelargonidin-3-rutinoside |
21 * | 5.86 | C9H8O4 | [M − H]− | 179.03394 | 0.28 | 135.04385, 121.02808 | Caffeic acid |
22 | 6.01 | C33H40O21 | [M + H]+ | 773.21338 | 1.61 | 611.16083, 465.10391, 303.05032 | Quercetin methyl pentoside dihexoside |
23 | 6.23 | C33H40O20 | [M − H]− | 755.20636 | 6.34 | 301.03577, 489.06564 | Quercetin-3-O-α-Rhamnose-β-Glucose-α-Rhamnoside |
24 | 6.39 | C20H22O9 | [M + H]+ | 407.13443 | −1.39 | 227.09143, 245.06284 | Oxidized resveratrol-2-O-β-D-glucopyranoside or Isomer 1 |
25 | 6.42 | C15H10O6 | [M + H]+ | 287.05548 | 1.62 | 259.06143, 241.05542, 153.01125 | Kaempferol |
26 | 6.56 | C21H20O11 | [M + H]+ | 449.10840 | 1.25 | 423.06052, 287.05533 | Cyanidin-3-galactoside |
27 | 6.58 | C20H22O9 | [M + H]+ | 407.13342 | −0.57 | 227.09189, 245.00316 | Oxidized resveratrol-2-O-β-D-glucopyranoside or Isomer 2 |
28 * | 6.73 | C27H30O16 | [M + H]+ | 611.16071 | 0.08 | 465.10327, 303.05005 | Rutin |
29 | 6.94 | C21H20O11 | [M + H]+ | 449.10818 | 0.77 | 287.05536 | Cyanidin-3-glucoside |
30 | 6.97 | C27H30O15 | [M + H]+ | 595.16595 | 0.35 | 449.10442, 287.05221 | Cyanidin-3-rutinoside |
31 * | 7.04 | C21H20O12 | [M + H]+ | 465.10312 | 0.79 | 303.04993 | Quercetin-3-O-glucoside |
32 | 7.35 | C27H30O15 | [M + H]+ | 595.16959 | 0.35 | 617.14771, 449.10831, 287.05530 | Kaempferol-3-O-rutoside |
33* | 7.46 | C15H12O7 | [M−H]− | 303.05121 | −0.2 | 285.04056, 255.03001 | Taxifolin |
34 | 7.55 | C25H24O12 | [M + H]+ | 517.13434 | 0.55 | 492.31717, 355.10272, 137.13260 | 4, 5-Dicaffeoylquinic acid |
35 * | 7.76 | C21H20O11 | [M + H]+ | 449.10834 | 1.11 | 423.09018, 287.05536 | Astragaloside |
36 | 7.83 | C25H24O12 | [M + H]+ | 517.13452 | 0.91 | 499.12384, 355.10272, 287.05527, 163.03908 | 1, 5-Dicaffeoylquinic acid |
37 | 8.35 | C25H24O12 | [M + H]+ | 517.1347 | 1.26 | 499.12396, 355.10294, 287.05518, 163.03917 | 1, 3-Dicaffeoylquinic acid |
38 | 8.47 | C23H22O12 | [M − H]− | 489.10480 | 0.41 | 455.11292, 269.00580 | Kaempferol-3-O-6”-acetylglucoside |
39 | 8.72 | C30H32O6 | [M − H]− | 487.21893 | 0.43 | 243.12364 | Sangenol J or Isomer 1 |
40 | 8.97 | C30H32O6 | [M − H]− | 487.21841 | −0.64 | 349.15097, 243.12389 | Sangenol B or Isomer 1 |
41 | 9.07 | C30H36O6 | [M − H]− | 491.24063 | 1.02 | 489.23305, 151.03879 | Sangenol C or Isomer 1 |
42 | 9.46 | C30H32O6 | [M − H]− | 487.21893 | 0.43 | 349.01346, 231.12369 | Sangenol D or Isomer |
43 | 9.53 | C45H44O11 | [M − H]− | 759.28534 | −6.65 | 693.24182, 581.32056, 353.08856 | Morin O or Isomer |
44 | 9.56 | C30H32O6 | [M − H]− | 487.2197 | −0.75 | 349.15085, 243.12381, 231.08730 | Sangenol J or Isomer 2 |
45 | 9.63 | C45H42O11 | [M − H]− | 757.26642 | −0.11 | 647.27258 | Sangone W |
46 * | 9.67 | C15H10O7 | [M − H]− | 301.03525 | −1.22 | 300.02280, 285.04086, 276.99191, 151.03889 | Quercetin |
47 | 9.70 | C25H26O6 | [M − H]− | 421.15134 | 0.43 | 401.16150, 363.02887, 349.13083, 309.01758 | Sangone T or Isomer |
48 | 9.74 | C30H32O6 | [M − H]− | 487.21964 | 0.82 | 349.18784, 243.12370, 231.12364 | Sangenol B or Isomer 2 |
49 | 10.09 | C40H36O11 | [M + H]+ | 693.23053 | −6.28 | 513.25769, 421.27188, 355.11783, 299.12848 | Sangone K |
50 * | 10.19 | C40H36O11 | [M + H]+ | 693.23209 | −6.63 | 671.46423, 513.25549, 473.22809, 299.10492 | Sangone G |
51 | 10.21 | C25H26O7 | [M − H]− | 437.16071 | −0.25 | 349.00272, 281.00177, 125.02299 | Cyclomoritol or Isomer |
52 | 10.34 | C25H26O7 | [M − H]− | 437.16107 | −0.58 | 349.00919, 281.00211 | Morusinol or Isomer |
53 | 10.41 | C25H26O6 | [M − H]− | 421.16620 | −0.5 | 401.08832, 349.00931, 311.01199, 309.17148 | Sangone D or Isomer |
54 | 10.47 | C30H36O6 | [M − H]− | 491.24423 | −0.87 | 365.00418, 313.23911, 151.03887 | Morganone C or Isomer 2 |
55 | 10.54 | C30H34O6 | [M − H]− | 489.22943 | 0.85 | 349.00934, 309.20761, 243.00668, 151.03873 | Morganone C or Isomer |
56 | 10.58 | C25H26O7 | [M − H]− | 437.16071 | −0.25 | 349.00919, 281.00195, 125.02296 | Sangone U or Isomer 1 |
57 | 10.68 | C25H26O7 | [M − H]− | 437.16138 | 0.11 | 349.00919, 281.00177, 125.02294 | Sangone U or Isomer 2 |
58 | 10.86 | C25H24O6 | [M − H]− | 419.15039 | 0.33 | 375.19473, 349.00906, 227.06589, 147.02870 | Moracin or Isomer 1 |
59 | 10.96 | C25H26O6 | [M − H]− | 421.16632 | −0.21 | 350.01184, 309.20764, 269.13925, 231.00548 | Sangone F or Isomer |
60 | 10.99 | C25H24O6 | [M − H]− | 419.15039 | 0.33 | 349.01108, 309.20758, 227.06552, 173.05609 | Moracin or Isomer 2 |
61 | 11.27 | C25H26O6 | [M − H]− | 421.16534 | 0.64 | 351.07144, 334.99438, 311.22174, 297.23419 | Sangone C or Isomer |
62 | 11.48 | C25H24O6 | [M − H]− | 419.15039 | 0.33 | 349.01154, 227.06543, 173.04459, 147.02866 | Moracin or Isomer 3 |
63 | 11.65 | C30H36O6 | [M − H]− | 491.24490 | 0.48 | 365.00574, 151.03876 | Morganone C or Isomer 3 |
64 | 12.32 | C25H22O6 | [M − H]− | 417.13577 | −0.41 | 365.27014, 334.24670, 289.00955, 241.10832 | Cyclomulberrin |
65 | 13.08 | C28H32O15 | [M + H]+ | 609.18646 | 0.46 | 607.25531, 301.15366 | Peonidin-3-rutinoside |
66 | 13.41 | C25H24O6 | [M − H]− | 419.15039 | 0.33 | 349.01041, 217.02921, 173.08087 | Moracin or Isomer 4 |
67 | 13.69 | C30H36O6 | [M − H]− | 491.24063 | 1.02 | 473.28308, 313.23923 | Morganone C or Isomer 4 |
68 | 13.80 | C30H34O6 | [M − H]− | 489.22742 | 0.51 | 309.04639, 255.00645, 243.19635 | Morganone B or Isomer |
No. | Rt/min | Formula | Compounds | CAS | RI1 | RI2 | Source |
---|---|---|---|---|---|---|---|
1 | 4.75 | C5H10O | Valeraldehyde | 110-62-3 | 979 | 979 | Ⅱ |
2 | 6.15 | C7H8 | Toluene | 108-88-3 | 1040 | 1042 | Ⅰ Ⅱ |
3 | 7.37 | C6H12O | Hexanal | 66-25-1 | 1082 | 1083 | All |
4 | 7.65 | C11H24 | n-Hendecane | 1120-21-4 | 1091 | 1100 | All |
5 | 8.77 | C5H8O | Trans-2-Pentenal | 1576-87-0 | 1129 | 1127 | Ⅰ Ⅱ |
6 | 8.94 | C8H10 | P-xylene | 106-42-3 | 1127 | 1138 | All |
7 | 10.09 | C5H10O | 1-Penten-3-ol | 616-25-1 | 1169 | 1159 | Ⅰ Ⅱ |
8 | 10.17 | C10H16 | α-Terpinene | 99-86-5 | 1171 | 1180 | Ⅰ Ⅳ |
9 | 10.83 | C10H16 | (+)-Dipentene | 5989-27-5 | 1190 | 1195 | Ⅰ Ⅱ Ⅳ |
10 | 10.97 | C12H26 | Dodecane | 112-40-3 | 1193 | 1200 | All |
11 | 11.77 | C6H10O | Hex-2-enal | 505-57-7 | 1217 | 1213 | All |
12 | 11.84 | C6H10O | Trans-2-hexenal | 6728-26-3 | 1218 | 1216 | All |
13 | 12.14 | C9H14O | 2-Pentylfuran | 3777-69-3 | 1230 | 1231 | All |
14 | 12.51 | C10H16 | γ-Terpinene | 99-85-4 | 1241 | 1246 | Ⅰ Ⅱ Ⅲ |
15 | 12.82 | C10H16 | Ocimene | 13877-91-3 | 1250 | 1250 | Ⅰ |
16 | 13.02 | C9H12 | 2-Ethyl toluene | 611-14-3 | 1257 | 1258 | Ⅰ |
17 | 13.35 | C10H14 | P-Cymene | 99-87-6 | 1271 | 1272 | All |
18 | 13.37 | C10H14 | M-Cymene | 535-77-3 | 1266 | 1266 | Ⅰ |
19 | 13.52 | C10H14 | O-Cymene | 527-84-4 | 1271 | 1275 | Ⅱ |
20 | 13.69 | C9H12 | 1, 2, 4-Trimethylbenzene | 95-63-6 | 1276 | 1283 | All |
21 | 13.79 | C10H16 | Cyclohexene | 586-63-0 | 1279 | - | Ⅰ |
22 | 14.54 | C13H28 | n-Tridecane | 629-50-5 | 1297 | 1300 | All |
23 | 15.24 | C7H12O | Trans-2-Heptenal | 18829-55-5 | 1321 | 1323 | Ⅱ Ⅲ Ⅳ |
24 | 15.24 | C7H12O | 2-Heptenal | 57266-86-1 | 1321 | 1322 | Ⅰ |
25 | 15.39 | C5H10O | Cis-2-penten-1-ol | 1576-95-0 | 1326 | 1318 | Ⅰ Ⅱ |
26 | 15.52 | C9H12 | 1, 2, 3-Trimethylbenzene | 526-73-8 | 1330 | 1340 | Ⅲ Ⅳ |
27 | 15.66 | C8H14O | 6-Methyl-5-hepten-2-one | 110-93-0 | 1335 | 1338 | Ⅰ |
28 | 16.50 | C6H14O | 1-Hexanol | 111-27-3 | 1360 | 1355 | Ⅰ Ⅱ |
29 | 17.48 | C6H12O | Leaf alcohol | 928-96-1 | 1388 | 1382 | Ⅰ Ⅱ |
30 | 17.59 | C9H18O | 1-Nonanal | 124-19-6 | 1392 | 1391 | All |
31 | 18.26 | C8H12O | 5-Ethyl-1-cyclopentene-1-carboxaldehyde | 36431-60-4 | 1412 | 1410 | All |
32 | 18.75 | C8H14O | (E)-2-Octenal | 2548-87-0 | 1428 | 1429 | All |
33 | 18.93 | C10H12 | m, α-Dimethylstyrene | 1124-20-5 | 1434 | 1440 | Ⅰ Ⅱ Ⅲ |
34 | 18.99 | C10H12 | α, P-Dimethylstyrene | 1195-32-0 | 1437 | 1444 | Ⅰ |
35 | 19.63 | C8H16O | 1-Octen-3-ol | 3391-86-4 | 1456 | 1450 | All |
36 | 19.70 | C2H4O2 | Acetic acid | 64-19-7 | 1458 | 1449 | Ⅰ |
37 | 20.63 | C15H24 | (−)-α-Copaene | 3856-25-5 | 1485 | 1492 | Ⅰ Ⅱ |
38 | 20.67 | C7H10O | Trans, trans-2, 4-Heptadienal | 4313-03-5 | 1487 | 1495 | Ⅰ |
39 | 20.96 | C10H20O | Decyl aldehyde | 112-31-2 | 1495 | 1498 | Ⅱ |
40 | 21.05 | C15H32 | n-Pentadecane | 629-62-9 | 1498 | 1500 | Ⅱ |
41 | 21.56 | C7H6O | Benzaldehyde | 100-52-7 | 1515 | 1520 | Ⅲ Ⅳ |
42 | 22.05 | C9H16O | Trans-2-nonenal | 18829-56-6 | 1531 | 1534 | Ⅰ Ⅳ |
43 | 22.61 | C10H18O | Linalool | 78-70-6 | 1549 | 1547 | Ⅰ |
44 | 23.81 | C15H24 | β-Caryophyllene | 87-44-5 | 1586 | 1595 | Ⅱ Ⅲ |
45 | 23.82 | C15H24 | (−)-Isocaryophyllene | 118-65-0 | 1586 | 1587 | Ⅰ |
46 | 24.14 | C10H18O | (−)-Terpinen-4-ol | 20126-76-5 | 1596 | 1593 | Ⅲ Ⅳ |
47 | 24.16 | C10H18O | Terpinen-4-ol | 562-74-3 | 1596 | 1602 | Ⅰ Ⅱ |
48 | 24.56 | C10H16O | β-Cyclocitral | 432-25-7 | 1610 | 1611 | All |
49 | 24.65 | C8H16O | Cis-5-octen-1-ol | 64275-73-6 | 1613 | 1615 | Ⅰ |
50 | 25.12 | C8H8O | Phenylacetaldehyde | 122-78-1 | 1629 | 1640 | All |
51 | 25.29 | C10H18O | 3-Heptylacrolein | 3913-81-3 | 1636 | 1644 | Ⅱ |
52 | 25.93 | C15H24 | α-Caryophyllene | 6753-98-6 | 1657 | 1667 | Ⅰ Ⅱ |
53 | 26.89 | C9H14O | Trans-2,4-Nonadienal | 5910-87-2 | 1689 | 1700 | Ⅰ Ⅱ Ⅳ |
54 | 28.17 | C15H24 | α-Farnesene | 502-61-4 | 1740 | 1746 | Ⅰ |
55 | 28.45 | C15H24 | (+)-δ-Cadinene | 483-76-1 | 1745 | 1758 | Ⅰ Ⅱ Ⅲ |
56 | 28.62 | C10H16O | (2E, 4Z)-Decadienal | 25152-83-4 | 1759 | 1754 | Ⅳ |
57 | 28.76 | C10H22O | Decyl alcohol | 112-30-1 | 1764 | 1760 | Ⅱ |
58 | 30.71 | C6H12O2 | Hexanoic acid | 142-62-1 | 1860 | 1846 | Ⅳ |
59 | 31.53 | C8H10O | Phenethyl alcohol | 60-12-8 | 1909 | 1906 | Ⅱ |
60 | 31.94 | C13H20O | Irisone | 14901-07-6 | - | 1971 | Ⅲ |
61 | 31.95 | C13H20O | β-Lonone | 79-77-6 | 1939 | 1940 | Ⅰ Ⅱ |
62 | 32.02 | C11H16O | Jasmone | 488-10-8 | 1944 | 1961 | Ⅰ |
63 | 34.83 | C10H12O2 | Eugenol | 97-53-0 | - | 2169 | Ⅰ Ⅱ |
64 | 35.34 | C17H34O2 | Methyl palmitate | 112-39-0 | - | 2208 | Ⅰ Ⅱ |
No. | Rt/min | Formula | Compounds | CAS | RI1 |
---|---|---|---|---|---|
1 | 1.49 | C3H8O | Isopropyl alcohol | C67630 | 496.2 |
2 | 1.78 | C4H8O | 2-Methylpropanal monomer | C78842 | 544.3 |
3 | 1.79 | C4H8O | 2-Methylpropanal dimer | C78842 | 546.7 |
4 | 1.94 | C4H8O2 | Ethyl acetate monomer | C141786 | 572.4 |
5 | 2.07 | C4H8O2 | Ethyl acetate dimer | C141786 | 594.0 |
6 | 2.30 | C5H10O | 3-Methylbutanal monomer | C590863 | 633.8 |
7 | 2.34 | C5H10O | 3-Methylbutanal dimer | C590863 | 639.5 |
8 | 3.30 | C5H8O | (E)-2-Pentenal dimer | C1576870 | 746.0 |
9 | 3.31 | C5H8O | (E)-2-Pentenal monomer | C1576870 | 746.2 |
10 | 3.92 | C6H12O | Hexanal dimer | C66251 | 793.0 |
11 | 4.48 | C6H12O | Hexanal monomer | C66251 | 823.2 |
12 | 5.04 | C6H12O | (E)-2-Hexen-1-ol dimer | C928950 | 853.7 |
13 | 5.26 | C6H12O | (E)-2-Hexen-1-ol monomer | C928950 | 865.5 |
14 | 5.71 | C7H14O | 2-Heptanone dimer | C110430 | 889.8 |
15 | 5.74 | C7H14O | 2-Heptanone monomer | C110430 | 891.2 |
16 | 5.86 | C6H10O | Cyclohexanone monomer | C108941 | 895.4 |
17 | 5.87 | C6H10O | Cyclohexanone dimer | C108941 | 896.0 |
18 | 5.94 | C7H16O | 3-Heptanol | C589822 | 898.1 |
19 | 5.97 | C7H14O | Heptanal dimer | C111717 | 899.3 |
20 | 6.04 | C7H14O | Heptanal monomer | C111717 | 901.3 |
21 | 6.28 | C6H6O2 | 2-Acetylfuran | C1192627 | 909.4 |
22 | 6.82 | C6H8N2 | Ethyl pyrazine | C13925003 | 927.1 |
23 | 7.14 | C10H16 | α-Pinene | C80568 | 937.8 |
24 | 7.61 | C7H12O | (E)-Hept-2-enal monomer | C18829555 | 953.2 |
25 | 7.64 | C7H12O | (E)-Hept-2-enal dimer | C18829555 | 954.0 |
26 | 7.65 | C7H6O | Benzaldehyde monomer | C100527 | 954.2 |
27 | 7.66 | C7H6O | Benzaldehyde dimer | C100527 | 954.7 |
28 | 8.35 | C8H14O | 1-Octen-3-one monomer | C4312996 | 977.3 |
29 | 8.36 | C8H14O | 1-Octen-3-one dimer | C4312996 | 977.6 |
30 | 8.48 | C8H16O | Oct-1-en-3-ol | C3391864 | 981.8 |
31 | 8.78 | C9H14O | 2-Pentyl furan | C3777693 | 991.5 |
32 | 8.78 | C8H14O | 6-Methyl-hept-5-en-2-one | C110930 | 991.5 |
33 | 9.06 | C7H10O | 2,4-Heptadienal | C5910850 | 999.1 |
34 | 9.08 | C10H16 | α-Phellandrene | C99832 | 999.5 |
35 | 9.70 | C7H10O | (E, E)-2,4-Heptadienal dimer | C4313035 | 1011.5 |
36 | 9.79 | C7H10O | (E, E)-2,4-Heptadienal monomer | C4313035 | 1013.3 |
37 | 10.41 | C10H18O | 1.8-Cineole | C470826 | 1025.4 |
38 | 10.44 | C8H8O | Phenylacetaldehyde monomer | C122781 | 1026.0 |
39 | 10.94 | C8H8O | Phenylacetaldehyde dimer | C122781 | 1035.8 |
40 | 11.19 | C6H6N2O | Acetyl pyrazine | C22047252 | 1040.8 |
41 | 11.55 | C10H16 | β-Ocimene | C13877913 | 1047.7 |
42 | 11.97 | C8H14O | (E)-2-Octenal dimer | C2548870 | 1055.9 |
43 | 12.36 | C8H14O | (E)-2-Octenal monomer | C2548870 | 1063.5 |
44 | 13.15 | C8H12N2 | 2-Ethyl-3,5-dimethyl pyrazine | C13925070 | 1079.0 |
45 | 13.61 | C8H8O2 | Methyl benzoate | C93583 | 1088.0 |
46 | 14.27 | C10H18O | Linalool | C78706 | 1101.0 |
47 | 14.57 | C9H18O | Nonanal dimer | C124196 | 1106.7 |
48 | 14.72 | C9H18O | Nonanal monomer | C124196 | 1109.8 |
49 | 17.06 | C10H18O | Borneol monomer | C507700 | 1155.4 |
50 | 18.20 | C9H10O2 | Benzyl acetate monomer | C140114 | 1177.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Yin, J.; Li, X.; Xie, J.; Ding, H.; Han, L.; Bie, S.; Li, F.; Zhu, B.; Kang, L.; et al. An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. Foods 2023, 12, 3335. https://doi.org/10.3390/foods12183335
Wu S, Yin J, Li X, Xie J, Ding H, Han L, Bie S, Li F, Zhu B, Kang L, et al. An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. Foods. 2023; 12(18):3335. https://doi.org/10.3390/foods12183335
Chicago/Turabian StyleWu, Shufang, Jiaxin Yin, Xuejuan Li, Jingyi Xie, Hui Ding, Lifeng Han, Songtao Bie, Fangyi Li, Beibei Zhu, Liping Kang, and et al. 2023. "An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS" Foods 12, no. 18: 3335. https://doi.org/10.3390/foods12183335
APA StyleWu, S., Yin, J., Li, X., Xie, J., Ding, H., Han, L., Bie, S., Li, F., Zhu, B., Kang, L., Song, X., Yu, H., & Li, Z. (2023). An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. Foods, 12(18), 3335. https://doi.org/10.3390/foods12183335